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GUILLAUME ROND

Abstract. — In 1968, M. Artin proved that any formal power series solution
of a system of analytic equations may be approximated by convergent power
series solutions. Motivated by this result and a similar result of Ploski, he
conjectured that this remains true when the ring of convergent power series
is replaced by a more general kind of ring.

This paper presents the state of the art on this problem and its extensions.
An extended introduction is aimed at non-experts. Then we present three
main aspects of the subject : the classical Artin Approximation Problem, the
Strong Artin Approximation Problem and the Artin Approximation Problem
with constraints. Three appendices present the algebraic material used in
this paper (The Weierstrass Preparation Theorem, excellent rings and regular
morphisms, étales and smooth morphisms and Henselian rings).

The goal is to review most of the known results and to give a list of references
as complete as possible. We do not give the proofs of all the results presented
in this paper but, at least, we always try to outline the proofs and give the
main arguments together with precise references.

This paper is an extended version of the habilitation thesis of the author.
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who encouraged him to improve the first version of this writing : Edward Biers-
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PART 1
INTRODUCTION

The aim of this paper is to present the Artin Approximation Theorem and
some related results. The problem we are interested in is to find analytic
solutions of some system of equations when this system admits formal power
series solutions and the Artin Approximation Theorem yields a positive answer
to this problem. We begin this paper by giving several examples explaining
what this sentence means exactly. Then we will present the state of the art on
this problem. There are essentially three parts: the first part is dedicated to
present the Artin Approximation Theorem and its generalizations; the second
part presents a stronger version of the Artin Approximation Theorem; the last
part is mainly devoted to explore the Artin Approximation Problem in the
case of constraints.
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Exzample 0.1. — Let us consider the following curve C := {(¢3,t4,%),t € C}
in C3. This curve is an algebraic set which means that it is the zero locus
of polynomials in three variables. Indeed, we can check that C is the zero

2 2%y, If we

locus of the polynomials f := 4% — 22, ¢ ;== yz — 23 and h := z
consider the zero locus of any two of these polynomials we always get a set
larger than C'. The complex dimension of the zero locus of one non-constant
polynomial in three variables is 2 (such a set is called a hypersurface of C?).
Here C' is the intersection of the zero locus of three hypersurfaces and not of
two of them, but its complex dimension is 1.

In fact we can see this phenomenon as follows: we call an algebraic re-
lation between f, g and h any element of the kernel of the linear map
¢ : Clz,y, 2] — C[z,y, 2] defined by ¢(a,b,c) := af + bg + ch. Obviously
r1 == (g9,—f,0), 72 := (h,0,—f) and r3 := (0,h,—g) € Ker(p). These are
called the trivial relations between f, g and h. But in our case there are two
more relations which are r4 := (2, —y,z) and r5 := (2, —2,y) and 74 and
r5 cannot be written as ajry + agry + asrs with aj, ag and ag € Clz,y, 2],
which means that r4 and r5 are not in the sub-C[z, y, z]-module of C[z,y, 2]
generated by 71, ro and r3.

On the other hand we can prove, using the theory of Grébner basis, that
Ker(yp) is generated by 71, 72, 73, r4 and 5.

Let X be the common zero locus of f and g. If (z,y,2) € X and = # 0, then
h = foﬂ = 0 thus (z,y,2) € C. If (x,y,2) € X and z = 0, then y = 0.
Geometrically this means that X is the union of C' and the z-axis, i.e. the
union of two curves.

Now let us denote by C[z,y,z] the ring of formal power series with co-
efficients in C. We can also consider formal relations between f, g and h, that
is elements of the kernel of the map C[z,y, 2] — C[x,y, 2] induced by .
Any element of the form ayry + asre 4+ asgrs + aqry + asrs is called a formal
relation as soon as ay,..., as € Clz,y, z].

In fact any formal relation is of this form, i.e. the algebraic relations generate
the formal relations. We can show this as follows: we can assign the weights
3tox, 4toy and 5 to z. In this case f, g, h are weighted homogeneous
polynomials of weights 8, 9 and 10 and ry, ro, r3, 74 and 75 are weighted
homogeneous relations of weights (9, 8,0), (10,0, 8), (0, 10,9), (5,4, 3), (6,5,4).
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If (a,b,c) € Cz,y,2]® is a formal relation then we can write a = Y o ai,
b=>72ybi and ¢ = > ;2 ¢; where a;, b; and ¢; are weighted homogeneous
polynomials of degree ¢ with respect to the previous weights. Then saying
that af + bg + ch = 0 is equivalent to

a;f +bi_1g+cioh=0 VieN

with the assumption b; = ¢; = 0 for ¢ < 0. Thus (ao,0,0), (a1,bo,0) and any
(@i, bi—1,¢i—2), for 2 < i, are in Ker(y), thus are weighted homogeneous linear
combinations of r1,..., r5. Hence (a,b,c) is a linear combination of rq,..., 75
with coefficients in C[z, y, 2].

Now we can investigate the same problem by replacing the ring of for-
mal power series by C{z,y,z}, the ring of convergent power series with
coefficients in C, i.e.

C{z,y,z} := Z aijrx'y? 27 ) 3p >0, Z la; 1] pTF < oo
i,j,keN 05,k

We can also consider analytic relations between f, g and h, i.e. elements of the
kernel of the map C{z,y, 2}> — C{z,v, 2} induced by ¢. From the formal
case we see that any analytic relation r is of the form airy + asre + asrs +
aqry + azrs with a; € Clz,y, 2] for 1 < i < 5. In fact we can prove that
a; € C{z,y, z} for 1 <i <5, and our goal is to describe how to do this.

Let us remark that the equality » = a1r1 + - - - + as7rs is equivalent to say that
ai,..., as satisfy a system of three linear equations with analytic coefficients.
This is the first example of the problem we are interested in: if some equations
with analytic coefficients have formal solutions do they have analytic solutions?
The Artin Approximation Theorem yields an answer to this problem. Here is
the first theorem proven by M. Artin in 1968:

Theorem 0.2 (Artin Approximation Theorem). — [Ar68| Let F(x,y)
be a

vector of convergent power series over C in two sets of variables x and y.
Assume given a formal power series solution y(x),

F(z,y(z)) = 0.
Then, for any c € N, there exists a convergent power series solution y(x),

F(z,y(r)) =0
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which coincides with y(x) up to degree c,
y(x) = y(z) modulo (z)°.

We can define a topology on C[z], = = (x1,--- ,2,) being a set of variables,
by saying that two power series are close if their difference is in a high power
of the maximal ideal (z). Thus we can reformulate Theorem as: formal
power series solutions of a system of analytic equations may be approximated
by convergent power series solutions (see Remark in the next part for a
precise definition of this topology).

Example 0.3. — A special case of Theorem and a generalization of Ex-
ample occurs when F' is homogeneous linear in y, say F(z,y) = > fi(z)y;,
where f;(x) is a vector of convergent power series with r coordinates for any i
and z and y are two sets of variables. A solution y(z) of F'(z,y) = 0 is a relation
between the f;(x). In this case the formal relations are linear combinations
of analytic combinations with coefficients in C[z]. In term of commutative
algebra, this is expressed as the flatness of the ring of formal power series
over the ring of convergent powers series, a result which can be proven via the
Artin-Rees Lemma (see Remark in the next part and Theorems 8.7 and
8.8 [Mat89]).

It means that if y(x) is a formal solution of f(z,y) = 0, then there exist an-
alytic solutions of F(z,y) = 0 denoted by y;(z), 1 < i < s, and formal power
series /b\l(x),..., /Z;S(x), such that y(x) = Zla(z)ﬂl(az) Thus, by replacing in
the previous sum the /EZ($) by their truncation at order ¢, we obtain an analytic
solution of f(x,y) = 0 coinciding with y(c) up to degree c.

If the f;(z) are vectors of polynomials then the formal relations are also linear
combinations of algebraic relations since the ring of formal power series is flat
over the ring of polynomials, and Theorem remains true if F'(z,y) is linear
in y and C{x} is replaced by C|x].

Example 0.4. — A slight generalization of the previous example is when
F(z,y) is a vector of polynomials in y of degree one with coefficients in C{x}
(resp. Clz]), say

F(z,y) =Y fi(x)yi + b(x)
=1

where the f;(x) and b(x) are vectors of convergent power series (resp. poly-
nomials). Here x and y are multi-variables. If y(x) is a formal power series
solution of F(x,y) = 0, then (y(x),1) is a formal power series solution of
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G(z,y,z) = 0 where

G(z,y, 2z Zfz yz+b T)z

and z is a single variable. Thus using the flatness of C[z] over C{z} (resp.
C[z]), as in Example[0.3] we can approximate (y(z), 1) by a convergent power
series (resp. polynomial) solution (y(z),z(z)) which coincides with (y(x), 1)
up to degree c¢. In order to obtain a solution of F(z,y) = 0 we would like
to be able to divide y(z) by Z(z) since y(x)Z(z)~' would be a solution of
F(z,y) = 0 approximating y(x). We can remark that, if ¢ > 1, then z(0) =1
thus Z(x) is not in the ideal (x). But C{z} is a local ring. We call a local ring
any ring A that has only one maximal ideal. This is equivalent to say that
A is the disjoint union of one ideal (its only maximal ideal) and of the set
of units in A. Here the units of C{z} are exactly the power series a(x) such
that a(x) is not in the ideal (x), i.e. such that a(0) # 0. In particular z(x) is
invertible in C{x}, hence we can approximate formal power series solutions of
F(x,y) = 0 by convergent power series solutions.

In the case (y(x),z(x)) is a polynomial solution of g(x,y,z) = 0, Z(z) is
not invertible in general in Clz] since it is not a local ring. For instance set

Fz,y)=1—-2z)y—1

where z and y are single variables. Then y(x Z:z: = is the

only formal power series solution of F(z,y) = 0, but y( ) is not a polyno—
mial. Thus we cannot approximate the roots of F' in C[z] by roots of F' in C[z].

But instead of working in C[z] we can work in C[z]) which is the ring
of rational functions whose denominator does not vanish at 0. This ring is
a local ring. Since z(0) # 0, y(z)Z(x)~! is a rational function belonging to
Clz](z). In particular any system of polynomial equations of degree one with
coefficients in C[x] which has solutions in C[z] has solutions in C[z](,).

In term of commutative algebra, the fact that degree 1 polynomial equa-
tions satisfy Theorem is expressed as the faithfull flatness of the ring of
formal power series over the ring of convergent powers series, a result that
follows from the flatness and the fact that the ring of convergent power series
is a local ring (see also Remark in the next part).
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Example 0.5. — The next example we are looking at is the following: set
f € A where A = Clz] or C[z](,) or C{z} where 7 is a finite set of variables.
When do there exist g, h € A such that f = gh?

First of all, we can take ¢ = 1 and h = f or, more generally, g a unit in A and
h = g~ 'f. These are trivial cases and thus we are looking for non units g and
h.

Of course, if there exist non units g and h in A such that f = gh, then
f = (tug)(@'h) for any unit @ € C[z]. But is the following true: let us
assume that there exist g, h € C[z] such that f = EE, then do there exist non
units g, h € A such that f = gh?

Let us remark that this question is equivalent to the following: if % is an

. .. Cla] . . ;o
integral domain, is e still an integral domain’

The answer to this question is no in general: for example set A := C[z,y]
where x and y are single variables and f := 22 — y%(1 +y). The polynomial f
is irreducible since y2(1 + y) is not a square in C[x,y]. But as a power series
we can factor f as

f=@+yy1+y)(z—yy1+y)

where /T + y is a formal power series such that (v/T+y)2 =1 +y. Thus f
is not irreducible in C[z,y] nor in C{x,y} but it is irreducible in C[z,y] or

C[l’, y] (z,y)"

In fact it is easy to see that = + yv/I+y and =z — y/I+y are power
series which are algebraic over C[z,y], i.e. they are roots of polynomials with
coefficients in C[z, y] (here there are roots of the polynomial (z—x)2—3?(1+y)).
The set of such algebraic power series is a subring of C[z, y]] and it is denoted
by C(z,y). In general if  is a multivariable the ring of algebraic power series
C(x) is the following:

Clz) :={f € Clz] / FP(2) € Clz][], P(f) =0}.

It is not difficult to prove that the ring of algebraic power series is a subring of
the ring of convergent power series and is a local ring. In 1969, M. Artin proved
an analogue of Theorem for the rings of algebraic power series [Ar69| (see
Theorem [2.1]in the next part). Thusif f € C(z) (or C{z}) is irreducible then it
remains irreducible in C[[z], this is a consequence of this Artin Approximation
Theorem for algebraic power series applied to the equation y1y2 — f. From this
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theorem we can also deduce that if f € (C<Ix> (or %) is irreducible, for some
ideal I, it remains irreducible in I%H[Eﬂ]}]'
Example 0.6. — Let us strengthen the previous question. Let us assume

that there exist §, h € C[z] such that f = Gh with f € A with A = C(z) or
C{z}. Then does there exist a unit @ € C[z] such that g € A and i~ 'h € A
?
The answer to this question is positive if A = C(z) or C{z}, this is a non
trivial corollary of the Artin Approximation Theorem (see Corollary [7.15]).
(@) ., Cz}
1

But it is negative in general for (CT or if I is an ideal as shown by the
following example due to S. Izumi [Iz92]:

Set A := ((C;iyx?,%’ Set @(z) = o2 ynlz™ (this is a divergent power se-

ries) and set

Fr=a+yd(z), §:=(-yp(2)(1-28(2)*)" € Cla,y, 2]

Then we can check that z? = f’g\ modulo (y? — 23). Now let us assume that
there exists a unit @ € C[z, y, 2] such that @f € C{z,y, 2z} modulo (y2 — z3).
Thus the element P := ﬁf— (y? — x?’)/f\L is a convergent power series for some
h € Clx,y,z]. We can check easily that P(0,0,0) = 0 and %—I;(O,O,O) =
1(0,0,0) # 0. Thus by the Implicit Function Theorem for analytic functions
there exists ¢(y, z) € C{y, z}, such that P(¥(y,z),y,2z) = 0 and ¥(0,0) = 0.
This yields

W(y,2) +y@(2) — (v = (Y, 2)")h((y, ), 9, 2)0 " ((y, 2),9,2) = 0.
By substituting 0 for y we obtain (0, z) + (0, 2)3k(z) = 0 for some power
series E(z) € CJ[z]. Since ¥(0,0) = 0, the order of the power series (0, z)
is positive hence ¥(0,z) = 0. Thus ¥(y, z) = y0(y, z) with §(y, z) € C{y, z}.
Thus we obtain

0(y,2) + @(z) — (y — 0y, 2))h(¥(y, 2), y, 2)T (h(y, 2),9,2) = 0
and by substituting 0 for y, we see that p(z) = 6(0,z) € C{z} which is a
contradiction.
Thus 2% = f§ modulo (y*> — z3) but there is no unit @ € C[[z,y, 2] such that
ﬁfe C{z,y, 2} modulo (y* — 23).
Example 0.7 — A similar question is the following one: if f € A with
A = C[z], Clz](s), C(x) or C{z} and if there exist a non unit g € C[z] and an

integer m € N such that g™ = f, does there exist a non unit g € A such that
g"=f
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A weaker question is the following: if % is reduced, is % still reduced?

Indeed, if g™ = f for some non unit g then i ﬁ([([;x[[ﬂgcﬂ is not reduced. Thus, if the
answer to the second question is positive, then there exists a non unit g € A

and a unit u € A such that ug® = f for some integer k.

As before, the answer to the first question is positive for A = C(x) and
A = C{z} by the Artin Approximation Theorem applied to the equation
y" —f=0.

If A= Clz] or C[z](,) the answer to this question is negative. Indeed let us
consider f = 2™ + 2™+, Then f = g™ with g := 2 ¥/1 + = but there is no
g € A such that ¢" = f.

Nevertheless, the answer to the second question is positive in the cases
A = Clx] or C[x](;). This non-trivial result is due to D. Rees (see [HS06] for
instance).

Ezxample 0.8. — Using the same notation as in Example we can ask a
stronger question: set A = C(z) or C{x} and let f be in A. If there exist g
and h € Clx], vanishing at 0, such that f = gh modulo a large power of the
ideal (z), do there exist g and h in A such that f = gh? We just remark that
by Example there is no hope, if f is a polynomial and g and h exist, to
expect that g and h € C[z].

Nevertheless we have the following theorem that gives a precise answer to this
question:

Theorem 0.9 (Strong Artin Approximation Theorem)

[Ar69| Let F(x,y) be a vector of convergent power series over C in two sets
of variables x and y. Then for any integer ¢ there exists an integer 5 such that
for any given approzimate solution y(x) at order f3,

F(x,y(x)) =0 modulo (:U)B,
there exists a convergent power series solution y(x),
F(z,y(z)) =0

which coincides with §(x) up to degree c,

Cc

y(x) = 7y(z) modulo (x)°.
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In particular we can apply this theorem to the polynomial y1yo — f with
c = 1. It shows that there exists an integer 3 such that if gh — f = 0 modulo
(z)? and if g(0) = h(0) = 0, there exist non units g and h € C{x} such that
gh—f=0.

For a given F(z,y) and a given c¢ let B(c) denote the smallest integer [
satisfying the previous theorem. A natural question is: how to compute or
bound the function ¢ — S(c) or, at least, some values of 3?7 For instance
when F(x,y) = yiy2 — f(z), f(z) € Clz], what is the value or a bound
of 5(1)? That is, up to what order do we have to check that the equation
y1y2 — f = 0 has an approximate solution in order to be sure that this equa-
tion has solutions? For instance, if f := x179 — o3 then f is irreducible but
x129— f = 0 modulo (x)? for any d € N, so obviously 8(1) really depends on f.

In fact in Theorem M. Artin proved that 8 can be chosen to depend
only on the degree of the components of the vector F'(z,y). But it is still an
open problem to find effective bounds on § (see Section .

Ezample 0.10 (Ideal Membership Problem). — Let fi,..., f, € C[x]
be formal power series where = (x1, -+ ,2,). Let us denote by I the ideal
of C[x] generated by fi,..., fr. If g is a power series, how can we detect that
g € I or g¢ I? Since a power series is determined by its coefficients, saying
that g € I will depend in general on a infinite number of conditions and it will
not be possible to check that all these conditions are satisfied in finite time.
Another problem is to find canonical representatives of power series modulo

the ideal I that will enable us to make computations in the quotient ring @.

One way to solve these problems is the following one. Let us consider
the following order on N": for any «, 8 € N" we say that a < g if
(||, ny oy ) <pew (|81, B1y-oes Bn) Where |a] := a1 + -+ - 4+ @, and <, is the
lexicographic order. For instance

(1,1,1) < (1,2,3) < (2,2,2) < (3,2,1) < (2,2,3).

This order induces an order on the sets of monomials z{*...z5"

z® < 28 if @ < . Thus

: we say that

T12223 < xlxgscg < z%x%x% < x?az%:pd < x%x%x%
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If f:= > qenn Jaz® € C[z], the initial exponent of f with respect to the
previous order is

exp(f) := min{a € N" / f, # 0} = inf Supp(f)

where the support of f is the set Supp(f) := {a € N" / f, # 0}. The initial
term of f is fexp(f)xe"p(f ). This is the smallest non zero monomial in the
expansion of f with respect to the previous order.

If I is an ideal of C[x], we define I'(I) to be the subset of N of all the initial
exponents of elements of I. Since [ is an ideal, for any § € N" and any
f €1,2°f € I. This means that I'(I) + N* = I'(I). Then we can prove (this
statement is known as Dickson’s Lemma) that there exists a finite number of
elements g1,..., gs € I such that

{exp(g1), ., exp(gs)} + N" = I'(I).

Set
Aj :=exp(g1) + N" and A; = (exp(g;) + N")\ U Aj, for 2 <i<s.
1<j<i
Finally, set
Ao = Nn\ U Az
i=1

For instance, if I is the ideal of C[x1, 2] generated by g; := z123 and go :=

2223, we can check that

D(I)={(1,3),(2,2)} + N2,

Ay

(1,3) Ay
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Set g € C[z]. Then by the Galligo-Grauert-Hironaka Division Theorem
[Gal79] there exist unique power series qi,..., s, 7 € C[x] such that

(1) g=91q1 + - -+3gsqs +r

(2) exp(gi) + Supp(¢g;) C A; and Supp(r) C Ay.

The uniqueness of the division comes from the fact the A; are disjoint subsets
of N*. The existence of such decomposition is proven through the following
division algorithm:

Set o := exp(g). Then there exists an integer i; such that o € A,,.
e If iy = 0, then set () := in(g) and q(l) = 0 for all <.
o If iy > 1, then set (V) := 0, q(l) =0 for ¢ # i1 and q( ) .= dnlg)

i T (e

Finally set ¢! = g — z:glqZ — 7M. Thus we have exp(g™®) > exp(g).

Then we replace g by g ) and we repeat the preceding process.
In this way we construct a sequence (g (k)) g of power series such that, for any

ke N, exp(g®tD) > exp(¢g*)) and ¢ = g — Zgqu r*) with
i=1

exp(gi) + Supp(q(k)) C A; and Supp(r(k)) C Ay.

7

At the limit £ — oo we obtain the desired decomposition.

In particular since {exp(gi1),---,exp(gs)} + N* = I'(I) we deduce from
this that I is generated by g1,..., gs.

This algorithm implies that for any g € C[z] there exists a unique power series
r whose support is included in A and such that ¢ — r € I and the division
algorithm yields a way to obtain this representative 7.

Moreover, saying that g ¢ I is equivalent to r # 0 and this is equivalent to say
that, for some integer k, 7¥) % 0. But ¢ € I is equivalent to r = 0 which is
equivalent to r(¥) = 0 for all £ € N. Thus by applying the division algorithm,
if for some integer k we have (¥} % 0 we can conclude that ¢ ¢ I. But this
algorithm will not enable us to determine if g € I since we would have to
make a infinite number of computations.

Now a natural question is what happens if we replace C[z] by A := C(z) or
C{z}? Of course we can proceed with the division algorithm but we do not
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know if q1,..., gs, 7 € A. In fact by controlling the size of the coefficients of
qgk),..., §’“), r®) at each step of the division algorithm, we can prove that if
g € C{x} then q,..., ¢s and r remain in C{z} (|[Hir64], [Gra72|, [Gal79| and
[dJPf00]). But if g € C(z) is an algebraic power series then it may happen
that ¢1,..., ¢gs and r are not algebraic power series (see Example of Section
5). This is exactly an Artin Approximation problem with constraints in the
sense that Equation has formal solutions satisfying the contrainsts but

no algebraic power series solutions satisfying the same constraints.

Example 0.11 (Arcs Space and Jets Spaces). — Let X be an affine al-
gebraic subset of C™, i.e. X is the zero locus of some polynomials in m
variables: fi,..., fr € Cly1, - ,ym] and let F' denote the vector (fi,---, fr).
Let t be a single variable. For any integer n, let us define X,, to be the set of
vectors y(t) whose coordinates are polynomials of degree < n and such that
F(y(t)) = 0 modulo (¢)"*!. The elements of X,, are called n-jets of X.

If yi(t) = yio + yiit + - + yint™ and if we consider each y; ; has one inde-
terminate, saying that F(y(t)) € (¢t)"*! is equivalent to the vanishing of the
coefficient of t*, for 0 < k < n, in the expansion of every fi(y(t). Thus this
is equivalent to the vanishing of r(n + 1) polynomials equations involving the
yi ;. This shows that the jets spaces of X are algebraic sets (here X, is an
algebraic subset of C™("+1)),

For instance if X is a cusp, i.e. the plane curve defined as X := {y? — 33 = 0}
we have

Xo := {(ag,bo) € C* / aZ — b3 =0} = X.
We have
X = {(ao,al,bo,bl) ect / (CLD + CL1t)2 - (bo + blt)3 = 0 modulo t2}

= {((10,(11, b(),bl) € (C4 / a% — bg =0 and 2aga; — 31)%[)1 = 0}

Ct] Clt]

The morphisms T T e for k > n, induce truncation maps 7F :

n

X}, — X, by reducing k-jets modulo (¢)"*!. In the example we are consider-
ing, the fibre of 7} over the point (ag, b) # (0,0) is the line in the (ay, by )-plane
whose equation is 2apa; — 3b3b; = 0. This line is exactly the tangent space at
X at the point (ag, bp). The tangent space at X in (0,0) is the whole plane
since this point is a singular point of the plane curve X. This corresponds to
the fact that the fibre of § over (0,0) is the whole plane.

On this example we show that X; is isomorphic to the tangent bundle of X,
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which is a general fact.
We can easily see that X5 is given by the following equations:

a% - =0
2(10&1 — 3[)%51 =0
CL% + 2agas — 3b0b? — 3b(2)b2 =0

In particular, the fibre of 73 over (0,0) is the set of points of the form
(0,0, az,0,b1,b2) and the image of this fibre by 7% is the line a; = 0. This
shows that 77 is not surjective.

But, we can show that above the smooth part of X, the maps 7! are
surjective and the fibres are isomorphic to C.

The space of arcs of X, denoted by X, is the set of vectors y(¢) whose
coordinates are formal power series satisfying F'(y(t)) = 0. For such a general
vector of formal power series y(t), saying that F(y(t)) = 0 is equivalent to say
that the coefficients of all the powers of ¢ in the Taylor expansion of F(y(t))
are equal to zero. This shows that X, may be defined by a countable number
of equations in a countable number of variables. For instance, in the previous
example, X, is the subset of CY with coordinates (aq, a1, as,- - - ,bg, by, ba, ...)
defined by the infinite following equations:

ad — by =0
2a0a1 — 3[)%[)1 =0
a% + 2agpas — 3b0b% - 3b(2)l72 =0

The morphisms C[t] — (t?% induce truncations maps m, : Xoo — X, by
reducing arcs modulo (¢)"+1.

In general it is a difficult problem to compare 7,(Xs) and X,. It is not
even clear if m,(Xs) is finitely defined in the sense that it is defined by a
finite number of equations involving a finite number of y; ;. But we have the
following theorem due to M. Greenberg which is a particular case of Theorem

in which f is bounded by an affine function:

Theorem 0.12 (Greenberg’s Theorem). — [Gre66| Let F(y) be a vec-
tor of polynomials in m variables and let t be a single variable. Then there exist
two positive integers a and b, such that for any integer n and any polynomial
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solution () modulo (t)*™+?,

F((t)) = 0 modulo (t)*™ b+
there exists a formal power series solution y(t),

F(y(t)) =0
which coincides with (t) up to degree n + 1,
7(t) = 7(t) modulo (t)"+1.

We can reinterpret this result as follows: Let X be the zero locus of F' in C™
and let y(t) be a (an +b)-jet on X. Then the truncation of y(¢) modulo (¢)"*!
is the truncation of a formal power series solution of F' = 0. Thus we have

(3) Tn(Xoo) = 704 ( X0 i1), Vn € N.

n

A constructible subset of C" is a set defined by the vanishing of some polyno-
mials and the non-vanishing of other polynomials, i.e. a set of the form

{zeC"/ filx) == frlz) =0,01(x) #0,...,gs(z) # 0}
for some polynomials f;, g;. In particular algebraic sets are constructible sets.
Since a theorem of Chevalley asserts that the projection of an algebraic subset
of C"** onto C* is a constructible subset of C", shows that 7, (X)) is
a constructible subset of C" since Xg,41p is an algebraic set. In particular
Tn(Xoo) is finitely defined (see [GoLJ96| for an introduction to the study of
these sets).

A difficult problem in singularity theory is to understand the behaviours
of X,, and m,(X) and to relate them to the geometry of X. One way to do
this is to define the (motivic) measure of a constructible subset of C™, that is
an additive map x from the set of constructible sets to a commutative ring R
such that:

o X(X)=x(Y) as soon as X and Y are isomorphic algebraic sets,

o X\(X\U) + x(U) = x(X) as soon as U is an open set of an algebraic set X,
o \(X xY)=x(X).x(Y) for any algebraic sets X and Y.

Then we are interested to understand the following generating series:

> x(X)T" and Y x(ma(Xo0))T™ € R[T].
neN neN



ARTIN APPROXIMATION 17

The reader may consult [DeLo99], [Lo00], [Ve06] for an introduction to these
problems.

Example 0.13. — Let f1,..., fr € k[z,y] where k is an algebraically closed
field and x := (z1,- -+ ,zy) and y := (y1,- - , Ym) are multivariables. Moreover
we will assume here that k is uncountable. As in the previous example let us
define the following sets:

X = {y(x) € Ka]™ / fi(w,y(@)) € (2)7" vi}.

As we have done in the previous example with the introduction of the variables

Yi,j, for any [ we can embed X; in KN® for some integer N (1) € N. Moreover

X, is an algebraic subset of KN®) and the morphisms (zk)[ikx]“ — (i{)[ﬁ]l for

k <[ induce truncations maps 71'11’C : Xy — X for any k£ > [.

By the theorem of Chevalley mentioned in the previous example, for any [ €
N, the sequence (mF(X}))x is a decreasing sequence of constructible subsets

of X;. Thus the sequence (mF(Xy))x is a decreasing sequence of algebraic
subsets of X;, where Y denotes the Zariski closure of a subset Y, i.e. the
smallest algebraic set containing Y. By Noetherianity this sequence stabilizes:
T8 (Xy) = 7F (Xp) for all k and k' large enough (say for any k, k' > k; for
some integer k;). Let us denote by Fj this algebraic set.

Let us assume that X; # () for any £k € N. This implies that F; # (. Set
Ciy = 7rlk (Xg). It is a constructible set whose Zariski closure is F; for any
k > k. Thus Cy; is a finite union of sets of the form F\V where F' and
V are algebraic sets. Let F} by one of the irreducible components of F; and
C,’%l := Cy N F]. Then C’,’gyl contains a set of the form F}\V; where V}, is an
algebraic proper subset of F], for any k > k;.

The set U; := (), Ck, contains (), F}\V; and the latter set is not empty since
k is uncountable, hence U; # (). By construction U; is exactly the set of

points of X; that can be lifted to points of X for any k£ > [. In particular
Wf(Uk) = U;. If xg € Uy then xyp may be lifted to U, i.e. there exists
x1 € Uy such that 7Té (x1) = zp. By induction we may construct a sequence of
points x; € U; such that 7rf+1(xl+1) = x; for any [ € N. At the limit we ob-
tain a point o in X, i.e. a power series y(x) € k[z]™ solution of f(x,y) = 0.

We have proven here the following result really weaker than Theorem (but
whose proof is very easy - in fact it is given as an exercise in [Ar69| p. 52):
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Theorem 0.14. — If k is an uncountable algebraically closed field and if
F(z,y) = 0 has solutions modulo (x)* for every k € N, then there exists a
power series solution y(x):

F(z,y(z)) = 0.

This kind of argument using asymptotic constructions (here the Noetherianity
is the key point of the proof) may be nicely formalized using ultraproducts.
Ultraproducts methods can be used to prove easily stronger results as Theorem

(See Part [6] and Proposition [6.4)).

Example 0.15 (Linearization of germs of biholomorphisms)

Given f € C{z}, = being a single variable, let us assume that f'(0) = X # 0.
By the inverse function theorem f defines a biholomorphism from a neigh-
borhood of 0 in C onto a neighborhood of 0 in C preserving the origin. The
linearization problem, firstly investigated by C. L. Siegel, is the following: is
f conjugated to its linear part? That is: does there exist g(x) € C{x}, with
g'(0) # 0, such that f(g(z)) = g(Ax) or g=' o f o g(x) = Az (in this case we
say that f is analytically linearizable)?

This problem is difficult and the following cases may occur: f is not lineariz-
able, f is formally linearizable but not analytically linearizable (i.e. g exists
but g(z) € C[z]\C{z}), f is analytically linearizable (see [Ce91]).

Let us assume that f is formally linearizable, i.e. there exists g(z) € C[z]
such that f(g(x)) —g(Az) = 0. By considering the Taylor expansion of g(Az):

70a) =50 + 3 XD 500
n=1 ’

we see that there exists h(z,y) € Clx, y] such that

~

9(Ar) =3g(y) + (y — Ax)h(z,y).
Thus if f is formally linearizable there exists h(x,y) € C[z,y] such that

f(g(x)) —g(y) + (y — Az)h(z,y) = 0.
On the other hand if there exists such ﬁ(aj,y), by replacing y by Az in the
previous equation we see that f is formally linearizable. This former equation
is equivalent to the existence of k(y) € C[y] such that

~

{ F(@G(@)) = k(y) + (y — Ax)h(z,y) = 0
k(y) —9(y) =
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Using the same trick as before (Taylor expansion), this is equivalent to the

existence of I(z,y, z) € C[x,y, z] such that

~

{ @) = k() + (y = Ax)h(z,y) = 0
k(y) = () + (& = )iz, y) = 0
Hence, we see that, if f is formally linearizable, there exists a formal solution
(), %), B, 9), Uy, 2))

of the system . Such a solution is called a solution with constraints. On the

(4)

other hand, if the system has a convergent solution
(9(x), k(2), Wz, y), Uz, y, 2)),

then f is analytically linearizable.

We see that the problem of linearizing analytically f when f is formally
linearizable is equivalent to find convergent power series solutions of the
system with constraints. Since it happens that f may be analytically
linearizable but not formally linearizable, such a system may have formal
solutions with constraints but no analytic solutions with constraints.

In Section [5] we will give some results about the Artin Approximation Problem
with constraints.

Example 0.16. — Another related problem is the following: if a differential
equation with convergent power series coefficients has a formal power series
solution, does it have convergent power series solutions? We can also ask the
same question by replacing "convergent" by "algebraic".

For instance let us consider the (divergent) formal power series y(z) :=
Z nlz" 1. Tt is straightforward to check that it is a solution of the equation
n>0

2%y —y + z = 0 (Buler Equation).

On the other hand if Zanx” is a solution of the Euler Equation then the

n
sequence (ay,), satisfies the following recursion:
apg = 0, al = 1
Gnt+1 = na, Yn > 1.

Thus ap+1 = (n+ 1)! for any n > 0 and y(x) is the only solution of the
Euler Equation. Hence we have an example of a differential equation with
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polynomials coefficients with a formal power series solution but without con-
vergent power series solution. We will discuss in Section [5] how to relate this
phenomenon to an Artin Approximation problem for polynomial equations
with constraints (see Example [8.2)).

Notations: If A is a local ring, then m4 will denote its maximal ideal. For
any f € A, f#0,
ord(f) :=max{n e N\ feml}.

If A is an integral domain, Frac(A) denotes its field of fractions.

If no other indication is given the letters x and y will always denote multi-
variables, x := (1, - ,zy) and y := (y1, - ,¥Ym), and ¢t will denote a single
variable.

If f(y) is a vector of polynomials with coefficients in a ring A,

f(y) = (1Y), fr(y)) € Aly]",

if Z is an ideal of A and 5 € A™, f(y) € Z (resp. f(y) = 0) means f;(y) €
(resp. fi(y) =0) for 1 <i<r.

PART II
CLASSICAL ARTIN APPROXIMATION

In this part we review the main results concerning the Artin Approximation
Property. We give four results that are the most characteristic in the story: the
classical Artin Approximation Theorem in the analytic case, its generalization
by A. Ptoski, a result of J. Denef and L. Lipshitz concerning rings with the
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Weierstrass Division Property and, finally, the General Néron Desingulariza-
tion Theorem.

1. The analytic case

In the analytic case the first result is due to Michael Artin in 1968 [Ar68]. His
result asserts that the set of convergent solutions is dense in the set of formal
solutions of a system of implicit analytic equations. This result is particularly
useful, since if you have some analytic problem that you can express in a sys-
tem of analytic equations, in order to find solutions of this problem you only
need to find formal solutions and this may be done in general by an inductive
process. Another way to use this result is the following: let us assume that
you have some algebraic problem and that you are working over a ring of the
form A := k[z], where z := (z1,--- ,x,) and k is a characteristic zero field. If
the problem involves only a countable number of data (which is often the case
in this context), since C is algebraically closed and the transcendence degree
of @ — C is uncountable, you may assume that you work over C[z]. Using
Theorem you may, in some cases, reduce the problem to A = C{z}. Then
you can use powerful methods of complex analytic geometry to solve the prob-
lem. This kind of method is used, for instance, in the recent proof of the Nash
Conjecture for algebraic surfaces (see Theorem A of [FB12] and the crucial use
of this theorem in [FBPP1]) or in the proof of the Abhyankar-Jung Theorem
given in [PR12].

Let us mention that C. Chevalley had apparently proven this theorem some
years before M. Artin but he did not publish it because he did not find appli-
cations of it [Ral4].

1.1. Artin’s result. —

Theorem 1.1 (Analytic Artin Approximation Theorem)

[Ar68| Let k be a valued field of characteristic zero and let f(xz,y) be a vector
of convergent power series in two sets of variables x and y. Assume given a
formal power series solution y(x) vanishing at 0,

fz,y(x)) = 0.

Then, for any ¢ € N, there exists a convergent power series solution y(x),

f(a,y(x)) =0
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which coincides with y(x) up to degree c,

y(z) = y(z) modulo (z)°.

Remark 1.2. — This theorem has been conjectured by S. Lang in [Lan54]
(last paragraph p. 372) when k = C.

Remark 1.3. — The ideal (x) defines a topology on k[z], called the Krull
topology, induced by the following ultrametric norm: |a(z)| := e—orda(@))  Ip
this case small elements of k[x] are elements of high order. Thus Theorem
asserts that the set of solutions in k{z}" of f(z,y) = 0 is dense in the set of

solutions in k[z]™ of f(x,y) = 0 for the Krull topology.

Remark 1.4. — Let fi(z,y),..., fr(z,y) € k{z,y} denote the components of
the vector f(z,y). Let I denote the ideal of k{x,y} generated by the f;(x,y).
It is straightforward to see that

filz,y(x)) =+ = fr(z,y(x)) =0 <= g(z,y(x)) =0 Vge Il

for any vector y(x) of formal power series vanishing at 0. This shows that
Theorem [I.1]is a statement concerning the ideal generated by the components
of the vector f(x,y) and not only these components.

Proof of Theorem — The proof is done by induction on n, the case n =0
being obvious. Let us assume that the theorem is proven for n — 1 and let us
prove it for n.

e Let I be the ideal of k{z,y} generated by fi(z,y),..., fr(z,y). Let ¢
be the k{z}-morphism k{z,y} — k[z] sending y; onto y;(x). Then Ker(yp) is
a prime ideal containing I and if the theorem is true for generators of Ker(y)
then it is true for fi,..., f,. Thus we can assume that I = Ker(yp).

e The local ring k{z,y}; is regular by a theorem of Serre (see Theorem
19.3 [Mat89]|). Set h :=height(I). By the Jacobian Criterion (see Théoréme
3.1 [To72| or Lemma 4.2 [Ru93|) there exists a h x h minor of the Jacobian
matrix %, denoted by 0(x,y), such that § ¢ I = Ker(y). In particular
we have d(z, j(z)) # 0.

By considering the partial derivative of f;(z,y(x)) = 0 with respect to x; we

get

Ofi, ~ = Ou(®)0fi, -
agcj(~76,y(ﬂf))——kz::1 oz, 8yk($,y($))-
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Thus there exists a A x h minor of the Jacobian matrix W, still denoted
by d(z,y), such that §(z,y(x)) # 0. In particular § ¢ I. From now on we will
assume that ¢ is the determinant of H

If we denote J := (f1,---, fn), ht(Jk{z,y}r) < h by the Krull Haupidealsatz
(see Theorem 13.5 [Mat89]). On the other hand the Jacobian Criterion (see

Proposition 4.3 [Ru93|) shows that ht(Jk{z,y};) > rk(%) mod. I,

and h = rk(%) mod. I since 6(x,y(x)) # 0. Hence ht(Jk{z,y}r) = h

and \/Jk{z,y}; = Ik{x,y};. This means that there exists ¢ € k{z,y}, ¢ ¢ I,
and e € N such that ¢ff € J for h+1 <4 < r. In particular ¢(z,y(z)) # 0.

e Let y(x) be a given solution of f; = --- = f; = 0 such that

y(z) —y(z) € (2)%
If ¢ > ord(q(x,y(x))), then g(z,y(x)) # 0 by Taylor formula. Since qff € J
for h +1 < ¢ <r, this proves that f;(z,y(x)) = 0 for all ¢ and Theorem is
proven.
So we can replace I by the ideal generated by fi,..., fn.
Thus from now on we assume that » = h and that there exists a A x h minor
of the Jacobian matrix w, denoted by d(x,y), such that (x,y(z)) # 0.

()
We also fix the integer ¢ and assume that ¢ > ord(q(z, y(z))).

e Then we use the following lemma:

Lemma 1.5. — Let us assume that Theorem[1.1)is true for the integer n — 1.
Let g(x,y) be a convergent power series and let f(x,y) be a vector of convergent
power Sertes.

Let y(x) be in (x)k[z]™ such that g(x,y(x)) # 0 and fi(x,y(z)) € (9(z,y(x)))
for every i.

Let ¢ be an integer. Then there exists y(x) € (x)k{x}™ such that

filz,y(z)) € (9(z,¥y(x))) Vi

and §(z) - 3(z) € ()"

We apply this lemma to g(z,y) := 6%(z,y) with the integers ¢/ := ¢ +d + 1
and d := ord(6%(z, y())). Indeed since f(x,7(x)) = 0 we have fi(x,y(x)) €
(6%(x,y(x))) for every integer i.

Thus we may assume that there are 7;(z) € k{z}, 1 < i < m, such that
f(z,m) € (6%(z,7)) and 7;(x) — gi(x) € (x)*t4Fl 1 < i < m. Since
ord(62(z,y)) = d, then we have f(z,7) € 62(z,7)(x)¢ by Taylor formula.
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Then we use the following generalization of the Implicit Function Theorem
(with m = h) to show that there exists y(x) € k{z}™ with y(0) = 0 such that
yj(xz) —yj(z) € ()¢, 1 < j < m, and fi(z,y(xz)) = 0 for 1 < i < h. This
proves Theorem O

Proposition 1.6 (Tougeron Implicit Function Theorem)

[To72] Let f(x,y) be a vector of k{z,y}* with m > h and let 6(z,y) be a

h x h minor of the Jacobian matriz H

y(x) € k{z}™ such that
fla,y(x)) € (8(z,y(2)))*(2)° for all 1 <i < h
and for some ¢ € N. Then there exists y(x) € k{z}™ such that
filx,y(x)) =0 forall1 <i<h

y(z) —y(z) € (0(z,y(x)))(x).
Moreover y(x) is unique if we impose yj(x) = y;j(x) for h < j < m.

Let us assume that there exists

Its remains to prove Lemma [I.5] and Proposition

Proof of Lemma — If g(z,y(z)) is invertible, the result is obvious (just
take for y;(z) any truncation of y;(z)). Thus let us assume that g(x,y(x))
is not invertible. By making a linear change of variables we may assume
that g(x,y(x)) is x,- regular and by the Weierstrass Preparation Theorem
g(z,y(xz)) = a(x) x unit where

a(x) =29 +a ()2l + -+ ag(2))
where 2’ := (z1,...,2n-1), d is an integer and a;(2’) € (2 )k[2'], 1 <i < d.
Let us perform the Weierstrass division of g;(z) by a(x):

d—1
(5) Ui(x) = a(z)@i(x) + > T (a)ad,
=0
for 1 <i<m. We set
d—1
gi(@) =) Uij(a)z], 1<i<m
7=0

Then by the Taylor formula
9(z,y(x)) = g(,y"(z)) mod. a(x)

and

fr(z, y(x)) = fi(z,y* () mod. a(x)
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for 1 <k <r. Thus

(6) 9(z, 7" (z)) = fe(z,7"(z)) = 0 mod. a(x).

m, 0 < j < d—1, be new variables. We define y; :=
Z?;é Yi jTh, 1 <i < m. Let us define the polynomial

Alai, zn) = 562 + alxﬁlfl + -t aq € K[z, a1, ..., a4

where a,..., ag are new variables. Let us perform the Weierstrass division of

g9(z,y*) and fi(z,y*) by A:

d-1
(7) glz,y") = AQ+ > Gl
=0
d-1
(8) fe(m,y*) = AQr+ Y Fruah, 1<k<r
=0

where @, Qr € k{z,y; j,a,} and G;, Fy; € k{z',yi;,a,}.
Then we have

d—1
9(@,5"(2)) = Y Gi(a, G (a"), @p(a"))z;, mod. (a(x))
=0

d—1
Jol@, 7 @) = 3 B, iy (@), ap(@’))al, mod. @(w)), 1<k<r.
=0

Hence ([6) shows that

Gi(a',§i,;(2"), ap(2")) = 0
and

Fii(2', 5, 5(2),ay(2")) = 0
for all £ and /. By the inductive hypothesis, there exist g, ;(z') € k{z'}
and @y(2') € k{a'} for all 4, j and p, such that Gi(z',7; ;(x),ap(z")) = 0
and Fy (2", 9; ;(2'),ap(2z’)) = 0 for all k& and [ and ¥, ;(2') — ¥iz(2),
ap(2') — ap(2’) € (2/)° for all 4, j and p

(W Formally in order to apply the induction hypothesis we should have 3; ;(0) = 0 and
a,(0) = 0 which is not necessarily the case here. We can remove the problem by replacing
Yi.;(2') and @p(z’) by ¥i,;(z") — 5:.;(0) and @p(z’) — @p(0), and Gi(a',yi,5, ap) by G(z', yi,; +
¥i,5(0), ap +@p(0)) - idem for Fy ;. We skip the details here.
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Now let us set

J
for some w;(z) € k{z} such that w;(z) — W;(z) € (z)° for all i (see (). It is
straightforward to check that 7,(z) — y;(v) € (z)° for 1 < j <m. If ¢ > d, the
Taylor formula shows that

g(z,y(x)) — g(x,Y(x)) € (x)° C (x)*.

Thus
9(07 t 7071.717?(07'” 707xn)) _9(07 o 707‘%”7@\(07” ' 707'%.71)) € (xn)d+l'

Since the order of the power series ¢g(0,---,0,2,,y(0,---,0,2,)) is d this im-
plies that the order of g(0,---,0,z,,5(0,---,0,2,)) is also d. But a(z) di-
vides g(z,7(x)) and it is a Weierstrass polynomial of degree d. So the Weier-
strass Division Theorem implies that g(z,7(x)) equals @(z) times a unit. Since
f(z,y(x)) € (a(x)) by (8) we have

f(z,y(x)) = 0 mod. g(z,7(x)).

O
Proof of Proposition — We may assume that ¢ is the first X r minor of
the Jacobian matrix. If we add the equations fr11 := yp+1 — Yn+1(z) = 0,...

fm = Ym — Um(z) = 0, we may assume that m = h and ¢ is the determinant
of the Jacobian matrix J(z,y) := W. We have

f (@, y(2) + 6z, y(2))2) = flz,y(@)+0(z,y)J (z,y(2))2+0(z, y(2))*H (2, y(2), 2)

where z := (21, ..., zm) and H(z,y(z), z) € k{z,y(x), 2} is of order at least 2
in z. Let us denote by J'(z,y(x)) the adjoint matrix of J(z,y(x)). Let £(x)
be in (x)°k{z}" such that f(z,y(z)) = §*(x,y(x))e(x). Then we have

f(z,y(z) +6(z, y(x))z) =
= 0(x,y(2) I (z,y(x)) [J'(z,y(x))e(x) + 2 + T (z,y(x)) H(z, y(z), 2)] -
We define
g(z, 2) = J (2, y(x))e(x) + 2 + J (2, y(x)) H (2, y(2), 2).
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Then ¢(0,0) = 0 and the matrix %(0, 0) is the identity matrix. Thus, by
the Implicit Function Theorem, there exists a unique z(z) € k{z}™ such that

fz,y(x) +0(z,y(x))z(x)) = 0.

This proves the proposition. ]
Remark 1.7. — We can do the following remarks about the proof of Theorem
LI

i)

ii)

iii)

In the case n = 1 i.e. x is a single variable, set e := ord(d(x, y(z))). If
y(z) € k{z}™ satisfies 7(z) — y(x) € (x)**¢, then we have

ord(f(z,7y(x))) > 2e+ ¢

and
3(x,5(x)) = (x, y(x)) mod. (z)**°,
thus ord(d(z,y(x))) = ord(d(x,y(z))) = e. Hence we have automatically

fla,5(x)) € (3(z,7(x)))*(2)°
since k{z} is a discrete valuation ring (i.e. if ord(a(z)) < ord(b(x)) then
a(x) divides b(x) in k{z}).
Thus Lemma|l.5]is not necessary in this case and the proof is quite simple.
This fact will be general: approximation results will be easier to obtain,
and sometimes stronger, in discrete valuation rings than in more general
rings.
We did not really use the fact that k is a field of characteristic zero, we
just need k to be a perfect field in order to use the Jacobian Criterion.
But the use of the Jacobian Criterion is more delicate for non perfect
fields. This also will be general: approximation results will be more dif-
ficult to prove in positive characteristic. For instance M. André proved
Theorem in the case where k is a complete field of positive character-
istic and replaced the use of the Jacobian Criterion by the homology of
commutative algebras [An75].
For n > 2, the proof of Theorem [Ar68| uses an induction on n. In
order to do it we use the Weierstrass Preparation Theorem. But to apply
the Weierstrass Preparation Theorem we need to do a linear change of
coordinates in k{z}, in order to transform g(x,y(z)) into a power series
h(z) such that h(0,...,0,z,) # 0. Because of the use of this change of
coordinates the proof does not adapt to prove similar results in the case
of constraints: for instance if y1 (x) depends only on 1 and y2(x) depends
only on x5y, can we find a convergent solution such that y;(z) depends
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only on z1, and y2(z) depends only on x5?

Moreover, even if we can use a linear change of coordinates without modi-
fying the constraints, the use of the Tougeron Implicit Function Theorem
may remove the constraints. We will discuss these problems in Section

Corollary 1.8. — Let k be a valued field of characteristic zero and let I be
an ideal of k{zx}. Let A denote the local ring @, my4 its mazimal ideal and

A its completion.
Let f(y) € k{z,y}" and y € A™ be a solution of f = 0 such that § € myA.
Then there exists a solutiony of f = 0 in A such thaty € my and y—y € mGA.

Proof. — Set Fj(z,y) € k{x,y} such that Fj(z,y) = fi(y) mod. I for 1 <
i <r. Let ay,..., as € k{z} be generators of I. Let us choose w(x) € k[z]™
such that w;(z) = 7; mod. I for 1 < j < m. Since f;j(y) = 0 then there exist
Zik(z) €klz], 1 <i<rand 1<k <s,such that

Fi(z,0(x)) + a1zi1(z) + -+ -+ aszis(x) =0 Vi.
By Theorem [1.1| there exist w;(x), z; x(z) € k{z} such that

E(aj,{ﬁ(x)) + CL15¢71($) + -+ GSZ,S(IE) =0 Vi

and w;(x) —wj(x) € (z)° for 1 < j < m. Then the images of the w;(z) in &Ix}
satisfy the conclusion of the corollary. O

1.2. Ploski Theorem. — For his PhD thesis, a few years after M. Artin
result, A. Ploski strengthened Theorem by a careful analysis of the proof.
His result yields an analytic parametrization of a piece of the set of solutions of
f = 0 such that the formal solution y(z) is a formal point of this parametriza-
tion.

Theorem 1.9 (Ploski Theorem). — [PI74||[P115]/ Let k be a valued field
of characteristic zero and let f(x,y) be a vector of convergent power series in
two sets of variables x and y. Let y(x) be a formal power series solution such
that y(0) = 0,

f(@,5(@)) = 0.
Then there exist a convergent power series solution y(z,z) € k{x, 2}, where
z=(z1,"+-,2s) are new variables,

[z, y(x, 2)) = 0,

and a vector of formal power series zZ(x) € k[x]* with Z(0) = 0 such that

y(x) = y(z,2(x)).



ARTIN APPROXIMATION 29

Remark 1.10. — This result obviously implies Theorem since we
can choose convergent power series 21(z),..., zs(x) € k{x} such that
Zj(x) — Zj(x) € (x)¢ for 1 < j <'s. Then, by denoting y(z) := y(z,z(x)), we
get the conclusion of Theorem

Ezxzample 1.11. — Let T be a (p x m)-matrix whose entries are in k{z} and
let b € k{z}? be a vector of convergent power series. Let y(x) be a formal
power series vector solution of the following system of linear equations:

9) Ty = b.

By faithful flatness of kx] over k{z} (see Example of the introduction)
there exists a convergent power series vector solution of @D denoted by y%(z).
Let M be the (finite) k{z}-submodule of k{z}" of convergent power series
solutions of the associated homogeneous linear system:

Ty =0.
Then by the flatness of k[z] over k{z} (see Example[0.3|of the introduction) the

set of formal power series solutions is the set of linear combinations of elements
of M with coefficients in k[z]. Thus if m;(z),..., ms(x) are generators of M
there exist formal power series 2j(x),..., zs(z) such that

y(x) —y°(z) = Z1(x)ma () + - - + Z(z)ms ().
We define

y(,2) =y (@) + Y mi(z)z
=1

and Theorem [I.9]is proven in the case of systems of linear equations.

Sketch of the proof of Theorem[I.9 — The proof is very similar to the proof
of Theorem It is also an induction on n. The beginning of the proof is the
same, so we can assume that » = h and we need to prove an analogue of Lemma
m with parameters for ¢ = 6% where § is the determinant of the jacobian
matrix % But in order to prove it we need to make a slight modification
in the proof. Here we will make a linear change of variables and assume that

0(x,y(x)) is regular with respect to x, i.e.
8(z,g(x)) = (22 + @ (2")2d™! + - 4+ Ag(2’)) x unit.

We set
a(z) = 2¢ +ay(a)ad 1t + -+ ag(2).
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(in the proof of Theorem a(z) denotes the square of this Weierstrass poly-
nomial!)

Then we perform the Weierstrass division of y;(x) by a(z) for 1 <i < h and
by a(z)? for h <i < m:

d—1
(10) gi(x) = a(x)Zi(x) + ) _Gij(a)a, 1<i<h,
=0
2d—1 A
(1) Bi@) = AR + 3 G, h<i<m.
§=0
Let us define
d—1
@7(%) = A%](SU/)‘T%’ 1<i<h,
7=0
2d—1 '
U (z) = A@j(a:')x%, h<i<m.
=0

O(f1, . fn).
O(y1,syn)

8(f17'”afh) a(f17"'7fh)

= M(x,y) =6(x,y)1
8(y17"‘ 7yh) 8(y17 7yh) ( ) ( ) "
where [}, is the identity matrix of size h X h. Then we define

Let M (z,y) denote the adjoint matrix of

M(z,y)

g(:E,y) = M(l’,y)f(ﬁ,y) = (g1(x,y), e ,gh(m,y))

where g and f are considered as column vectors. We have
0= f(2,9(x)) = f (2,77 (2) + a(@)21(2), - (@) + a(@)2n(2),

Gi1(@) + @) i1 (@), Top(@) + (25 (2)) =
z1(x)
~ fa g @)+ e @) ||+
b Zn(x)
Zat ()
o ) " .
s e e ey | | P

Zm()
for some Q(x) € k[z]*. Hence gi(x,7*(z)) € (a(z)?). As in the proof of
Theorem [L.1] we have §(z, 7*(x)) € (a(z)).
We assume that Ploski Theorem is proven for n — 1 variables. Thus we can
imitate the proof of LemmalI.5to show that there exist convergent power series
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Ui (@ t), ap(a,t) € k{x,t}, t = (t1,..., 1), such that y; j(2') = 7, ; (', t(z"))
and @,(2') = @y(a',t(2')) for some #(2’) € k[2']* and
g (z, 7" (z,1)) € (alz,t)?)

f(@, 7" (z,t)) € (9 (2,7 (2,1)))
with

d—1

Ui (x,t) == 71-’]-(.:13/,15)30{1 for 1 <i <h,
7=0
2d—1

7; (x,t) == i (2’ t)x], for h < i <m.
=0

Moreover a(z,t) is the Weierstrass polynomial of §(z,7*(z,t)).

Let z := (21,...,2p) and 2’ := (2,1, , zp,,) be two vectors of new variables.
Let us define
d—1
7 A . 7 (g -
Ui(x,t, z;) == a(x, t)z; + Zyi’j(x Ja), for 1 <i<h,
=0
2d—1

yi(z,t, 20) == a(x, )%z + Z @i,j(ml,t)x%, h <i<m.
5=0

Then we use the following proposition similar to Proposition [I.6] whose proof
is given below:

Proposition 1.12. — [P199]
With the previous notations and assumptions there exist convergent power se-
ries Zi(x,t,2") € k{x,t,2'}, 1 <i < h, such that

f(x7y1 (l’, t721(x7 t, 2/)), e 7yh(x7 t, Eh({ﬂ, t, Z/))7 yh+1(x7 t, Z/)7 ) ym(x7 t Z/)) =0.
Moreover there exists a vector formal power series Z'(x) such that

~ ~

gi(x, t(2"), Zi(w, t(x),2'(2))) = Gi(x) for 1 <i<h,

yila, t(a"), Z}(x)) = Gi(w) for h < i <m.
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Thus we define
d—
yi(z,t,2) =y, (2, t,Z(w, ¢, 7)) = a(z, t)zi(w, t, 2') Z (2, )zl for1<i<h

and we have
fl@,y(z,t,2') =0,
gi(a, 1(a"), Zi(2, 1(2), 2 () = Ga(x) for 1 <i <h,
yi(z, t(x"), Zl(x)) = Gi(z) for h < i < m.
This achieves the proof of Theorem [I.9]
O
Proof of Proposition[I.13 — We prove first the existence of the convergent
power series z;(x,t, 2"). We have
F(x,t, 2, 2) = f(:c,y’{(x, t) +a(x,t)z1,....,u5(x, t) + a(z, t)zp,
g;—l—l(x? t) + E(x, t)22;1,+17 7?21(1.7 t) + E(IE, t)2Z;n) =

9 O(f1, -+, fn) G
e A )] I
B “
L O e )] B RS C e Ten s
2p

where the entries of the vector Q(z,t, 2, z) are in (x,t, 7', 2)2.
Since @(x,t) is equal to 6(x,y*(x,t)) times a unit, by multiplying on the left
this equality by M (z,y*(z, t)) we obtain

M(z, 7 (z,t))F(x,t, 2, 2) = 6*(z, 7" (x,1))G(z, t, 2, 2)
where the entries of the vector G(z,t,2’,2) are convergent power series and
G(0,0,0,0) = 0. By differentiation this equality yields
O(F1, -+, Fp)
6(251, e ,Zh)
It is easy to check that

a(F17"'7Fh) o
det <M> (51;',0,0,0) =

= det (M) (2,0,0,0)a(z, 0)" = 6(z, 7" (x,0))"*! x unit.

8(G1a T aGh)

M(z, 7" (2, 1)) O(21,- -+, 2n)

(x,t,2,2) = 52(93,@*(95,75)) (x,t, 2, 2).
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o zh)

unit. Hence det (%) (0,0,0,0) # 0. So the Implicit Function Theo-

rem yields unique convergent power series z;(x,t,2') € k{iz,t,2'}, 1 < i < h,
such that G(x,t, 2/, z(x,t,2")) = 0. This shows F(x,t,2/, z(x,t,2')) = 0.

But det(M (z,7*(2,t)) = 0(x, 7" (z,t))" ! thus det (M> (2,0,0,0) is a

In order to prove the existence of the formal power series z'(z) we make

the same computation where ¢ is replaced by %\(m’ ). Thus by the Implicit
Function Theorem there exist unique power series z;(x,2') € k[z, 2], for
1 < i < h, such that
Gz, t(x), 2, Z(x, 7)) =0

ie.
f("rayl(x7?($)7 El(.il?, Zl))? T ayh(xv%\(x)v gh(w7 Zl))?

Yh+1 (:C,?(IE),Z,), T ,ym(Q?,%\(lf), Z/)) =0.
Moreover, again by the Implicit Function Theorem, any vector of formal power
series z(z) vanishing at the origin is a solution of the equation
(12) G(z,t(z),7,2) =0

if and only if there exists a vector of formal power series 2’(z) such that

2(x) = 2(x, 7 (x))-
In particular, since the vector z(z) defined by and is a solution of
7 there exists a vector of formal power series z'(x) such that

~

vi(z) = a(x, t(2'))zi (2,2 (x)) + Zyw o' t(z'))ad for 1 <i < h,

2d—1
yi(x) = a(x, —I—Zyth N, h<i<m.
O
Remark 1.13. — Let us remark that this result remains true if we replace

k{x} by a quotient &f} as in Corollary

Remark 1.14. — Let I be the ideal generated by fi,..., fr. The formal
solution y(z) of f = 0 induces a k{x}-morphism k{z,y} — k[z] defined
by the substitution of 7(x) for y. Then I is included in the kernel of this
morphism thus, by the universal property of the quotient ring, this morphism

induces a k{z}-morphism 1 : w — k[z]. On the other hand, any
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k{x}-morphism v : M — k[z] is clearly defined by substituting for y a
vector of formal power series y(z) such that f(x,y(z)) = 0.

Thus we can reformulate Theorem m as follows: Let 9 : M — k[z] be
the k{z}-morphism defined by the formal power series solution y(x). Then
there exist an analytic smooth k{x}-algebra D := k{z, z} and k{z}-morphisms
C — D (defined via the convergent power series solution y(x,z) of f = 0)
and D — k[z] (defined by substituting z(z) for z) such that the following
diagram commutes:

k{z} — > Kk[z]

|

7k{fﬁl’y} > D :=k{z,z}

We will use and generalize this formulation later (see Theorem [3.2)).

2. Artin Approximation and the Weierstrass Division Theorem

The proof of Theorem [I.1] uses essentially only two results: the Weierstrass
Division Theorem and the Implicit Function Theorem. In particular it is
straightforward to check that the proof of Theorem remains true if we
replace k{z, y} by k(z,y), the ring of algebraic power series in x and y, since
this ring satisfies the Weierstrass Division Theorem (cf. [Laf67], see Section [A]
and the Implicit Function Theorem (cf. Lemma [3.5]). We state here this very
important variant of Theorem u (which is in fact valid in any characteristic
- see also Remark [1.7]ii):

Theorem 2.1 (Algebraic Artin Approximation Theorem)

[Ar69| Let k be a field and let f(x,y) € k[z,y|P (resp. k(z,y)P) be a vector of
polynomials (resp. algebraic power series) with coefficients ink. Assume given
a formal power series solution §(z) € K[z]™ (resp. vanishing at 0),

f(z,y(x)) = 0.

Then there exists, for any ¢ € N, an algebraic power series solution y(x) €
k{(z)™ (resp. vanishing at 0),

fa,y(x)) =0
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which coincides with y(x) up to degree c,
y(x) = y(z) modulo (x)°.

In fact in [Ar69] M. Artin gives a more general version of this statement valid
for polynomial equations over a field or an excellent discrete valuation ring R,
and proves that the formal solutions of such equations can be approximated by
solutions in the Henselization of the ring of polynomials over R, in particular
in a localization of a finite extension of the ring of polynomials over R. In the
case R =k is a field the Henselization of k[z],) is the ring of algebraic power
series k(z) (see Lemma[3.5)). The proof of the result of M. Artin, when R is an
excellent discrete valuation ring, uses Néron p-desingularization [Né64]| (see
Section 3| for a statement of Néron p-desingularization). This result is very
important since it enables to reduce some algebraic problems over complete
local rings to local rings which are localizations of finitely generated rings over
a field or a discrete valuation ring.

For instance this idea, first used by C. Peskine and L. Szpiro, was exploited
by M. Hochster to reduce problems over complete local rings in characteristic
zero to the same problems in positive characteristic. The idea is the following:
let us assume that some statement (7") is true in positive characteristic (where
you can use the Frobenius map to prove it for instance) and let us assume
that there exists an example showing that (7") is not true in characteristic
zero. In some cases we can use the Artin Approximation Theorem to show
the existence of a counterexample to (T') in the Henselization at a prime ideal
of a finitely generated algebra over a field of characteristic zero. Since the
Henselization is the direct limit of étale extensions, we can show the existence
of a counterexample to (7) in a local ring A which is the localization of a
finitely generated algebra over a characteristic zero field k. If the example
involves only a finite number of data in A, then we may lift this counterex-
ample to a ring which is the localization of a finitely generated ring over
Q, and even over Z[p%,...,p%
may show that this counterexample remains a counterexample to (T') over

| where the p; are prime integers. Finally we

Z/pZ for all but finitely many primes p by reducing the problem modulo p
(in fact for p # p; for 1 < i < s). This idea was used to prove important
results about Intersection Conjectures [PeSz73|, big Cohen-Macaulay mod-
ules [HR74], Homological Conjectures [H75| (see [Sc10] 8.6 for more details).

J Denef and L. Lipshitz axiomatized the properties a ring needs to satisfy in or-
der to adapt the proof the main theorem of [Ar69] due M. Artin. They called
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such families of rings Weierstrass Systems. There are two reasons for introduc-
ing such rings: the first one is the proof of Theorem [I0.5] and the second one
is their use in proofs of Strong Artin Approximation results via ultraproducts
(see Remark . Previously H. Kurke, G. Pfister, D. Popescu, M. Roczen
and T. Mostowski (cf. [KPPRMTS8|) introduced the notion of Weierstrass
category which is very similar (see [KP82| for a connection between these two
notions).

Definition 2.2. — |DeLi80| Let k be a field or a discrete valuation ring of
maximal ideal p. By a Weierstrass System of local k-algebras, or a W-system

over k, we mean a family of k-algebras k[[z1,- -, z,]], n € N such that:
i) For n = 0, the k-algebra is k,
For any n > 1, k[xq, - -- vmn](p,:c1,~~-,:cn) Ckllzy, -z, C ﬂ(:[[xl, |
and kf[z1, -+, Tpim]] ﬂ@[[xl, oy mp] = k[[xg, -+, x,]] for m € N. For
any permutation o of {1,---, n}

fe k”xla' e 71'71-“ = f(ma(l)f ) xa(n)) € kﬂxla”' 7xnﬂ-

ii) Any element of k[[z]], z = (21, - , x,), which is a unit in ﬁl;[[x]], is a unit
in k[[z].

i) If f € k2] and p divides f in k[z] then p divides f in k[[z]).

iv) Let f € (p,x)k[[x] such that f # 0. Suppose that f € (p,x1, -, Tp_1,5)
but f ¢ (p,x1,- ,Tp_1,25 ). Then for any g € k[[2] there exist a
unique ¢ € k[[z]| and a unique r € k[[z1,- -, zp_1]][x,] with deg 7 < d
such that g = qf +r.

v) (if char(k) > 0) If § € (p,a1,- -, az)k[z1, -+, z,]™ and f €
klfy1,---, ym] such that f # 0 and f(y) = 0, there exists g € k[[y]|
irreducible in k[[y[] such that ¢g(7) = 0 and such that there does not exist
any unit u(y) € k[y]l with u(y)g(y) = > oenn @y (aa € k).

vi) (if char(k/p) # 0) Let (k/p)[[z]] be the image of k[[«]] under the projec-
tion k[z] — (k/p)[z]. Then (k/p)[[z] satisfies v).

Proposition 2.3. — |DeLi80| Let us consider a W -system k[[z]].

i) For any n, k[[x1, -+ , 2, is a Noetherian Henselian regular local ring.
ii) Iff € k”l‘la s Ty Y1, yymﬂ and g = (glv e agm) € (p,:z:)kﬂxl, te 7xn—|-|m;
fz,g(x)) € k]
iii) If f € k[[z]), then 3L € k[[x]).
iv) Ifkflz1, -,z is a family of rings satisfying i)-iv) of Definition[2.9 and
if all these rings are excellent, they satisfy v) and vi) of Definition .
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Proof. — All these assertions are proven in Remark 1.3 [DeLi80|, except
iv). Thus we prove here iv): let us assume that char(k) = p > 0 and let
g€ (p, x)@[[m]]m We denote by I the kernel of the k[[x]]-morphism k[[z, y]] —
@[[:c]] defined by the substitution of 7 for y and let us assume that I (\k[[y] #
(0). Since k[Jz]] is excellent, the morphism k[[z] — ﬁl;[[x]] is regular. Thus

Frac(@[[x]]) is a separable extension of Frac(k[[z]]), but Frac (M) is a sub-
field of Frac(k[z]), hence Frac(k[z])) — Frac (M) is separable. This

implies that the field extension Frac(k) — Frac ( 7 gg{@yﬂ) is a separable

field extension. But if for every irreducible g € I(k[y] there would exist
a unit u(y) € kffy]] with u(y)g(y) = >_yenn @ayP”, the extension Frac(k) —

Frac (% | would be purely inseparable. This proves that Property v) of
Definition is satisfies.

The proof that Property vi) of Definition is satisfied is identical. O
Ezxample 2.4. — We give here few examples of Weierstrass systems:

i) If k is a field or a complete discrete valuation ring, the family
k[z1, -+, x,] is a W-system over k (using Proposition iv) since
complete local rings are excellent rings).

ii) Let k(z1,---, zy) be the Henselization of the localization of k[x1, - - - , @)
at the maximal ideal (x1,- -, x,) where k is a field or an excellent discrete
valuation ring. Then, for n > 0, the family k(x1,--- , z,) is a W-system
over k (using Proposition iv) since the Henselization of an excellent
local ring is again excellent - see Proposition .

iii) The family k{x1,---, x,} (the ring of convergent power series in n vari-
ables over a valued field k) is a W-system over k.

iv) The family of Gevrey power series in n variables over a valued field k is
a W-system [Br86].

Then we have the following Approximation result (the case of k(z) where k
is a field or a discrete valuation ring is proven in [Ar69|, the general case is
proven in [DeLi80]):

Theorem 2.5. — |Ar69||DeLi80| Let k[[x] be a W-system over k, where
k is a field or a discrete valuation ring with prime p. Let f € k[[z,y]" and

7€ (p.x)k[z]™ satisfy
f(x,9) = 0.
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Then, for any ¢ € N, there exists a power series solution y € (p, z)k[z]™,
f(z,y) =0 such that y —y € (p, x)°.

Let us mention that Theorem extends also to Weierstrass systems (see
[Ronl10b]).

Remark 2.6. — Let (my); be a logarithmically convex sequence of real num-
bers and k = R or C. The ring k[z](my) is the subring of k[z] defined as
follows:

(13) Kk[z](my) = { > fax® €klz] / 3C >0, Yo, sup _lfal oo}.

|ot]
gl aenn Cl¥myq,

This ring does not satisfies the Weierstrass division Theorem but it satisfies
Theorem [2.5| and Theorem (see [Mo00]).

3. The General Néron Desingularization Theorem

During the 70 and the 80 one of the main objectives about the Artin Approxi-
mation Problem was to find necessary and sufficient conditions on a local ring
A for it having the Artin Approximation Property, i.e. such that the set of
solutions in A™ of any system of algebraic equations (S) in m variables with
coefficients in A is dense for the Krull topology in the set of solutions of (S)
in A™. Let us recall that the Krull topology on A is the topology induced by
the following norm: |a| := e~°"4@ for all a € A\{0}. The problem was to find
a way of proving approximation results without using the Weierstrass Divi-
sion Theorem which does not hold for every Henselian local ring (see Example
3.10)).

Remark 3.1. — Let P(y) € Aly] satisty P(0) € my and %—Z(O) ¢ mu. Then,
by the Implicit Function Theorem for complete local rings, P(y) has a unique
root in A equal to 0 modulo m4. Thus if we want being able to approximate
roots of P(y) in A by roots of P(y) in A, a necessary condition is that the
root of P(y) constructed by the Implicit Function Theorem is in A. Thus it
is clear that if a local ring A has the Artin Approximation Property then A is
necessarily Henselian.

In fact M. Artin conjectured that a sufficient condition would be that A is an
excellent Henselian local ring (Conjecture (1.3) [Ar70] or [Ar82] where the
result is proven when A is the ring of convergent power series). The idea to
prove this conjecture is to generalize Ptoski Theorem and a theorem of



ARTIN APPROXIMATION 39

desingularization of A. Néron [Né64]. This generalization is the following (for
the definitions and properties of a regular morphism and of an excellent local
ring cf. Appendix [B] - for those concerning smooth and étale morphisms cf.

Appendix |C):

Theorem 3.2 (General Néron Desingularization)

|[Po85| [Po86| Let ¢ : A — B be a regular morphism of Noetherian rings,
C a finitely generated A-algebra and ¢ : C — B a morphism of A-algebras.
Then v factors through a finitely generated A-algebra D which is smooth over
A:

c > D

Historically this theorem has been proven by A. Néron [Né64| when A and
B are discrete valuation rings. Then several authors gave proofs of particu-
lar cases (see for instance [Po80|, [Ar82|, [Br83b| [ArDe83|, [ArRo88]|, or
|[Rot87] - in this last paper the result is proven in the equicharacteristic zero
case) until D. Popescu [Po85| [Po86| proved the general case. Then, sev-
eral authors gave simplified proofs or strengthened the result [Og94], [Sp99|,
[Sw98|, [SP]. This result is certainly the most difficult to prove among all the
results presented in this paper. We will just give a slight hint of the proof of
this result here since there exist very nice presentations of the proof elsewhere
(see [Sw9I8| or [SP] in general, [Qu97| or [Po00] in the equicharacteristic zero
case).

Let (A, I) be the data of a ring A and an ideal I of A. There exists a notion
of Henselian pair for such a couple (A, I) which coincides with the notion of
Henselian local ring when A is a local ring and [ is its maximal ideal. One
definition is the following one: a couple (A, ) is a Henselian pair if Hensel
Lemma (with the notation of Proposition is satisfied for my replaced
by the ideal I. The reader may consult [Ra69|] Part XI for details. In what
follows the reader may think about a Henselian pair (A, I') as a Henselian local
ring A whose maximal ideal is I.

Since A —» A is regular if A is an excellent ring, I is an ideal of A and
A= 1(31% is the I-adic completion of A, we get the following result:

Theorem 3.3 (General Artin Approximation). — Let (A,I) be an ez-
cellent Henselian pair and A be the I-adic completion of A. Let f(y) € Aly]”
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and § € A™ satisfy f(@) = 0. Then, for any c € N, there exists y € A™ such
that y —y € I°A, and f(y) = 0.

Proof. — The proof goes as follows: let us set C := # where J is the ideal
generated by fi,..., fr. The formal solution y € A defines a A-morphism
p:C — A (see Remark . By Theorem since A —» A is regular
(Example , there exists a smooth A-algebra D factorizing this morphism.
After a change of variables we may assume that ¥ € mz so the morphism
C — A extends to a morphism Cy, () — A and this latter morphism
factors through Dy, where m is the inverse image of m 7. The morphism A —
Dy, decomposes as A — Alz]n,4(z) — D where z = (21, -+ ,2;) and
Alz](zy — Dn is a local étale morphism (see [Iv73] Theorem 3.1 II1.3). Let
us choose z € A® such that z — 2 € mi‘g‘s (2 is the image of z in A%). This
defines a morphism A[z],y — A. Then A — 1 Doy =y is local étale

21—Z1, 2 —2s
A

and admits a section in e, - Since A is Henselian, this section lifts to a section
in A by Proposition . This section composed with A[z](,) — A defines a
A-morphism Dy, — A, and this latter morphism composed with C — Dy,
yields a morphism ¢ : C' — A such that ¢(z;) — @(z;) € miﬁ for 1 <i <
m. O

Remark 3.4. — Let (A, I) be a Henselian pair and let J be an ideal of A. By
applying this result to the Henselian pair %, %) we can prove the following
result (using the notation of Theorem 3.3): if f (y) € J A then there exists

y € A™ such that f(y) € Jand y —y € I°A.

In fact the General Néron Desingularization Theorem is a result of desingular-
ization which generalizes Theorem [I.9] to any excellent Henselian local ring as
shown in Corollary [3.6) given below. In particular it provides a parametrization
of a piece of the set f = 0 locally at a given formal solution. This statement
does not appear in the literature but it is useful to understand Theorem [3.2]
when B is the completion of a local domain. Before giving this statement let
us state the following lemma which was first proven by M. Nagata with the
extra assumption of normality (|[Na62| 44.1):

Lemma 3.5. — If A is an excellent integral local domain we denote by A"
its Henselization. Then A" is exactly the algebraic closure of A in its com-
pletion A In particular, for an excellent Henselian local domain A (a field
for instance) the ring A(z) of elements of A[[z]] algebraic over Alz], i.e. the
ring of algebraic power series with coefficients in A, is the Henselization of the
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local ring A[]w,+(x)- Thus A(x) satisfies the Implicit Function Theorem (see

Theorem .

Apparently it is not known if this lemma remains true for any excellent local
ring A.

Proof. — Indeed A — A" is a filtered limit of algebraic extensions, thus A"
is a subring of the ring of algebraic elements of A over A.
On the other hand if f € A is algebraic over A, then f satisfies an equation

aofP+arfr 4+ ag=0

where a; € A for all i. Thus for ¢ large enough there exists fe A" such that fv
satisfies the same polynomial equation and f — f € m$ (by Theorem and
Theorem |C.19). Since (. m% = (0) and a polynomial equation has a finite

number of roots, f = f for ¢ large enough and f € A" O

Then we have the following result that also implies Theorem in the same

way as Theorem implies Theorem (see Remark [1.10)):

Corollary 3.6. — Let A be an excellent Henselian local domain and f(y) €
AlylP where y = (y1,-++ ,ym). Lety € A™ be a solution of f(y) = 0. Then
there exist an integer s, a vector y(z) € A(z) with z = (21, -+ , zs) and a vector
z € A® such that

fy(2))
y =yl
Proof. — Let us define C = A[y]/(f). The formal solution § € A™ of the

equations f = 0 defines a A-morphism ¢ : C — A such that the following
diagram commutes:

—~

0,

)

A2 A
e
C

Let D be a smooth finitely generated A-algebra as in Theorem The A-
algebra D has the form

D = Alz1,--- 2] /(91,5 gr)

for some polynomials g; € A[z1,- - , 2z and new variables z = (z1,--- , ). For
every j let a; € A such that the image of z; in A is equal to a; modulo my.
By replacing z; by z; — a; for every j we can assume that ¢ factors through
D

ma+(z1,,2e)"
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Since A is an excellent local domain, A[z]y,4(2) is also an excellent local do-
main and its Henselization is equal to its algebraic closure in its completion
Al[z]] (see Example ﬁbelow). Thus the Henselization D" of Dy, 4(») 1s equal
to

Dh :A<le... ,Zt>/(917"' ’gr).
9gi

But D" being smooth over A means that the jacobian matrix ( 8z]~> has max-

imal rank modulo m4 + (z). Thus by Hensel Lemma D" is isomorphic to
Az, -+, zs) for some integer s < t. Since A is Henselian, by the universal
property of the Henselization 1 factors through D", i.e. 1 factors through
Az, -+, zg):

A2 A

e

C "> Az)
where z = (21,--+,25). The morphism 7 is completely determined by the
images z; € A of the z; and the morphism o is uniquely determined by the
images y;(z) € A(z) of the y; that are solution of f = 0. O
Exzample 3.7 — Let A= C{x1,---,z,} be ring of convergent power series

in n variables over C. Let C' = % where f = y? —y3 and let (71, %2) € A?

be a solution of f = 0. Since A= Clx1,- -+ ,zn] is a unique factorization
domain and §1° = Us, Uo divides 1. Let us define z = %—; Then we obtain

(71, 72) = (2%, 22). Conversely any vector (22,22

), for some power series z € g,
is a solution of A. In this example the previous corollary is satisfied with s = 1
and y(z) = (23, 2%). Here we remark that y(z) does not depend on the given

formal solution (g1, 92).

Remark 3.8. — In |[Rot90|, C. Rotthaus proved the converse of Theorem
B:3] in the local case: if A is a Noetherian local ring that satisfies Theorem
then A is excellent. In particular this shows that Weierstrass systems are
excellent local rings. Previously this problem had been studied in [CP81] and
|Br83al.

Remark 3.9. — Let A be a Noetherian ring and I be an ideal of A. If we
assume that flﬁ,..., fr(y) € Aly| are linear homogeneous with respect to v,
3.3

then Theorem may be proven easily in this case since A — A is flat (see
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Example . The proof of this flatness result uses the Artin-Rees Lemma
(see Theorems 8.7 and 8.8 [Mat89]).

Ezample 3.10. — The strength of Theorem [3.3] is that it applies to rings
that do not satisfy the Weierstrass Preparation Theorem and for which the
proof of Theorem [I.1 or Theorem [2.5 does not apply. For example Theorem [3.3]
applies to the local ring B = A(z1,- - ,z,) where A is an excellent Henselian
local ring (the main example is B = k[¢t](z) where ¢ and z are multivariables).
Indeed, this ring is the Henselization of A[z1,- -+, Znlm 4 (21, @n)- Thus B is
an excellent local ring by Example [B.4] and Proposition [C.19

This case was the main motivation of D. Popescu for proving Theorem
(see also [Ar70]) since it implies a nested Artin Approximation result (see
Theorem [9.1)).

Previous particular cases of this application had been studied before:
see |[PfPo81] for a direct proof that V[zi](z2) satisfies Theorem
when V is a complete discrete valuation ring, and [BDL83| for the ring

k[z1, zo](x3, x4, z5).

Remark 3.11. — Let us mention that Theorem [3.2] has other applications
than Theorem even if this latter result is our main motivation for presenting
this former theorem. For example one very important application of Theorem
[3:3] is the proof of the so-called Bass-Quillen Conjecture that asserts that any
finitely generated projective R[yi,- -+ ,ym|-module is free when R is a regular
local ring (cf. [Sp99] for instance).

Idea of the proof of Theorem[3.3 — The proof of this theorem is quite in-
volved and would require more machinery than we can present in this paper.
The reader interested by the whole proof should consult [Sw98| or [SP], or
[Qu97| or [Po00] in the equicharacteristic zero case.

Let A be a Noetherian ring and C' be a A-algebra of finite type, C' = M
with I = (f1,---, fr). We denote by A, the ideal of Aly| generated by the hxh
minors of the Jacobian matrix (%

9y; ) 1<i<h,1<j<m
define the Jacobian ideal
Heya = \/Z Ay((9) : C
g

where the sum runs over all g := (g1,...,9n) C I and h € N. The definition
of this ideal may be a bit scary at first sight. What the reader have to know

fOI'g:: (glu"' 7gh) C 1. We
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about this ideal is that it is independent of the presentation of C' and it defines
the singular locus of C over A:

Lemma 3.12. — For any prime p € Spec(C), Cy is smooth over A if and
only if Hoya € p.

The following property will be used in the proof of Proposition [3.14}

Lemma 3.13. — Let C and C' be two A-algebras of finite type and let
A — C — " be two morphisms of A-algebras. Then Her o (\\/He/aCl =

HC’/C ﬂHC’/A'

The idea of the proof of Theorem is the following: if Ho/yB # B, then
we replace C' by a A-algebra of finite type C’ such that HgyaB is a proper
sub-ideal of HgrjoB. Using the Noetherian assumption, after a finite number
we have Ho/yB = B. Then we use the following proposition:

Proposition 3.14. — Using the notation of Theorem|[3.3, let us assume that
we have HoyaB = B. Then 1 factors as in Theorem .

Proof of Proposition — Let (c1, ..., ¢s) be a system of generators of H¢ /4.

S

Then 1 = Z bi1)(c;) for some b; in B. Let us define

i=1

O[Zl, ceey ZS]

(1 =327 ciz)
We construct a morphism of C-algebra D — B by sending z; onto b;, 1 <
t < s. It is easy to check that D, is a smooth C-algebras for any i, thus
ci € Hpjc by Lemma @ and HoyuD C Hpjc. By Lemma @ since
1 € HeyaD, we see that 1 € Hpjs. By Lemma this proves that D is a
smooth A-algebra. O

D =

Now to increase the size of Ho/4 B we use the following proposition:

Proposition 3.15. — Using the notation of Theorem|[3.3, let p be a minimal
prime ideal of HoyaB. Then there exist a factorization of ¢ : C — D — B
such that D is finitely generated over A and \/HcyaB & \/Hp/aB ¢ .

The proof of Proposition is done by induction on height(p). Thus there
is two things to prove: first the case ht(p) = 0 which is equivalent to prove
Theorem for Artinian rings, then the reduction ht(p) = k + 1 to the case
ht(p) = k. This last case is quite technical, even in the equicharacteristic
zero case (i.e. when A contains Q, see [Qu97| for a good presentation of this
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case). In the case A does not contain QQ there appear more problems due to
the existence of inseparable extensions of residue fields. In this case the André
homology is the right tool to handle these problems (see [Sw98]).

O

PART III
STRONG ARTIN APPROXIMATION

We review here results about the Strong Approximation Property. There are
clearly two different cases: the case where the base ring is a discrete valuation
ring (where life is easy!) and the second case is the general case (where life is
less easy).

4. Greenberg’s Theorem: the case of a discrete valuation ring

Let V' be a Henselian discrete valuation ring, my its maximal ideal and K be
its field of fractions. Let us denote by V the my-adic completion of V' and
by K its field of fractions. If char(K) > 0, let us assume that K — K is a
separable field extension (in this case this is equivalent to V' being excellent,

see Example iii) and Example iv)).

Theorem 4.1 (Greenberg’s Theorem). — [Gre66| With the above nota-
tions and hypothesis, if f(y) € V[y]", then there exist a, b > 0 such that

Ve € NG € V™ such that f(7) € micT
Jy € V'™ such that f(y) =0 and y — 3y € m{,.

Sketch of proof. — We will give the proof in the case char(K) = 0. The result
is proven by induction on the height of the ideal generated by fi(y),..., fr(y).
Let us denote by I this ideal. We will denote by v the my-adic order on V
which is a valuation by assumption.

Let e be an integer such that I° C I. Then f(3) € mif for all f € I
implies that f(y) € m{, for all f € VT since V is a valuation ring. Moreover
if VI =Pi()--(Ps is prime decomposition of VI, then f(7) € ms for all
f € VI implies that f(7) € m{, for all f € P; for some i. This allows us to
replace I by one its associated primes, thus we may assume that [ is a prime
ideal of V]y.
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Let h be the height of I. If h = m+1, I is a maximal ideal of V[y] and thus it
contains some non zero element of V' denoted by v. Then there does not exist
y € V™ such that f(y) € n‘t{'/,(v)Jrl for all f € I. Thus the theorem is true for
a=0and b=wv(v)+ 1 (see Remark [4.6| below).

Let us assume that the theorem is proven for ideals of height h + 1 and let 1
be a prime ideal of height h. As in the proof of Theorem [I.1} we may assume
that » = h and that the determinant of the Jacobian matrix of f, denoted by
J,is not in I. Let us define J := I + (J). Since ht(J) = h+ 1, by the inductive
hypothesis, there exist a, b > 0 such that

Ve € NVg € V™ such that f(7) € m{c™ VfeJ

37 € V™ such that f(§) =0 Vf e Jand §; —g; €emf, 1 <j<m.

Then let ¢ € N and 5§ € V™ satisfy f(y) € m%,zaﬂ)cwb for all f € I. If

0(y) € m“lfH’, then f(y) € m%,cH’ for all f € J and the result is proven by the
inductive hypothesis.

If 6(y) ¢ m“l,chb, then fi(y) € (5(y))?m§, for 1 <4 < r. Then the result comes
from the following result. O

Proposition 4.2 (Tougeron Implicit Function Theorem)
Let A be a Henselian local ring and f(y) € Aly]", v = (y1,-* ,ym), m > 7.

yoe

Let 6(x,y) be a r x r minor of the Jacobian matriz H Let us assume
that there exists y € A™ such that

fi(@) € (6@)*mS forall 1<i<r
and for some ¢ € N. Then there exists y € A™ such that
fi@) =0 foralll <i<r and y—7 € (6(y))m.
Proof. — The proof is completely similar to the proof of Theorem [1.6] O

In fact we can prove the following result whose proof is identical to the proof
of Theorem [4.1] and extends Theorem [4.1]to more general equations than poly-
nomial ones:

Theorem 4.3. — [Sc83| Let V be a complete discrete valuation ring and
f(y,z) € V[y]lz]", where z := (z1,--- ,zs). Then there exist a, b > 0 such that

Ve € N Vg € (my V)™, VZ € V* such that f(3,%) € m§cT

Jy € (my V)™, 32 € V?® such that f(y,2) =0 and y — 7y, z — Z € m§,.



ARTIN APPROXIMATION 47

Example 4.4. — Let k be some positive integer. Then for any y € V and
c € N we have

Y emit = y e mf.
Thus Theorem is satisfied by the polynomial f(y) = y* with the constants
a=kand b=0.

Example 4.5. — Let us assume that V' = C[t] where t is a single variable.
Here the valuation v is just the t-adic order. Let y1, y2 € V and ¢ € N such
that

(1) vi—us € ()™
If ord(y;) > ord(y2), let us denote by z the power series Z—; Then

i — s = (2 — 2)ys € (1)
Thus
2 —yp € (1) or o € (1),

In the first case we set

~ o~ (3.2) l/i)’ y%

o= (35).
in the second case we set

(Y1,92) :== (0,0).

In both cases we have g“//f — @g’ = 0. In the first case

2
~ Yy Y1
y1—y1 = <§—@/2) = € (t)°
and in the second case
y1—y1 =~y € (t)°

since ord(y;) > ord(y2) > c.
If ord(y;) < ord(yz2) we have 3¢ < ord(y?) < ord(y3) and we set

(11,92) :== (0,0).
Hence
y1 —y1 and yo — ya € (1)°.
Thus Theorem is satisfied by the polynomial f(y1,y2) = y3 — y3 with the
constants a = 3 and b = 0.

Remark 4.6. — In the case f(y) has no solution in V' we can choose a = 0

and Theorem asserts that there exists a constant b such that f(y) has no
solution in —Y-.
my
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Remark 4.7. — M. Greenberg proved this result in order to study C; fields.
Let us recall that a C; field is a field k such that for every integer d every
homogeneous form of degree d in more than d* variables with coefficients in
k has a non-trivial zero. More precisely M. Greenberg’s proved that for a C;
field k, the field of formal power series k((¢)) is Cij+1. Previous results about
C; fields had been previously studied, in particular by S. Lang in [Lan52]
where appeared for the first time a particular case of the Artin Approximation
Theorem (see Theorem 11 and its corollary in [Lan52]).

Remark 4.8. — The valuation v of V' defines an ultrametric norm on K (as
noticed in Remark [L.3): we define it as

Y
z

= e"@W) w2 e V\{0}.

This norm defines a distance on V™, for any m € N*, denoted by d(.,.) and
defined by
d(y,z) = I?Ef lyr — 2] -

Then it is well known that Theorem [4.1] can be reformulated as a Lojasiewicz
Inequality (see [Tel2] or [Ronl3| for example):

Ja>1, C>0st. |f@)] = Cd(f1(0),5)" Vge V™

This kind of Lojasiewicz Inequality is well known for complex or real analytic
functions and Theorem can be seen as a generalization of this L.ojasiewicz
Inequality for algebraic or analytic functions defined over V. If V' = k[¢t] where
k is a field, there are very few known results about the geometry of algebraic
varieties defined over V. It is a general problem to extend classical results of
differential or analytic geometry over R or C to this setting. See for instance
IBH10] (extension of Rank Theorem), [Reg06] or |?| (Extension of Curve
Selection Lemma), [Hic05| for some results in this direction.

Definition 4.9 (Greenberg’s Function). — For any ¢ € N let us denote
by B(c) the smallest integer such that:

for all 7 € V™ such that f(7) € (2)%(9), there exists 7 € V™ such that f() = 0
and y —y € (z)°.

Greenberg’s Theorem asserts that such a function § : N — N exists and that
it is bounded by a linear function. We call this function 8 the Greenberg’s
function of f.
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We can remark that the Greenberg’s function is an invariant of the integral
closure of the ideal generated by fi,..., fi:

Lemma 4.10. — Let us consider f(y) € V[y]" and g(y) € V]y|?. Let us
denote by By and By their Greenberg’s functions. Let I (resp. J) be the ideal

of V{y] generated by f1(y),..., fr(y) (resp. g1(y),..., 94(y)). If I = J then
Bf = Bg-

Proof. — Let Z be an ideal of V and § € V™. We remark that

Then by replacing Z by (0) and m{,, for all ¢ € N, we see that 3; depends only
on I (see also Remark [L.4).
Now, for any ¢ € N, we have:

g(y) Emy Vgel <= v(g(y)) >c Vgel

= v(gy) =c Vgel

< g(y) em{ Vgel.
Thus 3; depends only on 1. O
In general, it is a difficult problem to compute the Greenberg’s function of an
ideal I. It is even a difficult problem to bound this function in general. If we

analyze carefully the proof of Greenberg’s Theorem, using classical effective
results in commutative algebra, we can prove the following result:

Theorem 4.11. — |Ronl0a| Let k be a characteristic zero field and V =
k[[¢] where t is a single variable. Then there exists a function
N> — N
(m,d) — a(m,d)
which is a polynomial function in d whose degree is exponential in m, such

that for any vector f(y) € k[t,y|" of polynomials of total degree < d with y =
(Y1, ,Ym), the Greenberg’s function of f is bounded by ¢ — a(m,d)(c+1).

Moreover let us remark that, in the proof of Theorem [£.1], we proved a partic-
ular case of the following inequality:

Br(c) <2B5(c) +¢, VeeN

where J is the Jacobian ideal of I (for a precise definition of the Jacobian
ideal in general and a general proof of this inequality let see [EIT3]). The
coefficient 2 comes from the use of Tougeron Implicit Function Theorem. We
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can sharpen this bound in the following particular case:

Theorem 4.12. — |Hic93| Let k be an algebraically closed field of charac-
teristic zero and V := Kk[t] where t is a single variable. Let f(y) € V]y] be one
power series. Let us denote by J the ideal of V[y] generated by f(y), %(y),
%(y)"“’ %(y}, and let us denote by By the Greenberg’s function of (f) and
by By the Greenberg’s function of J. Then

Br(c) < By(c) +c¢ VeeN.

This bound may be used to find sharp bounds of some Greenberg’s functions

(see Remark [4.14]).

On the other hand we can describe the behaviour of £ in the following case:

Theorem 4.13. — |[De84||DeLo99] Let V be Z, or a Henselian discrete
valuation ring whose residue field is an algebraically closed field of characteris-
tic zero. Let us denote by my the maximal ideal of V. Let 8 denote the Artin
function of f(y) € V]y]". Then there exists a finite partition of N in congru-
ence classes such that on each such class the function ¢ — ((c) is linear for
¢ large enough.

Hints on the proof in the case the residue field has characteristic zero
Let us consider the following of three sorts:
1) the field (K := Frac(V), +, x,0,1)
2) the group (Z,+, <,=4 (Vd € N*),0) (=4 is the relation a =4 b if and only
if a — b is divisible by d for a, b € Z)
3) the residue field (k := Frac (%) ,+,%,0,1)
with both following functions:
a) v:K—7Z*
b) ac: K — k ("angular component")
The function v is the valuation of the valuation ring V. The function ac may

be characterized by axioms, but here let us just give an example: let us assume
that V = k[t]. Then ac is defined by ac(0) = 0 and ac (3
any # 0.

The second sort (Z,+, <, =4,0) admits elimination of quantifiers ([Pr29]) and
the elimination of quantifiers of (k, +, x,0, 1) is a classical result of Chevalley.
J. Pas proved that the three sorted language admits elimination of quantifiers
[Pa89]. This means that any subset of K™ x Z"2 x k™3 defined by a first order
formula in this three sorts language (i.e. a logical formula involving 0, 1,+ ,x

0 n\ __ .
ne=ng @nt ) = Gy, if
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(but not @ x b where a and b are integers), (, ), =, <, A, V, =, ¥, 3, v, ac, and
variables for elements of K, Z and k may be defined by a formula involving the
same symbols except V, 3.

Then we see that [ is defined by the following logical sentence:

[Vee NVy e K™ (v(f(y)) = B(c)) A (v(y) = 0) 3y €K™ (f(y) =0Av(y—7y) = c)]
Alvee N Ty e K™ (v(f(@)) = B(c) +1) A (v(y) 2 0)

-y e K™ (f(y) =0Av(y—7) = )]
Applying the latter elimination of quantifiers result we see that §(c) may be
defined without V and 3. Thus S3(c) is defined by a formula using +, <, =4
(for a finite set of integers d). This proves the result.

The case where V' = Z, requires more work since the residue field of Z,, is not
algebraically closed, but the idea is the same. ]

Remark 4.14. — When V = C{t}, t being a single variable, it is tempting to
link together the Greenberg’s function of a system of equations with coefficients
in V and some geometric invariants of the germ of complex set defined by this
system of equations. This has been done in several cases:

i) In [El189], a bound (involving the multiplicity and the Milnor number) of
the Greenberg’s function is given when the system of equations defines a
curve in C™.

ii) Using Theorem M. Hickel gives the following bound of the Green-
berg’s function 8 of a germ of complex hypersurface with an isolated
singularity (cf. [Hic93|): 5(c) < [Ac| +c for all ¢ € N, and this bound is
sharp for plane curves. Here A denotes the Lojasiewicz exponent of the

germ, i.e.
A:=inf{# € R / 3C > 0 3U neighborhood of 0 in C™,
0 0 0
—_— _ >
@I+ |G|+ |5 (2)] 2 Ozl vz € U}

iii) [Hic04] gives the complete computation of the Greenberg’s function of
one branch of plane curve and proves that it is a topological invariant.
This computation has been done for two branches in [Sal0]. Some partic-
ular cases depending on the Newton polygon of the plane curve singularity
are computed in [WaT78§|.

iv) In the case where V is the ring of p-adic integers and the variety defined
by f(y) = 0 is non degenerated with respect to its Newton polyhedron, D.
Bollaerts gives a bound on the infimum of numbers a such that Theorem
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[Tl is satisfied for some constant b. This bound is defined in terms of the
Newton polyhedra of the components of f.

Finally we mention the following recent result that extends Theorem to
non-Noetherian valuation rings and whose proof is based on ultraproducts
methods used in [BDLvdD79| to prove Theorem (see [6):

Theorem 4.15. — [M-B11| Let V be a Henselian valuation ring and v :
V — T its associated valuation. Let us denote by V its my -adic completion,
K := Frac(V) and K := Frac(V). Let us assume that K —» K is a separable
field extension. Then for any f(y) € V[y]" there exist a € N, b € T'" such that

Vee TV e V" (v(f(m) > ac+b) = FyeV™ (fH) =0Av{H—7) >c).

5. Strong Artin Approximation: the general case

In the general case (when V' is not a valuation ring) there still exists an ap-
proximation function 8 analogous to the Greenberg’s function. The analogue
of Greenberg’s Theorem in the general case is the following:

Theorem 5.1 (Strong Artin Approximation Theorem)

|[PfPo75| [Po86| Let A be a complete local ring whose mazimal ideal is denoted
by ma. Let f(y,z) € Alyllz]", with z := (z1,--- ,25). Then there ezists a
function B : N — N such that the following holds:

For any ¢ € N and any y € (my.A)™ and Z € A® such that f(y,z) € mi(c),
there exists y € (my.A)™ and z € A® such that f(y,2) =0 andy—7, 2 —Z €
m¢.

Remark 5.2. — This theorem can be extended to the case where A is an
excellent Henselian local ring by using Theorem [3-3]
Let us also mention that there exists a version of this theorem for analytic
equations [Wa75| or Weierstrass systems [DeLi80].

In the case of polynomials equations over a field the approximation function S
may be chosen to depend only on the degree of the equations and the number
of variables:

Theorem 5.3. — |Ar69||BDLvdD79| For all n,m,d € N, there exists a
function By m.a: N — N such that the following holds:
Let k be a field and set x := (z1, -+ ,zpn) and y := (y1,- -+ ,Ym). Then for all
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f(z,y) € k[z,y]" of total degree < d, for all c € N, for all y(x) € k[z]™ such
that

f(z,5(@)) € (x)Pnmal®),
there exists y(x) € k[z]™ such that f(y(x)) =0 and y(z) — y(z) € (z)°.

Remark 5.4. — By following the proof of Theorem given in [Ar69|, D.
Lascar proved that there exists a recursive function S that satisfies the con-
clusion of Theorem |[Las78|. But the proof of Theorem uses a double
induction on the height of the ideal (like in Theorem and on n (like in
Theorem . In particular, in order to apply the Jacobian Criterion, we need
to work with prime ideals (at least radical ideals), and replace the original
ideal I generated by fi,..., f, by one of its associated primes and then make
a reduction to the case of n — 1 variables. But the bounds on the degree of
the generators of such associated prime may be very large compared to the
degree of the generators of I. This is essentially the reason why the proof of
this theorem does not give much more information about the quality of 5 than
Lascar’s result.

Ezxzample 5.5. — [Sp94] Set f(x1,72,y1,v2) = 21y — (v1 + 22)y3. Let

VIitt=14) ant" € Q[t]

n>1

be the unique power series such that (v/1+¢)2 = 1 +t and whose value at
the origin is 1. For any ¢ € N we set yéc)(x) = z{ and y&c)(x) = xf{ +
> apxy "xh. Then

flar, 20,937 (@), 457 (2)) € (x2)".

On the other side the equation f(x1,z2,y1(z),y2(x)) = 0 has no other solution
(y1(), yo(x)) € Q[z]? but (0,0). This proves that Theorem is not valid
for general Henselian pairs since (Q[z1, 2], (z2)) is a Henselian pair.

Let us notice that L. Moret-Bailly proved that if a pair (A,I) satisfies
Theorem then A has to be an excellent Henselian local ring [M-B07]. On
the other hand A. More proved that a pair (A, ), where A is an equicharac-
teristic excellent regular Henselian local ring, satisfies Theorem if and only
if I is m-primary [Mol3].

It is still an open question to know under which conditions on I the pair (A, I)
satisfies Theorem when A is a general excellent Henselian local ring.
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Remark 5.6. — As for Theorem Theorem implies that, if f(y) has

no solution in A, there exists a constant ¢ such that f(y) has no solution in
A

E-
Definition 5.7. — Let f be as in Theorem The least function S that
satisfies Theorem [5.1] is called the Artin function of f.

Remark 5.8. — When f is a vector of polynomials of Afy] for some complete
local ring A, then we can consider the Artin function of f seen as a vector of
formal power series in y (i.e. we restrict to approximated solution vanishing at
0) either we can consider the Artin function of f seen as a vector of polynomials
(i.e. we consider every approximated solution, not only the ones vanishing at
0). Both may not be equal in general even if the first one is bounded by the
second one (exercice!). We hope that there will be no ambiguity in the rest of
the text.

Remark 5.9. — As before, the Artin function of f depends only on the inte-
gral closure of the ideal I generated by fi,..., fr (see Lemma |4.10)).

Remark 5.10. — (See also Remark just below) Let f(y) € Aly]"” and

7 € (my)™ satisfy f(y) € m§ and let us assume that A — B := %

is a smooth morphism. This morphism is local thus it splits as A — C' :=

Al2]m4(z) — B such that C — B is étale (see Definition |C.5) and z :=
A

=
ma

(21, ,25). Weremark that y defines a morphism of A-algebras ¢ : B —
Let us choose any z € A® such that Z; — Z; € m9 for all 1 <i <'s (Z; denotes
the image of z; in %) Then A — W

mg . By Proposition |C.12] this section lifts to a section in A. Thus we have
a section B — A equal to ¢ modulo m¢.

This proves that 5(c) = ¢ when A — % is smooth.

This shows that the Artin function of f may be seen as a measure of the

is étale and admits a section

n

A
non-smoothness of the morphism A — %.
Remark 5.11. — For the convenience of some readers we can express the

previous remark in the setting of convergent power series equations. The proof
is the same but the language is a bit different:

Let f(z,y) € k{z,y}™ be a vector of convergent power series in two sets of
variables z and y where y = (y1,- -+ ,ym). Let us assume that f(0,0) = 0 and

8(f17"' 7fm)

0,0) is invertible.
8(y1a7ym)( )
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Let y(x) € k[z]™ be a vector of formal power series vanishing at the origin
such that

[z, y(z)) € (x)°
for some integer c¢. We can write
y(x) =" (2) +y'(2)
where y°(x) is a vector of polynomials of degree < ¢ and y'(z) is a vector of
formal power series whose components have order equal at least to c. We set
g(z, 2) = f(z,3°(z) + 2)

for new variables z = (z1,--- , z). Then g(0,0) =0 and

8(91a"‘79m) a(fl? 7fm)

8(21;"' 7Zm) a(yh 7ym)
By the Implicit Function Theorem for convergent power series there exists a

(0,0) = (0,0) is invertible.

unique vector of convergent power series z(z) vanishing at the origin such that

9(z,2(x)) = 0.
Since

_ (g1, 9gm)
9(@,z(x)) = g(x,0) + m(oﬂ) -2(z) +e(z)

where the components of e(z) are linear combinations of products of the com-
ponents of z(x), we have

ord(z(x)) = ord(gi(z,0)) Vi.
Moreover

9(x,0) = f(z,y"(2)) = f(z,y(x)) modulo (x)°,
thus z(x) € (x)¢. Thus y(z) := y°(z) + z(z) is a solution of f(z,y) = 0 with

y(z) —y(z) € (2)"

This shows that the Artin function of f(z,y) is the identity function.

6. Ultraproducts and Strong Approximation type results

Historically M. Artin proved Theorem in [Ar69| by a modification of the
proof of Theorem i.e. by an induction on n using the Weierstrass Division
Theorem. Roughly speaking it is a concatenation of his proof of Theorem
and of the proof of Greenberg’s Theorem Then several authors tried to
prove this kind of result in the same way, but this was not always easy, in par-
ticular when the base field was not a characteristic zero field (for example there
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is a gap in the inseparable case of [PfP0o75]). Then four people introduced the
use of ultraproducts to give more direct proofs of this kind of Strong Approx-
imation type results ([BDLvdD79| and [DeLi80|; see also |[Po79] for the
general case). The general principle is the following: ultraproducts transform
approximated solutions into exact solutions of a given system of polynomial
equations defined over a complete local ring A. So they are a tool to reduce
Strong Artin Approximation Problems to Artin Approximation Problems.
But these new exact solutions are not living any more in the given base ring
A but in bigger rings that also satisfy Theorem In the case the equations
are not polynomial but analytic or formal, this reduction based on ultraprod-
ucts transforms the given equations into equations of a different Weierstrass
System (see Definition and Theorem which is a first justification to
the introduction the Weierstrass Systems. We will present here the main ideas.

Let us start with some terminology. A filter D (over N) is a non empty
subset of P(N), the set of subsets of N, that satisfies the following properties:

a)0¢D, b)EFeD=E(\FeD, €D ECF=FeD.

A filter D is principal if D = {F / £ C F} for some subset £ of N. A wltrafilter
is a filter which is maximal for the inclusion. It is easy to check that a filter
D is a ultrafilter if and only if for any subset £ of N, D contains E or its
complement N — £. In the same way a ultrafilter is non-principal if and only
if it contains the filter E := {£ C N / N — £ is finite}. Zorn Lemma yields the
existence of non-principal ultrafilters.

Let A be a Noetherian ring. Let D be a non-principal ultrafilter. We
define the ultrapower (or ultraproduct) of A as follows:

e Aediene T4}
' ((az) ~ (bz) iff {l/CLZ = bz} S D) '

The ring structure of A induces a ring structure on A* and the map A — A*

that sends a onto the class of (a);cy is a ring morphism.

We have the following fundamental result that shows that several prop-
erties of A are also satisfied by A*:

Theorem 6.1. — |[CKT3| Let L be a first order language, let A be a structure
for L and let D be an ultrafilter over N. Then for any (a;)ien € A* and
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for any first order formula o(x), ¢((a;)) is true in A* if and only if {i €
N / p(a;) is true in A} € D.

In particular we can deduce the following properties:

The ultrapower A* is equipped with a structure of commutative ring. If A is
a field then A* is a field. If A is an algebraically closed field then A* is an
algebraically closed field. If A* is a local ring with maximal ideal m4 then
A* is a local ring with maximal ideal m? defined by (a;); € m* if and only if
{i/a; e ma} € D. If Ais alocal Henselian ring, then A* is a local Henselian
ring. In fact all these properties are elementary and can be checked directly
by hand without the help of Theorem . Elementary proofs of these results
can be found in [BDLvdD79].

Nevertheless if A is Noetherian, then A* is not Noetherian in general, since
Noetherianity is a condition on ideals of A and not on elements of A. For
example, if A is a Noetherian local ring, then m}, := [,~om%" # (0) in
general. But we have the following lemma: N

Lemma 6.2. — [Po00]| Let (A,m4) be a Noetherian complete local ring. Let

us denote Ay := rf: . Then Ay is a Noetherian complete local ring of same

dimension as A and the composition A — A* — Ay is flat.

In fact, since A is excellent and m4A; is the maximal ideal of Aq, it is not
difficult to prove that A — A; is even regular. Details can be found in [Po00].

Let us sketch the idea of the use of ultraproducts to prove the existence
of an approximation function in the case of Theorem

Sketch of the proof of Theorem[5.1, — Let us assume that some system of al-
gebraic equations over an excellent Henselian local ring A, denoted by f = 0,
does not satisfy Theorem [5.1] Using Theorem [3.3] we may assume that A is
complete. Thus it means that there exist an integer ¢y € N and 7(© € A™,
Ve € N, such that f(7(?) € m4 and there does not exists §(® € A™ such that
F(@9) =0 and 79 — 7 € mY.

Let us denote by 7 the image of (7(9)), in (A*)™. Since f(y) € Aly]", we may
assume that f(y) € A*[y]" using the morphism A — A*. Then f(y) € m.
Thus f(y) = 0 in A;. Let us choose ¢ > ¢p. Since A — A; is regular and
A is Henselian, following the proof of Theorem [3.3] for any ¢ € N there exists
y € A™ such that f(y) =0and y—7 € m4A;. Thus y—7 € m4A*. Hence the
set {i € N /-5 € m§A*} € D is non-empty. This is a contradiction. [
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Remark 6.3. — If, instead of working with polynomial equations over a gen-
eral excellent Henselian local ring, we work with a more explicit subring of
k[, y] satisfying the Implicit Function Theorem and the Weierstrass Division
Theorem (like the rings of algebraic or convergent power series) the use of
ultraproducts enables us to reduce the problem of the existence of an approxi-
mation function to a problem of approximation of formal solutions of a system
of equations by solutions in a Weierstrass System (see [DeLi80]). This is also
true in the case of constraints.

We can also prove easily the following proposition with the help of ultraprod-
ucts (see also Theorem of Example in the introduction):

Proposition 6.4. — [BDLvdD79| Let f(x,y) € Clz,y|". For any 1 <i <
m let J; be a subset of {1,...,n}.

Let us assume that for any ¢ € N there exist ygc)(x) €Clzj,je Ji), 1 <i<m,
such that

f(2,59 (@) € ().
Then there exist y;(x) € Clzj,j € Ji], 1 <i < m, such that f(z,y(z)) = 0.

Proof. — Let us denote by 7 € C[z]* the image of (7(®).. Then f(z,7) = 0
modulo (z)%,. It is not very difficult to check that gﬁo ~ C*[z] as C*[z]-
algebras. Moreover C* ~ C as k-algebras (where k is the subfield of C gener-
ated by the coefficients of f). Indeed both are field of transcendence degree
over Q equal to the cardinality of the continuum, so their transcendence degree

over k is also the cardinality of the continuum. Since both are algebraically

closed they are isomorphic over k. Then the image of ¥ by the isomorphism
yields the desired solution in Cfz]. O

Let us remark that the proof of this result remains valid if we replace C by
any uncountable algebraically closed field K. If we replace C by Q, this result
is no more true in general (see Example [11.5)).

Remark 6.5. — Several authors proved "uniform" Strong Artin approxima-
tion results, i.e. they proved the existence of a function § satisfying Theorem
for a parametrized family of equations (f\(y,z))xea which satisfy tame-
ness properties that we do not describe here (essentially this condition is that
the coefficients of f)(y, z) depend analytically on the parameter \). The main
example is Theorem that asserts that the Artin functions of polynomials
in n 4+ m variables of degree less than d are uniformly bounded. There are also
two types of proof for these kind of "uniform" Strong Artin approximation
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results: the ones using ultraproducts (see Theorems 8.2 and 8.4 of [DeLi80|
where uniform Strong Artin approximation results are proven for families of
polynomials whose coefficients depend analytically on some parameters) and
the ones using the scheme of proof due to Artin (see [EITo96| where more or
less the same results as those of [BDLvdD79| and [DeLi80] are proven).

7. Effective examples of Artin functions

In general the proofs of Strong Artin Approximation results do not give much
information about the Artin functions. Indeed there two kinds of proofs: the
proofs based on ultraproducts methods use a proof by contradiction and are
not effective, and the proofs based on the classical argument of Greenberg and
Artin are not direct and require too many steps (see also Remark . In fact
these latter kind of proof gives uniform versions the Strong Artin Approxi-
mation Theorem (as Theorem which is a more general result. Thus this
kind of proof is not optimal to bound effectively a given Artin function. The
problem of finding estimates of Artin functions was first raised in [Ar70| and
very few general results are known (the only ones in the case of Greenberg’s
Theorem are Theorems and Remark and Remark in the
general case). We present here a list of examples of equations for which we can
bound the Artin function.

7.1. The Artin-Rees Lemma. — The following result has been known
for long by the specialists without appearing in the literature and has been
communicated to the author by M. Hickel:

Theorem 7.1. — [Ron06a| Let f(y) € Aly]" be a vector of linear homoge-
neous polynomials with coefficients in a Noetherian ring A. Let I be an ideal
of A. Then there exists a constant cg > 0 such that:

Ve € N Vg € A™ such that f(3) € 1T
Jy € A™ such that f(y) =0 andy — 7y € I°.

This theorem asserts that the Artin function of f is bounded by the function
¢ —> c+cg. Moreover let us remark that this theorem is valid for any Noethe-
rian ring and any ideal I of A. This can be compared with the fact that, for
linear equations, Theorem [3.3]is true for any Noetherian ring A without the
Henselian condition (see Remark .
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Proof. — For convenience, let us assume that there is only one linear polyno-
mial:

f(y) =a1y1 + -+ amYm-

Let us denote by Z the ideal of A generated by azi,..., a,. Artin-Rees Lemma
implies that there exists ¢y > 0 such that Z () I¢% C Z.I¢ for any ¢ > 0.

If y € A™ is such that f(y) € It and since f(y) € Z, there exists ¢ € Z°A™
such that f(y) = f(e). If we define y; := y; — &, for 1 < i < m, we have the
result. O

We have the following result whose proof is similar:

Proposition 7.2. — Let (A,my) be a Henselian excellent local ring, I an
ideal of A generated by ay,..., aq and f(y) € Afy]". Set

Fl(ya Z) = fl(y) +alzi,1 + -+ AqZiq € A[y7 Z]? 1 S { S r

where the z; 1, are new variables and let F(y, z) be the vector whose coordinates
are the Fi(y, z). Let us denote by B the Artin function of f(y) seen as a vector
of polynomials of ?[y] and vy the Artin function of F(y,z) € Aly, z]". Then
there exists a constant ¢y such that:

Bc) <v(ec) < B(c+cp), VeeN.

Proof. — Lety € ?m satisfies f(7y) € mz(c)?T. Then there exists Z € A7 such
that F(y,%z) € mz‘(c) (we still denote by 7 a lifting of 7 in A™). Thus there
exists y € A™ and z € A? such that F'(y,z) =0 and y — 7, 2 —z € m4. Thus
f@ =0in 4"

On the other hand let ¢y be a constant such that I (\m%"® C I.m¢ for all
¢ € N (such constant exists by the Artin-Rees Lemma). Let 7 € A™, z € A"
satisfy F(y,z) € mﬁ(c+c°). Then f(y) € mi(HcO) +1. Thus there exists y € A™
such that f(7) € I and § — 7 € m%". Thus F(y,%7) € m$ N I. Then we
conclude by following the proof of Theorem [7.1] O

Remark 7.3. — By Theorem[3.3] in order to study the behaviour of the Artin
function of some ideal we may assume that A is a complete local ring. Let us
assume that A is an equicharacteristic local ring. Then A is the quotient of
a power series ring over a field by Cohen Structure Theorem [Mat89]. Thus
Proposition enables us to reduce the problem to the case A = k[x1, -+, 2]
where k is a field.
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7.2. Izumi’s Theorem and Diophantine Approximation. — Let
(A,my4) be a Noetherian local ring. We denote by v the m4-adic order on A,
le.

v(z) :=max{n e N / z e m’j} for any x # 0.
We always have v(z) + v(y) < v(xy) for all z, y € A. But we do not have the

equality in general. For instance, if A := (fz[[f’gﬁ) then v(z) = v(y) = 1 but

v(z?) = v(y3) = 3. Nevertheless we have the following theorem:

Theorem 7.4 (Izumi’s Theorem). — [Iz85]||Re89] Let A be a local
Noetherian ring whose maximal ideal is denoted by my4. Let us assume that
A is analytically irreducible, i.e. A is irreducible. Then there exist b >1 and
d > 0 such that

Va,y € A, vlry) < b(u(z) + 1(y)) +d.
This result implies easily the following corollary using Corollary [7.2}
Corollary 7.5. — [1z95||[Ron06a| Let us consider the polynomial

fW) = v1y2 +asys + - + amYm,
with ag,..., aym € A where (A,my) is a Noetherian local ring such that o A o)

is analytically irreducible. Then there exist b > 1 and d' > 0 such that the
Artin function B of Theorem [ satisfies 5(c) < bc+d' for all ¢ € N.

Proof. — By Proposition [7.2] we have to prove that the Artin function S of
y1y2 € Aly] is bounded by a linear function if A is analytically irreducible.
Thus let 5,, ¥, € A satisfy 5,7, € mibﬁd where b and d satisfy Theorem
This means that

2bc +d < v(y1y2) < b(v(yy) +v(y2)) + d.

Thus v(g;) > c or v(Yy) > c. In the first case we denote g1 = 0 and 2 = s
and in the second case we denote y; = 7; and yo = 0. Then 7172 = 0 and
Y1 — Y1, Y2 — Yo € MY, [
Idea of the proof of Theorem[7.4) in the complex analytic case:

According to the theory of Rees valuations, there exist discrete valuations v1,...,
vy such that v(z) = min{v(z), - ,vk(x)} (they are called the Rees valuations
of v - see [HS06]). The valuation rings associated to vy,..., v are the valuation
rings associated to the irreducible components of the exceptional divisor of the
normalized blowup of m4.

Since v;(zy) = vi(z) 4+ v;(y) for any 4, in order to prove the theorem we have to
show that there exists a constant a > 1 such that v;(z) < av;j(z) for any z € A
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and any ¢ and j. If A is a complex analytic local ring, following S. Izumi’s
proof, we may reduce the problem to the case dim(A) = 2 by using a Bertini
type theorem, and then assume that A is normal by using an inequality on the
reduced order proved by D. Rees. Then we consider a resolution of singularities
of Spec(A) (denoted by m) that factors through the normalized blow-up of
m4. In this case let us denote by FE1,..., Es the irreducible components of
the exceptional divisor of m and set e; ; := E;.Ej for all 1 < 4,5 < s. Since
7 factors through the normalized blow-up of my4, the Rees valuations v; are
valuations associated to some of the Fj, let us say to Eji,..., Ex. By extension
we denote by v; the valuation associated to E; for any i.

Let x be an element of A. This element defines a germ of analytic hypersurface
whose total transform T, may be written T, = S, + E;Zl m;E; where S; is
the strict transform of {x = 0} and m; = v;(x), 1 < i < s. Then we have

S
0=1T,.FE;,=5,.F; + ijei’j.

j=1
Since S;.E; > 0 for any i, the vector (my,...,ms) is contained in the convex
cone C defined by m; > 0, 1 < i < s, and ijl ei;m;j < 0,1 <1< s
This cone C' is called the Lipman cone of Spec(A) and it is well known that
it has a minimal element m [Ar66| (i.e. Ym € C, m; < m,; for all 1 < i <
s). Thus to prove the theorem, it is enough to prove that C is included in
{m / m; >0, 1 <i< s}, ie. every component of m is positive. Let assume
that it is not the case. Then, after renumbering the F; , we may assume that
(m1,...,my,0,...,0) € C where m; > 0,1 <i <1 < s. Since e;; > 0 for all
i # J, 25—y igmy = 0 for | < i < s implies that e;; = 0 for all | <i <'s
and 1 < j < [. This contradicts the fact that the exceptional divisor of 7 is
connected (since A is an integral domain). O

Let us mention that Izumi’s Theorem is the key ingredient to prove the follow-
ing result:

Corollary 7.6. — |[Ron06b]|[HicO8|[IT08||[HII09| Let (A,m4) be an excel-
lent Henselian local domain. Let us denote by K and K the fraction fields of A
and A respectively. Let z € K\K be algebraic over K. Then

Jda>1,C>0,Vx € AVy e A*,

zx‘ > Cly|*
y

where |u| == e ") and v is the usual ma-adic valuation.

This result is equivalent to the following:
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Corollary 7.7. — |[Ron06b]|[HicO08|[II08| [HII09] Let (A, m4) be an excel-
lent Henselian local domain and let fi(y1,v2),..., fr(y1,y2) € Aly1,y2] be ho-
mogeneous polynomials. Then the Artin function of (f1,--- , fr) is bounded by
a linear function.

7.3. Reduction to one quadratic equation and examples. — In general
Artin functions are not bounded by linear functions as in Theorem [£.1] Here
is such an example:

Ezample 7.8. — [Ron05| Set f(y1,y2,y3) := yi—y3y3 € k[x1, z2][y1, 2, y3]
where k is a field of characteristic zero. Let us denote by h(T) := Y2, a;T" €
Q[T] the power series such that (1 + h(T))?2 = 1+ T. Let us define for all
integer c:

c+1 Q?Ci c+1
() ., 2c+2 2 2c+2 2(c—i+1) ¢
Yy =] 1+ E i | =2 + g a; Ty zy,
i=1 1

=1
yéc) — $%C+1,
(e ._ .2 c
y3 = xl + 372.

Then in the ring k(32)[z1] we have

(@) 2 5 (@) 2
P 8,057 = (%) 7 | s = (y}@) — a7 <1+
y

> y’
2
() c (o) c 2
= yb—m(l%—h(%)) yb—i—m(l—i—h(%)) yéc).
yzC Ly y; Ty

Thus we see that f(ygc), yéc), y:(f)) € (z)° T for all ¢ > 2. On the other hand
for any (71, ¥2, ¥3) € k[z1, 22]® solution of f = 0 we have the following two

»—ngw‘u%gn

cases:
1) Either ys is a square in k[z1, z2]. But sup,cy[y (ord(yéc) -22) =c
2) Either g3 is not a square, hence 3; = 72 = 0 since 3% — 7373 = 0. But we
have ord(y%c)) —1= ord(yéc)) =2c+1.
Hence in any case we have
sup (min{ord(y}” — 1), ord(ys” — ), ord(y§” — 7a)}) < 2 +1
(¥1,92,93)
where (y1,y2,y3) runs over all the solutions of f = 0. This proves that the
Artin function f is bounded from below by a polynomial function of degree 2.
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Thus Theorem does not extend to k[zy1, -+, z,] if n > 2.

In [Ron06al another example is given: the Artin function of the polynomial
y1y2 —ysya € k[x1, 22, 23] [y1, Y2, Y3, ya] is bounded from below by a polynomial
function of degree 2. Both examples are the only known examples of Artin
functions which are not bounded by a linear function.

We can remark that both examples are given by binomial equations. In the
binomial case we can find effective bounds of the Artin functions as follows:

Theorem 7.9. — |Ronl0a|[Ronl3| Let k be an algebraically closed field
of characteristic zero. Let I be an ideal of k[x1,z2][y]. If I is generated by
binomials of k[y] or if Spec(k]z1, z2][y]/I) has an isolated singularity then the
Artin function of I is bounded by a function which is doubly exponential, i.e.
a function of the form c — a® for some constant a > 1.

Moreover the Artin function of I is bounded by a linear function if the ap-
proximated solutions are not too close to the singular locus of I [Ron13|. We
do not know if this doubly exponential bound is sharp since there is no known
example of Artin function whose growth is greater than a polynomial of degree
2.

In general, in order to investigate bounds on the growth of Artin functions, we
can reduce the problem as follows, using a trick from [Ronl0b|. From now
on we assume that A is a complete local ring.

Lemma 7.10. — |BeTTb| For any f(y) € Aly|" or Aly]" the Artin function
of f is bounded by the Artin function of

9@) = W)+ () +n(fs(y)* + )

Proof. — Indeed, if 8 is the Artin function of g and if f(y) € mi(c) then

9(y) € mi(c). Thus there exists y € A™ such that g(y) = 0 and y; — 7; € m§.
But clearly g(y) = 0 if and only if f(y) = 0. This proves the lemma. O

This allows us to assume that » = 1 and we define f(y) := fi(y). If f(y) is
not irreducible, then we may write f = hy...hs, where h; € Afy] is irreducible
for 1 <i < s, and the Artin function of f is bounded by the sum of the Artin
functions of the h;. Hence we may assume that f(y) is irreducible.

We have the following lemma:



ARTIN APPROXIMATION 65

Lemma 7.11. — For any f(y) € Aly], where A is a complete local ring, the
Artin function of f(y) is bounded by the Artin function of the polynomial

P(u,x,2) := f(y)u+x121 + - + Timzm € Bz, 2, 1]
where B := Afy].

Proof. — Let us assume that f(g) € mi(c)

P. By replacing f(y) by f(y° +y), where y° € A is such that y? — 7; € ma,
1 <7 <m, we may assume that y;, € my for 1 <¢ < m.
Then there exists z;(y) € Afy], 1 <i < m, such that

where [ is the Artin function of

F@W) + > (Wi —7)Ziy) € (ma+ ().
i=1
Thus there exist u(y), fi(y), zi(y) € AJy], 1 <i < m, such that
u(y) =1, zi(y) = Zi(y), zi(y) — (4 = %) € (ma+ (y))51<i<n
and f(y)u(y) + Y _ zi(y)zi(y) = 0.
i=1

In particular u(y) is invertible in Afy] if ¢ > 0. Let us assume that ¢ > 2.
In this case the matrix of the partial derivatives of (z;(y), 1 < i < m) with

respect to y1, -+, Ym has determinant equal to 1 modulo m4 + (y). By Hensel
Lemma there exist y;. € my such that x;(y1.c, -, Ym,e) =0 for 1 < i < m.
Hence, since u(y; ) is invertible, f(y1,¢,- -, Ym,.e) =0 and y; . —7; € m4y, 1 <
1< m. O

Thus, by Corollary[7.2] in order to study the general growth of Artin functions,
it is enough to study the Artin function of the polynomial

Y1y2 + Y3ya + - + Yam+1Y2m € Aly]

where A is a complete local ring.

PART 1V
EXAMPLES OF APPLICATIONS

In this part we give some basic examples of applications of Theorem [3.3] and
Theorem (.11
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Proposition 7.12. — Let A be an excellent Henselian local ring. Then A is
reduced (resp. is an integral domain, resp. an integrally closed domain) if and
only if A is reduced (resp. is an integral domain, resp. an integrally closed
domain).

Proof. — First of all it is clear that A is reduced (resp. is an integral domain,
resp. an integrally closed domain) if A is reduced (resp. is an integral domain,
resp. an integrally closed domain). Thus we only need to prove the converse.
If A is not reduced, then there exists § € A, § # 0, such that §* = 0 for some
positive integer k. Thus we apply Theorem to the polynomial y* with
¢ > ord(g) 4 1 in order to find 4 € A such that 7* = 0 and 7 # 0.

In order to prove that A is an integral domain if A is an integral domain, we
apply the same procedure to the polynomial y;ys.

If A is an integrally closed domain, then A is an integral domain. Let P(z) :=

2 a4+ Gy € j[] .G € A G +#0, satisfy P <§) =0, ie.
fd +a1fd 19+ +a40%=0. By Theorem for any ¢ € N, there exist a; o
fc, ge € A such that fd+a1 cfd get-- —I—adcgC =0 and fc f, Je—g € mAA
Then for ¢ > ¢p, where ¢y = ord(g), we have g. # 0. Since A is an integrally
closed domain, f, € (g.) for ¢ > ¢o. Thus fe (9) + m¢ for ¢ large enough. By
Nakayama Lemma this implies that f € (g) and Ais integrally closed. O

Proposition 7.13. — Let A be an excellent Henselian local ring. Let QQ be a
primary ideal of A. Then QA is a primary ideal of A.

Proof. — Let ]/”\ € A and g € A\ QA satisfy fg € QA. By Theorem
for any integer ¢ € N, there exist fc, ge € A such that fcgC € @ and fc f )
ge — g € m. For some c¢ large enough, g. ¢ +/Q. Since Q is a primary ideal,
this proves that f~c € @ for ¢ large enough, hence fe Qﬁ.

O

Corollary 7.14. — Let A be an excellent Henselian local ring. Let I be an
ideal of A and let I = Q1)+ Qs be a primary decomposztwn of I in A.
Then QlAﬂ ﬂQSA s a primary decomposition of IA.

Proof. — Since I =(;_; Qi, then TA = Nz, (Q; A) by faithfull flatness (or by
Theorem |3.3] - 3| for linear equations). We conclude with the help of Proposition
(13 ]



ARTIN APPROXIMATION 67

Corollary 7.15. — [IZ92] Let A be an excellent Henselian local integrally
closed domain. If f € A and if there exists § € A such that f§ € A\{0}, then
there exists a unit 4 € A such that uf e A.

Proof. — Let (j?’g?)A =Q1() Qs be a primary decomposition of the prin-
cipal ideal of A generated by fﬁ Since A is an integrally closed domain, it
is a Krull ring and Q; = pgni) for some prime ideal p;, 1 < i < s, where p(")
denote the n-th symbolic power of p (see [Mat89] p.88). In fact n; := 1, (f9)
where 1y, is the p;- adic valuation of the valuation ring Ap By Corollary

(m Aﬂ ‘N ps JAis a primary decomposition of (fg)A Since v, are

Valuatlons, then

N (k (k1)
FA=pW AN e A= (o1 - p8) 4
for some non negative integers ki,..., ks. Let hq,..., h, € A be generators of the

ideal pgkl) Nn--- ﬂpgks). Then f: Zaihi and h; = Ziffor some a;, b € A,

T

1 <4 <. Thus Za@- = 1, since Ais an integral domain. Thus one of the
i=1
b; is invertible and we choose @ to be this invertible b;. O

Corollary 7.16. — [To72| Let A be an excellent Henselian local ring. For
f(y) € Aly]" let T be the ideal of Aly] generated by fi(y),..., fr(y). Let us
assume that ht(I) = m. Let y € A™ satisfy f(y) =0. Theny € A™.

Proof. — Set p := (y1—71, .. < Ym = Um)- Itisa prime ideal of A and ht(p) = m.
Of course TA C p and ht(IA) = m by Corollary [7.14] Thus p is of the form
p’ A where p’ is minimal prime of I. Then y € Am is the only common zero of
all the elements of p’. By Theorem |3 -, 7 can be approximated by a common
zero of all the elements of p’ which is in A™. Thus y € A™. O

Proposition 7.17. — [KPPRMT78||[Po86| Let A be an excellent Henselian
local domain. Then A is a unique factorization domain if and only if A is a
unique factorization domain.

Proof. — If Aisa unique factorization domain, then any irreducible element
of Ais prime. Thus any irreducible element of A is prime. Since A is a Noethe-
rian integral domain, it is a unique factorization domain.

Let us assume that A is a Noetherian integral domain but not a unique fac-
torization domain. Thus there exists an irreducible element z; € A that is not
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prime. This equivalent to the following assertion:
J%9,73,74 € A such that T1To — T3T4 =0
B21,% € A such that 713 — 73 = 0 and T9% — 34 = 0
and AJ1, 72 € maA such that 719> — 1 = 0.
Let us denote by 8 the Artin function of

F(y,2) == (F121 — T3, Taza — Ta, y1y2 — T1) € Afy][2].

Since f(y, z) has no solution in (mAA\)Q X 22, by Remark 3 is a constant,
and f(y, z) has no solution in (m4A)% x A2 modulo mﬁ.

On the other hand by Theorem applied to x1x2 — 2324, there exists z; € A,
1 <17 <4, such that 7179 — 2374 =0 and 7; — T; € mﬁ“, 1 <¢ < 4. Hence

9(y,2) == (T121 — T3, Ta22 — Ta,Y1y2 — T1) € A\[[y]][z]

has no solution in (m4A4)2? x A% modulo mﬁ, hence has no solution in (m4A4)?2 x
A?. This means that Z; is an irreducible element of A but it is not prime. Hence
A is not a unique factorization domain. O

PART V
APPROXIMATION WITH CONSTRAINTS

We will now discuss the problem of the Artin Approximation with constraints.
In fact there are two different problems: one is the existence of convergent
or algebraic solutions with constraints under the assumption that there exist
formal solutions with the same constraints - the second one is the existence
of formal solutions with constraints under the assumption that there exist
approximated solutions with the same constraints. We can describe more
precisely these two problems as follows:

Problem 1 (Artin Approximation with constraints):

Let A be an excellent Henselian local subring of k[z1,- -+ ,x,] and f(y) € Aly]".
Let us assume that we have a formal solution § € Am of f =0 and assume
moreover that

Ji(z) € A(\k[zj.j € Ji]
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for some subset J; C {1,...,n}, 1 <i<m.
Is it possible to approximate y(x) by a solution y(x) € A™ of f = 0 such that
gl(l‘) € Aﬂk[[l‘j,j € Ji]], 1<:<m?

The second problem is the following one:

Problem 2 (Strong Artin Approximation with constraints):

Let us consider f(y) € k[z][y]" and J; C {1,....,n}, 1 < i < m. Does there
exist a function 8 : N — N such that:

for all c € N and all §;(x) € k[z;,5 € J;], 1 <i <m, such that

F@(2)) € (x)P),

there exist y;(z) € k[z;,j € J;] such that f(y(z)) =0 and y;(z) —y;(z) € (x)°,
1<i<m?

If such function [ exists, the smallest function satisfying this property is
called the Artin function of the system f = 0.

Let us remark that we have already given a positive answer to a similar
weaker problem (see Proposition .

In general there are counterexamples to both problems without any extra
assumptions. But for some particular cases these two problems have a positive
answer. We present here some positive and negative known results concerning
these problems. We will see that some systems yield a positive answer to one
problem but a negative answer to the other one.

8. Examples

First of all we give here a list of examples that show that there is no hope,
in general, to have a positive answer to Problem 1 without any more specific
hypothesis, even if A is the ring of algebraic or convergent power series. These
examples are constructed by looking at the Artin Approximation Problem for
equations involving differentials (Examples and and operators on germs
of functions (Examples and. To construct these examples the following
lemma will be used repeatedly:

Lemma 8.1. — |BeT77al| Let (A,m4) be a Noetherian local ring and let B be
a Noetherian local subring of Aly] such that B = Aly]. For any P(y) € B
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and y € (mag.A)™, P(y) =0 if and only if there exists /f;(y) € B™ such that

+Z — Gi)hi(y) = 0.

Proof of Lemma[8.1] — If P(y) = 0 then, by Taylor expansion, we have:

~ 1 e = e 9P
P(y) — P(y) = E m(?/l =) (Ym = Ym) ™ p) i )
aciimt oy O 1-w-im! Yy

Thus there exists h(y) € A[y[™ such that

+Z :— Ji)hi(y) = 0.

Since B —» B = A[z] is faithfully flat and we may assume that h(y) € B™
(See Example [0.4)).

On the other hand if P(y) + ™, (yi — §i)hi(y) = 0, by substitution of y; by
Ui, we get P(y) = 0. O

Exzample 8.2. — Let us consider P(z,y,z) € k[z, y, z] where z, y and z
are single variables and y € (z)k[z]. Then P(z,7, 83:) 0 if and only if
P(z,5,2) =0and - % =

We can remark that g—g (x) is the coefficient of ¢ in the Taylor expansion of

y(x +t) — yla).
So the equation z — g—g = 0 is equivalent to the existence of a formal power
series h(z,t) such that

J(x + 1) — gz) = t2(x) + t>h(z, t).

By Lemma [8.]] this is equivalent to the existence of a formal power series
k(x,t,u) € k[z,t,u] such that

J(u) — j(a) — t2(x) — 2h(z,t) + (u — x — t)k(z, t,u) = 0.

We remark that we may even assume that h depends on the three variables z,
t and u: even in this case the previous equation implies that z = g—g

Now we introduce a new power series g(u) such that g(u) = y(u). This equality
is equivalent to the existence of a formal power series lA(a;, u) such that

o~

g(u) = Y(u) — (u—2)l(z,u) = 0.
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Once more with can even assume that /l\depends on x, u and t.
Finally we see that

P(z,y(x),z(z)) =
/g\(u) N 37(:6) - tz(x) —t h(l‘, 2 u) + (U — T — tﬁf\(ﬁ, t, U) =0
G(u) — §lx) + (u — 2)l(z, t,u) = 0

Lemma [B:1] and Example enable us to transform any system of equations
involving partial differentials and compositions of power series into a system of
algebraic equations whose solutions depend only on some of the x;. Indeed we
can also do the same trick as in Example if we have to handle higher order

derivatives of g since 199 i5 the coefficient of " in the Taylor expansion of

n! Ozm™
y(x +t) — y(a).
Thus every equation of the form
P(z,y,y, - 7y(n)) -0

has a formal power series solution y(x) if and only if there exist formal power
series

~

21(x), -, Zn(x) € K[z], hla,t,u), k(z, t,u), Wz, t,u) €klz,t,4], §u) € k[u]

such that
P($7/y\($),21($), T 7?n(x)) =0
1 ~ ~
g(u) —y(z) —tzi(x) — -+ — tnﬁgn(x) —t" M h(x, t,u) + (u—x — t)k(z,t,u) =0

~

g(u) — g(z) + (u — 2)l(2,t,u) =0

We can also apply the same trick for differential equations involving power
series in several variables (see for instance Example [11.6)).

Of course there exists plenty of examples of such systems of equations with
algebraic or analytic coefficients that do not have algebraic or analytic solutions
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but only formal solutions. These kinds of examples will enable us to construct
counterexamples to Problem 1 as follows:

Example 8.3. — Let us consider the following differential equation: 3’ = y.
The solutions of this equation are the convergent but not algebraic power series
ce” € C{z} where c is a complex number.
On the other hand, by Example y(z) is a convergent power series solution
of this equation if and only if there exist y(z), z(z) € C{z}, g(u) € C{u} and
h(z,t,u), k(x,t,u), l(z,t,u) € C{x,t,u} such that:

Z(x) = ylx) =0

G(u) — j(x) — t2(z) — 2h(z, t,u) + (u — x — Ok(z, t,u) =0

G(w) = §(2) + (u = 2)l(w, t,u) = 0

Thus the former system of equations has a convergent solution

(5.2.9.h. k1) € C{x}? x Cu} x Cla, t,u}’,
but no algebraic solution in C(x)? x C(u) x C(x,t,u)3.
Ezample 8.4 (Kashiwara-Gabber Example). — ([Hir77| p. 75) Let us
perform the division of zy by

g:=(x -y’ )y —a?) =2y —2° -y’ + 2%’
as formal power series in C{z, y} with respect to the monomial zy (see Example
in the introduction). The remainder of this division can be written as a
sum 7(z)+s(y) where r(z) € (x)C{z} and s(y) € (y)C{y} since this remainder

has no monomial divisible by zy. By symmetry, we get r(z) = s(z), and by
substituting y by z? we get the following relation:

r(z?) +r(z) — 2> = 0.
This relation yields the expansion

7"(1') _ Z(_l)ixS.Qi
i=0
and shows that the remainder of the division is not algebraic since the gaps in
the expansion of an algebraic power series over a characteristic zero field are
bounded. This proves that the equation

zy — 9Q(x,y) — R(z) — S(y) =0
has a convergent solution (q(z,y),7(x),s(y)) € C{z,y} x C{z} x C{y} but has
no algebraic solution (¢(x,y),r(z),s(y)) € C{z,y) x C({z) x C{y).
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Ezample 8.5 (Becker Example). — (|Be77b]) By direct computation we
show that there exists a unique power series f(z) € C[z] such that f(z+2?%) =
2f(x) — x and that this power series is not convergent. But, by Lemma
we have:

flx+a*)—2f(x)+2=0
<= Jg(y) € Cly], h(=,y), k(z,y) € Clz,y] s.t.

{ Fri=g(y) = 2f(z) + o+ (y — x — 2*)h(z,y)
Fy:=g(y) — f(z) + (x — y)k(z,y) =0

Then this system of equations has solutions in C[x] x C[y] x C[x,y]? but no
solution in C(z) x C{y) x C(z, y)?, even no solution in C{x} x C{y} x C{z,y}>.

Ezample 8.6. — Set y(x) := Z nlz" ™! € C[z]. This power series is diver-
n>0
gent and we have shown in Example that it is the only solution of the

equation
2%y —y + x = 0 (Euler Equation).
By Example y(z) is a solution of this differential equation if and only if
there exist y(z), z(z) € C{z}, g(u) € C{u} and h(z,t,u), k(z,t,u), l(z,t,u) €
C{x,t,u} such that:
222(x) —Plz) + 2 =0
(u) — §(a) — t3(z) — 2h(z, t,u) + (u — x — k(z, t,u) =0

~

(w) — () + (u — 2)I{z,t,u) = 0

— Q) W)

:= Y(21). Thus this system has no solution in

C{z}? x C{u} x C{z,t,u}>

with 71 (21

but it has solutions in
Clz]? x C[u] x C[z,t,u]>.
Remark 8.7. — By replacing f1(y),..., fr(y) by

9() == 1)+ (f2(0)* +n(fs(y)* + )%

in these examples as in the proof of Lemma [7.10] we can construct the same
kind of examples involving only one equation. Indeed f; = fo=---=f. =0
if and only if g = 0.
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9. Nested Approximation in the algebraic case

All the examples of Section [§ involve components that depend on separate
variables. Indeed Example shows that equations involving partial deriva-
tives yield algebraic equations whose solutions have components with separate
variables.

In the case the variables are nested (i.e. y; = yi(1,...,Z4(;)) for some integer
i, which is equivalent to say that J; contains or is contained in J; for any 4
and j with notations of Problems 1 and 2) it is not possible to construct a
counterexample as we did in Section [8| from differential equations or equations
as in Example [85] In fact in this nested case, for polynomial equations, alge-
braic power series solutions are dense in the set of formal power series solution.
Moreover we will see, still in the nested case, that this not longer true the an-
alytic case.

First of all in the algebraic case we have the following result:

Theorem 9.1 (Nested Approximation Theorem)

IKPPRMT8||[Po86| Let (A,m4) be an excellent Henselian local ring and
flz,y) € Alz,y)". Let () be a solution of f = 0 in (ma + (z))A[z]™. Let
us assume that y; € A\[m’l, o], 1 <i <m, for integers s;, 1 < s; < n.
Then for any ¢ € N there exists a solution y(x) € A{x)™ such that for all i,
Bi(e) € Aler, o s)) and §(z) — §(a) € (ma+ (@)

This result has a lot of applications and is one of the most important about
Artin Approximation. The proof we present here uses the Artin-Mazur The-
orem for algebraic power series and is different from the classical one even if
it is based on the key fact that B(x) satisfies Theorem for any excellent
Henselian local ring B (see Remark .

We mention here that this result was previously known in the case where A = k
is a field and the integers s; equal 1 or n (see Theorem 4.1 [BDLvdD79| where
it is attributed to M. Artin) and whose proof is based on the fact that the ring
k[x1](z2,- - ,z,) satisfies the Artin Approximation Theorem (see also the
comment following Theorem [2.5)).

Proof of Theorem — For simplicity we assume that A is a complete local
domain (this covers already the important case where A is a field). We first
give the following lemma that may be of independent interest and whose proof
is given below:
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Lemma 9.2. — Let A be a complete normal local domain, u := (u1, ..., uy),
v:= (viy...,Um). Then

Afu](v) ={f € AJu,v] / F3s € N,g € A(v, 21, ..., 25),
zi € (ma+ (w)A[u], f=g9,z1,....,25)}.

Using this lemma we can prove Theorem by induction on n. First of all,
since A = % where B is a complete regular local ring (by Cohen Structure
Theorem), by using the same trick as in the proof of Corollary we may
replace A by B and assume that A is a complete regular local ring. Let us
assume that Theorem is true for n — 1. We set 2’ := (21, ...,2,—1). Then
we denote by yi,..., yx the unknowns depending only on 2z’ and by yri1,...,
Ym the unknowns depending on x,. Let us consider the following system of
equations

(15> f(a:’, Tn, yl(x/)7 ) yk(x/)v Yk+1 ($/7 xn)a ym(xlu xn)) =0.

By Theorem [3.3| and Remarkmwe may assume that Jiy1,..., Ym € k[2'](z).
Thus by Lemma [9.2) we can write §; = 3y hij (z)xn with > oy hij(z )i, €
k(z, x,) and Z = (31, ey 25) € (2)k[2']°. We can write

f xlawTL?yh”' 7yk7zhk+1:.] n’ 7’Zh 7-7 =
:ZGJ<$7y17 ,yk,Z).f%
J

where G;(2/,y1,- - ,yk, 2) € k(2', y1,- -+ , Yk, 2) for all j € N. Thus
(/y\lf" 7@]67217'” 728) € kl]:x/]]k+8

is a solution of the equations G; = 0 for all j € N. Since k(t,y1,- - , Y, 2) is
Noetherian, this system of equations is equivalent to a finite system G; = 0
with j € E where F is a finite subset of N. Thus by the induction hypothesis
applied to the system G;(z',y1, -+ ,yx,2) = 0, j € E, there exist y1,..., Ur,
Z1,.., 2s € k(z'), with nested conditions, such that y; — 7;, 2 — 2; € (2/)C,
for1 <i<kand1l<I<s, and Gj(«,¥y1,...., Yk, 2) = 0 for all j € E, thus
Gj(x’,ﬂl, ...,gk,a =0 for all j € N.
Set 1; = Z]EN hi ; (E):L‘ib for k < 7 < m. Then 91,..., ¥, satisfy the conclusion
of the theorem.

O
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Proof of Lemma — Let us define

B:={f € AJu,v] / 3s € N,g € A(v, 21, ..., 2s),

zi €(ma + (w)A[u], f=g(v,21,.... %)}

Clearly B is a subring of Afu](v).
If f € AJu](v) we can write f = fO4 f! where f0 € Aand f! € (ma+(v))A(v).
By Proposition 9.3 given below there exist F1.,..., F. € A[u][v][Xj, ..., X;] such
that H is non-zero modulo m4 + (u,v, X) and such that the unique
(fla "'afT‘) € (mA + (u,’U))A[[U]](’U>T with F(fb T 7f1“) =0 (by the IHlphClt
Function Theorem) is such that f! = fi. Let us write

Fi = ZE,a,ﬁUaX’B, 1<i<r
a?ﬁ
with Fj o 5 € AJu] for all i, a, 5. We can write F; 3 = ESa,ﬁ + % o,3 Where
Fioaﬁ € Aand Zj o 3 € (my + (u))Afu]. Let us denote

Gi = Z (Fi?a,ﬂ + zi,aﬁ) v XP 1<i<r
a,B

where z; o g are new variables. Let us denote by z the vector whose coordinates
8(G17"'7GT) — 8(F1""7f7‘)
a(le-'vX'r) - 8(X17~~-7X'r)
Hence by the Implicit Function Theorem there exists h := (hq, ..., h,) € (mg4+
(v,2))A(v, 2)" such that G(h) = 0. Moreover f! = f; = hy(v,2), thus we have

f = g(v,z) where g(v,z) := f°+ hy(v,z). This proves the lemma. O

are the variables z; o 3. Then modulo my + (u, v, z, X).

We state and prove here the following general version of the Artin-Mazur The-
orem that we did not find in the literature:

Proposition 9.3 (Artin-Mazur Theorem). — [ArMa65|[AMR92| Let
A be a complete normal local domain and v := (v1,...,v,). If f € (ma +
(v))A(v) then there exist an integer r € N and Fi,..., F, € Ap|[X1,..., X;]
such that H is non-zero modulo ma + (v, X) and such that the unique
(f1yes fr) € (ma+ (v))A{0)" with F(f1, -+, fr) =0 (according to the Implicit

Function Theorem) is such that f = fi.

Proof. — Let P(v,X1) € A[v][X1] be an irreducible polynomial such that
P(v,f) = 0. Set R := (ﬁ([zzii])) and let R be its normalization. Let ¢ :
R — A(v) be the A[v]-morphism defined by ¢(X;) = f. Since A is complete
it is an excellent local ring, so A[v]y, 1 () is also an excellent normal local
domain. Since A(v) is the Henselization of A[v]y () (by Lemma it is also

a normal local domain hence, by the universal property of the normalization,
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the morphism ¢ factors through R — R. Let 3 : R — A(v) be the extension
of ¢ to R.

Since R is finitely generated over a local complete domain A, by a theorem of D.
Rees R is module-finite over R (see [Re61] or Theorem 9.2.2 [HS06]). Hence
we may write R = %QFS)M Set f; == (X;), for 2 < i < r. By replacing
X; by X;+a; for some ai7€ 7A we may assume that f; € mg+(v). Let us denote
B = RmAJr(v,Xl,...,Xr)- Thus % induces a A[v]-morphism B — A(v) whose
image contains A[v]. Hence by the universal property of the Henselization
it induces a surjective A[v]-morphism B" — A(v) where B" denotes the
Henselization of B. Moreover A[v]y,4() — B induces a A[v]-morphism
between A(v) and B" which is finite since A[v] — R is finite. Since B is an
integrally closed local domain, its completion is a local domain [Za48]|, hence
B" is a local domain. Let b € B" be in the kernel of B" — A(v). Since b is
finite over A(v), b is algebraic over A[v] thus there exist cy,..., ¢g € A(v) such
that

cab® +eg b4+ =0

where d is assumed to be minimal. But B"* — A(v) being a A[v]-morphism
we have ¢y = 0 thus

(Cdbd_l + Cd_lbd_2 +--4+ec)b=0.

But B" is a domain so ¢gb% 1 + ¢4_1b%2+---+¢; =0 or b= 0. Since d is
the minimal degree of a polynomial equation with coefficients in A[v] satisfied
by b necessarily b = 0. Thus B" — A(v) is injective hence B" and A(v) are
) A(v). Using the definition of
an étale morphism, since A[v]y, 4(v) — A(v) is faithfully flat, it is an exercice
to check that A[v]y 1) — B is étale (see [Iv73] 1.4 p.63). Thus s = r and

H is non-zero modulo m4 + (v, X) and the unique solution of F' = 0

in (g + ()A@) i (F, fa,oo ).

isomorphic. Moreover we have B" ~ B® Alv]

O

There also exists a nested version of Ptoski Theorem for algebraic power
series (or equivalently a nested version of Corollary : see Theorem 11.4
[Sp99] or Theorem 2.1 [BPR15|. This "nested Ploski Theorem" is used in
[IBPR15| (see also [Mo84| where this idea has first been introduced) to show
that any complex or real analytic set germ (resp. analytic function germ)
is homeomorphic to an algebraic set germ (resp. algebraic function germ).
In fact it is used to construct a topologically trivial deformation of a given
analytic set germ whose one of the fibers is a Nash set germ, i.e. an analytic
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set germ defined by algebraic power series.

Using ultraproducts methods we can moreover deduce the following Strong
nested Approximation result:

Corollary 9.4. — [BDLvdD79| Let k be a field and f(z,y) € k{z,y)".
There exists a function 8 : N — N satisfying the following property:

Let ¢ € N and 5(x) € ((z)k[z])™ satisfy f(z,5(z)) € (x)P©). Let us assume
that g;(x) € k[z1, ..., zs,], 1 <i < m, for integers s;, 1 < s; <n.

Then there exists a solution y(z) € ((x)k(z))™ such that y;(x) € k(zy, ..., zs;)
and () — () € (2)°.

10. Nested Approximation in the analytic case

In the analytic case, Theorem [0.1]is no more valid, as shown by the following
example:

Ezample 10.1 (Gabrielov Example). — [Ga71] Let

¢ Cl{zy, 22, w3} — C{y1, 42}
be the morphism of analytic C-algebras defined by

p(r1) = y1, p(z2) = Y1y2, (r3) = yie”.
Let f € Ker(p) be written as f = Z(}:g fa where f; is a homogeneous
polynomial of degree d for all d € N. Then 0 = §(f) = >,y fa(1, y2, yoe¥?).
Thus fg = 0 for all d € N since 1, y2 et y2e¥? are algebraically independent
over C. Hence Ker(p) = (0) and Ker(p) = (0). This example is due to W. S.
Osgood [Os16].

L) L)
(1) We can remark that "¢ (333 —$2€Il> = 0". But z3 — x9e1 is not

an element of C{x1, x2, z3}.

Let us set
N,
fn = (mg - xQZ z':ﬁQ) x7 € Clzy, xo, 23], Vn € N.
i=0 =1
Then
+o0o yz
o(fn) =y y2 =, W¥neN.
i=n+1

Then we see that (n+ 1)lp(f,) is a convergent power series whose coefficients
have module less than 1. Moreover if the coefficient of ylfle in the Taylor
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expansion of ¢(fy) is non zero then k = n + 1. This means that the supports
of o(fn) and ¢(fm) are disjoint as soon as n # m. Thus the power series

hi= 3 (n+ Dle(f)

n
is a convergent since each of its coefficients has module less than 1. But ¢ being
injective, the unique element whose image is h is necessarily g := > (n+1)! f,.
But

G=> (n+1f, = (Z(n + 1)!:5?) w3+ fla1, w2),

Y on(n+ 1)1z} is a divergent power series and @(g(z)) = h(y) € C{y}.
This shows that

p(C{z}) ¢ P(Clz]) N C{y}-

(2) By Lemmam ©(g(x)) = h(y) is equivalent to say that there exist k (z,y),
Ea(x,y), ks(x,y) € C[z,y] such that

(16) R R R

9(x) + (1 —y)ki (2, y) + (22 — y1y2) ka2 (2, y) + (23 — y1€*)k3(z, y) — h(y) = 0.

Since g(z) is the unique element whose image under @ equals h(y), Equa-
tion has no convergent solution g¢g(z) € C{z}, ki(z,y), ko(z,y),
ks(z,y) € C{z,y}. Thus Theorem is not true in the analytic set-
ting.

(3) We can modify a little bit the previous example as follows. Let us

define gi(z1,22) == ), (n+ 1)z} and ga(x1, x2) := A(arl, x2). By replacing y;
by z1, y2 by y and x3 by x1€¥ in Equation we see that the equation

(17) g1(w1, z2)z1€Y + G2(21, 12) + (22 — 1Y)k (2, 9) — h(71,9) = 0.

has a nested formal solution

(G1, G2, k) € Clz, 22]? x Clay, 22, 9]

but no nested convergent solution in C{z1, z2}? x C{z1, 22,9}

Nevertheless there are, at least, three positive results about the nested approx-
imation problem in the analytic category. We present them here.
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10.1. Grauert Theorem. — The first one is due to H. Grauert who proved
it in order to construct analytic deformations of a complex analytic germ in
the case it has an isolated singularity. The approximation result of H. Grauert
may be reformulated as: "if a system of complex analytic equations, considered
as a formal nested system, admits an Artin function (as in Problem 2) which is
the Identity function, then it has nested analytic solutions". We present here
the result.

Set x := (21, ,xp), t = (t1,--- ,t1), y=(y1, - ,ym) and 2 := (21, , 2p).
Let f:=(f1,---, fr) bein C{t,z,y,z}". Let I be an ideal of C{t}.

Theorem 10.2. — |GraT2| Let dy € N and (y(t),z(t,x)) € C[t]™ x C{x}[t]?
satisfy
ft2,9t),2(t,x)) € I+ (£)%.
Let us assume that for any d > do and for any (y\D(t), 2D (¢, 2)) € k[t]™ x
k{z}[t]? such that, T(t) — y D (t) € ()% et Z(t,z) — 2(D(t,x) € (t)%, and such
that
f (t,w, y (1), 2@ (t,:c)) el+ (1),
there exists (e(t),n(t,z)) € k[t]™ x k{x}[t]P? homogeneous in t of degree d such
that
Ft 2,y D) +e(t), 2Dt 2) + n(t,2) € T+ ()
Then there exists (y(t),z(t,x)) € C{t}™ x C{t,z}P such that

ft,z,gt),2(t,x)) € I and §(t) —7(t), 2(t, z) — 2(t, z) € (t)P.

The main ingredient of the proof is a result of Functional Analysis called "voisi-
nages privilégiés" and proven by H. Cartan ([Ca44] Théoréme «). We do not
give details here but the reader may consult [dJPf00].

10.2. Gabrielov Theorem. — The second positive result about the nested
approximation problem in the analytic category is due to A. Gabrielov. Before
giving his result, let us explain the context.

Let ¢ : A — B be a morphism of complex analytic algebras where
A= M and B := M are analytic algebras. Let us denote
by @; the image of x; by ¢ for 1 < i < n. Let us denote by ¢ : A— B
the morphism induced by ¢. A. Grothendieck [Gro60]| and S. S. Abhyankar
[Ar71] raised the following question: Does Ker($) = Ker(i).A?

Without loss of generality we may assume that A and B are regular, i.e.
A=C{zy, - ,zn} and B=C{y1, - ,Ym}-

In this case, an element of Ker(y) (resp. of Ker(p)) is called an analytic (resp.
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formal) relation between ¢1(y),..., pm(y) . Hence the previous question is
equivalent to the following: is any formal relation S between 1Y)y on(y)
a linear combination of analytic relations?

This question is also equivalent to the following: may every formal relation
between 1 (y),..., pn(y) be approximated by analytic relations for the (x)-adic
topology? In this form the problem is the "dual" problem to the Artin
Approximation Problem.

In fact this problem is also a nested approximation problem. Indeed
let S be a formal relation between ©1(Y)y..., ©n(y). This means that

S(p1(y), -+ ,on(y)) = 0. By Lemma [8.1] this is equivalent to the existence of
formal power series hy(z,y),..., hn(z,y) € C[z,y] such that

n

§($1, T 7'TTL) - Z(xl - ¢l(y))hl($7y) =0.
i=1
Thus we see that the equation

n

(18) § =3 (@i — pily)) Hi = 0
i=1
has a formal nested solution
(S(@), ha(2,y), +  hn(2,7)) € Cla] x Cla, y]".
On the other hand if this equation has an analytic nested solution

(S($), hl(x7 y)a T ,hn(.ilf, y)) S C{l‘} x (C{x? y}n7
this would provide an analytic relation between ¢1(y),..., ©n(y):

S(e1(y); -+, enly)) =0.

Example yields a negative answer to this problem by modifying in the
following way the example of Osgood (see Example [10.1)):

Ezxzample 10.3. — |GaT7l] Let us consider now the morphism

P C{ay, @2, w3, x4} — C{y1, v}
defined by

Y(x1) = y1, Y(x2) = y1ye, Y(x3) = y1y2e”?, Y(x4) = h(y1, y2)

where h is the convergent power series defined in Example [10.1]

Let g be the power series defined in Example Then z4 — g(z1, 22, x3) €
Ker(qz). On the other hand the morphism induced by 1; on Clzy, ..., x4] /(x4 —
g(x1, x2, x3)) is isomorphic to @ (where ¢ is the morphism of Example

~

that is injective. Thus we have Ker(y) = (x4 — g(z1, x2, 73)).
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-~

included in Ker(t)) by Proposition Let us assume that Ker(y) # (0),

then Ker(¢)Clz] = Ker({b\) since ht(Ker(y)) = 1. Thus Ker(¢)) is gener-
ated by one convergent power series denoted by f € C{z1,..., z4} (in unique
factorization domains, prime ideals of height one are principal ideals). Since
Ker(¢) = (24 — g(a1, T2, 3)), there exists u(z) € C[z], u(0) # 0, such that
f =u(z).(x4 — g(z1, T2, x3)). By the unicity of the decomposition given by
the Weierstrass Preparation Theorem of f with respect to x4 we see that u(x)
and x4 — g(x1, z2, x3) must be convergent power series, which is impossible

~

since g is a divergent power series. Hence Ker(1)) = (0) but Ker(¢)) # (0).

Since Ker(v)) is a prime ideal of (C{:):i, Ker(¢)C[z] is a prime ideal of C[z]

Nevertheless A. Gabrielov proved the following theorem:

Theorem 10.4. — |GaT73| Let ¢ : A — B be a morphism of complex an-
alytic algebras. Let us assume that the generic rank of the Jacobian matriz is
A

equal to dim(m). Then Ker(p) = Ker(p).A. In particular the equation

(18) satisfies the nested approximation property.

Sketch of the proof. — We give a sketch of the proof given by J.-CL
Tougeron [To90|. As before we may assume that A = C{zi, - -, 2.}
and B = C{y1,--- ,ym}. Let us assume that Ker(p).A ¢ Ker(®) (which
is equivalent to ht(Ker(yp)) < ht(Ker(¢)) since both ideals are prime). Us-
ing a Bertini type theorem we may assume that n = 3, ¢ is injective and

dim(KEEf%)) = 2 (in particular Ker(®) is a principal ideal). Moreover, in this
case we may assume that m = 2. After a linear change of coordinates we may
assume that Ker(®) is generated by an irreducible Weierstrass polynomial of
degree d in x3. Using changes of coordinates and quadratic transforms on
C{y1,y2} and using changes of coordinates of C{x} involving only z; and z2,
we may assume that @1 = y; and w2 = y1y2. Let us define f(y) := p3(y).

Then we have

F)+ai(yn, yiy) f@) 4+ @a(yr, yay2) =0

for some @;(z) € Clz1,z2], 1 <i < d. Then we want to prove that the a@; may
be chosen convergent in order to get a contradiction. Let us denote

P(Z):= 2+ (21, 29) 27" + - +da(w1,m2) € C[][Z].
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Since Ker(p) is prime we may assume that P(Z) is irreducible. J.-Cl. Tougeron
studies the algebraic closure K of the field C((x1,22)). Let consider the fol-
lowing valuation ring

vie{ L/ fae clonnly 20,00 2 ord(a) |

let V be its completion and K the fraction field of V. J.-CL. Tougeron proves
that the algebraic extension K — K splits into K — K; — K where K; is
a subfield of the following field

L:= {A € K / 36, a; € k[z] is homogeneous Vi,

a \ . . . . 4
ord (5m(i)) =14, Jda,b such that m(i) < ai+b Vi and A = z(; =10 } .

Moreover the algebraic extension K; — K is the extension of K; generated
by all the roots of polynomials of the form Z9 + g;(z)Z971 + --- + g, where
gi € C(x) are homogeneous rational fractions of degree ei, 1 < i < ¢, for some
integer e € Q. A root of such polynomial is called a homogeneous element
of degree e. For example, square roots of x1 or of x1 + x2 are homogeneous
elements of degree 2. We have KN L = Kj.

In the same way he proves that the algebraic closure Ko of the field K", the
fraction field of C{wz1, 72}, can be factorized as K —s K¢ — Ko with
K{™ c L*" where

Lo .= {A € K / 36, a; € k[z] is homogencous Vi, ord (57:@)) =i, A= Z 5:&@
=0

Ja, b such that m(i) < ai+ b Vi and Fr > 0 such that Z ||| < oo}

(2

and ||a(z)|| := |m|ax la(z1, z2)| for a homogeneous polynomial a(x).
Z5 Sl

Clearly, £ := f(z1,%2) is an element of K since it is a root of P(Z). More-
over ¢ may be written £ = Y7 | &' where v is a homogenous element and
& € LK for any 4, i.e. & € L%[y]. Thus the problem is to show that
& € K¢ for any 4, i.e. LN K = K¢,

Then the idea is to resolve, by a sequence of blowing-ups, the singularities of
the discriminant locus of P(Z) which is a germ of plane curve. Let us call
7 this resolution map. Then the discriminant of 7*(P)(Z) is normal crossing
and 7*(P)(Z) defines a germ of surface along the exceptional divisor of ,
denoted by E. Let p be a point of E. At this point 7*(P)(Z) may factor as
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a product of polynomials and £ is a root of one of these factors denoted by
Q1(Z) and this root is a germ of an analytic function at p. Then the other
roots of Q1(Z) are also in L*"[y] according to the Abhyankar-Jung Theorem,
for some homogeneous element /. Thus the coefficients of Q1(Z) are in L
and are analytic at p.

Then the idea is to use the special form of the elements of L** to prove that
the coefficients of Q1(Z) may be extended as analytic functions along the
exceptional divisor E (the main ingredient in this part is the Maximum Prin-
ciple). We can repeat the latter procedure in another point p’: we take the
roots of Q1(Z) at p’ and using Abhyankar-Jung Theorem we construct new
roots of 7*(P)(Z) at p’ and the coefficients of Q2(Z) =[],
runs over all these roots, are in L% and are analytic at p’. Then we extend
the coefficients of Q2(Z) everywhere along E. Since 7*(P)(Z) has exactly

(Z — 0;), where o;

d roots, this process stops after a finite number of steps. The polynomial
Q(Z) = [1(Z — ok), where the o} are the roots of m(P)(Z) that we have
constructed, is a polynomial whose coefficients are analytic in a neighborhood
of E and it divides 7*(P)(Z). Thus, by Grauert Direct Image Theorem, there
exists R(Z) € C{z}[Z] such that 7*(R)(Z) = Q(Z). Hence R(Z) divides
P(Z), but since P(Z) is irreducible, P(Z) = R(Z) € C{x}[Z] and the result
is proven. O

10.3. One variable Nested Approximation. — In the example of A.
Gabrielovm (3) we can remark that the nested part of the solutions depends
on two variables x; and x2. In the case this nested part depends only on
one variable the nested approximation property is true. This is the following
theorem that we state in the more general framework of Weierstrass systems:

Theorem 10.5. — (c¢f. Theorem 5.1 |DeLi80|) Let k be a field and
k[[z]] be a W-system over k. Let t be one wariable, x = (x1, -+ ,%p),
Yy = (y17"' 7ym+k)7 f € kﬁtax7y-|-|r' Let /y\l)"'7 @\m € (t)k[[t]] and i/\erl;---;
Umsk € (t,x)Kk[t,z] satisfy f(t,x,y) = 0. Then, for any ¢ € N, there exist
T G € OKTEL, Gonstsor Gooss € ()2 such that f(t,2,5) = 0
and y —y € (t,z)°.

Ezxample 10.6. — The main example is the case where k is a valued field
and k[[z]| is the ring of convergent power series over k. When k = C this
statement is mentioned as a known result in [Ga71| without any proof or
reference.
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But even for algebraic power series this statement is interesting since its proof
is really easier and more effective than Theorem [9.1]

Proof. — The proof is very similar to the proof of Theorem [9.1]
Set w:= (u1, - ,u;), j € N and set
k[t)[(w)] := {f(t, u) € k[t,u] /s €N, g(z1,--, 25, u) € k[[z,u]],
z1(t), -+, 2s(t) € (Dk[t] such that f(t,u) = g(21(t), -+, 2s(t),u)}.

The rings k[t] [(u)] form a W-system over k[¢] (cf. Lemma 52. [DeLi80] but it
is straightforward to check it since k[[x] is a W-system over k - in particular,
if char(k) > 0, vi) of Definition is satisfied since v) of Definition is
satisfied for k[[z]|). By Theorem applied to

f(t7g//\1"" 7:/y\m7yWL+l"" 7ym+k) =0
there exist ¥, 1,--s Umor € k[t][(x)] such that

f(t73//\17"‘ 7§m7gm+17"' 7@m+k) =0

and y; —y; € (t,z)¢ for m <i <m+k.

Let us write
U= Y hia(2)2z®

aeN™
with Z hio(z)z® € k[[z,x], z = (21, - - , 25) is a vector of new variables and
aeN™
zZ= (21, " ,2s) € k[t]*. We can write

f(ta:l:ayl?"'aymvzherla 7"'7azhm+ko¢ )Z
_ZG tyla"'7ym7 )

where Go(t, Y1, s Ym,2) €K[[t, 41, , Ym, 2] for all & € N*. Thus

(:/y\lu e )@\ma /Z\17 et 728) S k[[t]]m+s
is a solution of the equations G, = 0 for all « € N™. Since k[[t,y1, ", Ym, 2|

is Noetherian, this system of equations is equivalent to a finite system G, = 0
with « € E where E is a finite subset of N”. Thus by Theorem [2.5] applied
to the system Guo(t,y1, - ,Ym,2) = 0, o € E, there exist y1,..., Um, 21,--
Zs € k[[t]] such that y; — s, z; —z; € (1)¢ for 1 < i <mand 1 < j §s,
and Go(t, 91, ,Um,2) = 0 for all @ € E, thus G, (t, 1, ,Ym,2) = 0 for all
a e N
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Set y; = Z hio(Z)x® for m < i < m+ k. Then y1,..., Ymr satisfy the

aceNn?
conclusion of the theorem.

O]

Remark 10.7. — The proof of this theorem uses in an essential way the
Weierstrass Division Property (in order to show that k[[¢][(u)] is a Noetherian
local ring, which is the main condition to use Theorem [3:3] The Henselian
and excellent conditions may be proven quite easily). On the other hand the
Weierstrass Division Property (at least in dimension 2) is necessary to obtain
this theorem. Indeed if k[[z]] is a family of rings satisfying Theorem and
f(t,y) € k[[t,y] is y-regular of order d and g(¢,y) € k[[t,y] is another series,
by the Weierstrass Division Theorem for formal power series we can write in
unique way

g(t.y) = qt.y) f(ty) +To(t) + Fr(t)y + - + Far (H)y™ !

where q(t,y) € k[t,y] and 7;(t) € k[t] for all i. Thus by Theorem [10.5]
q(t,y) € k[[t,y]] and 7;(¢t) € k[[t]] for all . This means that k[[x,t] satisfies
the Weierstrass Division Theorem.

For example let C, C k[zi,---,2z,] be the ring of germs of k-valued
Denjoy-Carleman functions defined at the origin of R, where k = R or C (see
[ThO8| for definitions and properties of these rings - roughly speaking these
are the germs of k-valued C°°-functions whose derivatives at each point in a
neighbourhood of the origin satisfy inequalities of the form [I3] in Remark [2.6]
for some logarithmically convex sequence (my)x). It is still an open problem
to know if C,, is Noetherian or not for n > 2 (C} is a discrete valuation ring,
thus it is Noetherian). These rings have similar properties to the Weierstrass
systems: these are Henselian local rings whose maximal ideal is generated
by z1,..., &p, the completion of C), is k[x1, - ,z,], for every n C,, is stable
by partial derivates, by division by coordinates functions or by composition.
The only difference with Weierstrass systems is that C),, does not satisfy
the Weierstrass Division Theorem. For instance, there exist f € 7 and
g € k[z]\Cy such that f(z) = g(x?) (see the proof of Proposition 2 [ThO8§]).
This implies that

(19) f(x) = (22 = y)h(z,y) + 5(y)

for some formual power series ?L(ar,y) € k[z,y], but Equation has no
nested solution in C7 x Cs.
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On the other hand if the rings C, were Noetherian, since their completions
are regular local rings they would be regular. Then using Example iii) we
see that they would be excellent (see also [EIKh11]). Thus these rings would
satisfy Theorem but they do not satisfy Theorem since Equation
has no solutions in C7 x Cs.

11. Other examples of approximation with constraints

We present here some examples of positive or negative answers to Problems 1
and 2 in several contexts.

Ezample 11.1 (Cauchy-Riemann equations). — [Mi78b] P. Milman
proved the following theorem:

Theorem 11.2. — Let f € C{z,y,u,v}" where z := (x1, -+ ,zp), Yy =
(Y1, ,Yn), u = (U1, - ,Up), v := (V1, - ,0m). Then the set of conver-
gent solutions of the following system:

flx,y,u(z,y),v(z,y)) =0

%(a: )_%(J; ) =
(20) or; Y T By, YT
8’1)k 8uk .
871‘3-(3:’ )+3T/j($’y) 0

is dense (for the (z,y)-adic topology) in the set of formal solutions of this
system.

Hints on the proof. — Let (u(z,y),0(z,y)) € Clz,y]*™ be a solution of .
Let us set z := x + iy and w := uw + 4. In this case the Cauchy-Riemann
equations of are equivalent to say that w(z,z) := u(z,y) + iv(z,y) does
not depend on z. Let ¢ : C{z,z,w,w} — C[z,z] and ¢ : C{z,w} — C[7]
be the morphisms defined by

p(h(z,7,w,0)) = h(z,7,@(2),0(2)) and P(h(z,w)) = h(z, @(2)).

Then

Z24+zZ z2—Z w—w w—w
f( 5 i ' 9 9 >€Ker(<p).

Milman proved that

Ker(p) = Ker(¢).C{z,z,w,w} + Ker(¢).C{z,z, w, w}.

Since Ker(¢) (as an ideal of C{z,w}) satisfies Theorem the result follows.
O
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This proof does not give the existence of an Artin function for this kind of sys-
tem, since the proof consists in reducing Theorem [T1.2]to Theorem .1} and this
reduction depends on the formal solution of (20)). Nevertheless in [Hic-Ro11],
it is proven that such a system admits an Artin function using ultraproducts
methods. The survey [Mirl3] is a good introduction for applications of Artin
Approximation in CR geometry.

Example 11.3 (Approximation of equivariant solutions)

[BMT79] Let G be a reductive algebraic group. Suppose that G acts linearly on
C™ and C™. We say that y(z) € C[z]™ is equivariant if y(cz) = oy(x) for all
o € G. E. Bierstone and P. Milman proved that, in Theorem[I.]] the constraint
for the solutions of being equivariant may be preserved for convergent solutions:

Theorem 11.4. — [BMT79| Let f(z,y) € C{x,y}". Then the set of equiv-
ariant convergent solutions of f = 0 is dense in the set of equivariant formal
solutions of f =0 for the (x)-adic topology.

This result remains true is we replace C (resp. C{xz} and C{z,y}) by any field
of characteristic zero k (resp. k{z) and k(x,y)).

Using ultraproducts methods we may probably prove that Problem 2 has a
positive answer in this case.

Ezxzample 11.5. — [BDLvdD79| Let k be a characteristic zero field. Let us
consider the following differential equation:
(21)

af af o 1 To
2 —_— — —_— — v d —
Ty (x1,22) x28x2 (x1,22) g iy ( <1 —Jf1> (1 — xz)) .

ij>1

For a € k, a # 0, this equation has only the following solutions

i,
)
3

-, bek

a“t —j

f(z1,x2) :=b+ Z

i,5>1
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which are well defined if and only if @ ¢ Q. Let us consider the following
system of equations (where x = (21, -+ ,25)):
(22)

(2
ysr1ys(v1, x2) — roy7(w1, 22) g 561962
i,7>1

y1(x1,x2) = yo(ws, 4, x5) + (1 — x3)21(x) + (22 — 24)22(2)
Y2(3, 74, v5) = y1(21, 12) + 2594 (21, T2)+

23y (x)+ (w3 — 11 — m5)23() + (24 — 72)24(2)
y3(z3, 74, v5) = y1(v1, 12) + w596 (T1, 72)+
(

w3y7(z)+(23 — 1) 25(2) + (24 — T2 — 75) 26()

ys € k and ygyg = 1.

It is straightforward, using the tricks of Lemma and Example
to check that (a, f(xz1,22)) is a solution of if and only if has
a solution (y1, -+ ,¥9, 21, -+ ,26) with y1 = f and yg = a. Moreover, if
(y1, -+ Y9, 21, , 26) is a solution of Equation (22)), then (ys,y1) is a solution
of .

Thus has no solution in Qz]. But clearly, has solutions in %[IC} for
any ¢ € N and the same is true for (22)). This shows that Proposition is
not valid if the base field is not C.

Ezample 11.6. — |[BDLvdD79| Let us assume that k = C and consider
the previous example. The system of equations does not admit an Artin
function. Indeed, for any ¢ € N, there is a. € Q, such that has a solution
modulo (x)¢ with ys = a.. But there is no solution in C[z] with ys = a.
modulo (z), otherwise ys = a, which is not possible.

Thus systems of equations with constraints do not satisfy Problem 2 in general.

Ezample 11.7. — |Ron08| Let ¢ : C{z} — C{y} be a morphism of com-
plex analytic algebras and let ¢;(y) denote the image of z; by ¢. Let us denote
by @ : Clz] — C[y] the induced morphism between the completions. Ac-
cording to a lemma of Chevalley (Lemma 7 of [Ch43|), there exists a function
B :N — N such that ¢~ 1((y)?(©) C Ker(@) + ()¢ for any ¢ € N. It is called
the Chevalley function of ¢. Using Lemma we check easily that this func-
tion 3 satisfies the following statement (in fact both statements are equivalent
[Ron08]): Let f(z) € C[z] and h;(x,y) € Cz,y], 1 < i < n, satisfy

+Z )hi(w,y) € (,y)7.
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Then there exists f(y) € C[a], hi(z,y) € Cla,y], 1 < i <, such that

(23) 3@)+ 3 (@ — pily)hal.y) = 0
=1

and f(z) — f(z) € ()¢, hi(z,y) — hi(z,y) € (z,y)*, 1 <i<n

In particular Problem 2 has a positive answer for Equation , but not
Problem 1 (see Example . In fact, the conditions of Theorem are
equivalent to the fact that § is bounded by a linear function [I1z86].

The following example is given in |[Ron08| and is inspired by Example
Let « : N — N be an increasing function. Let (n;); be a sequence
of integers such that n;4+1 > «a(n; + 1) for all ¢ and such that the convergent
power series {(Y') := > .o, Y™ is not algebraic over C(Y'). Then we define the
morphism ¢ : C{z1, x2, 23} — C{y1, y2} in the following way:

(p(21), p(2), p(23)) = (Y1, Y192, $18(Y2))-

It is easy to prove that $ is injective exactly as in Example [10.1} For any
integer 7 we define:
?z‘ = 'x?i_ll‘;; _ <x31$711i—n1 4t l’;i_lx?i_ni_l 4 1‘31) '
Then |
A
o(fi) = v1"€(y2) — y1" Zygk € (y)ritnins ¢ (y)an+D)
k=1

but f; ¢ (x)"*! for any i. Thus the Chevalley function of ¢ satisfies 8(n;+1) >

a(n; + 1) for all ¢ € N. Hence limsup g 8 > 1. In particular if the growth of

« is too big, then ( is not recursive.

Appendix A

Weierstrass Preparation Theorem

In this part we set = := (z1, -+ ,2,) and 2’ := (21, -+ ,2p—1). Moreover R
always denotes a local ring of maximal ideal m and residue field k (if R is a
field, m = (0)). A local subring of R[x] will be a subring A of R[x] which is
a local ring and whose maximal ideal is generated by (m + (z)) () A.

Definition A.1. — If f € R[x] we say that f is x,-regular of order d if the
image of f in
in kz,].

e f?m,) ~ k[[z,,] has the form u(x,)ze where u(z,) is invertible
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When R = k is a field this just means that f(0,---,0,2,) = u(z,)z¢ where
u(zy,) is invertible.

Definition A.2. — Let A be a local subring of R[z]. We say that A has
the Weierstrass Division Property if for any f, g € A such that f is x,-regular
of order d, there exist ¢ € A and r € (A R[2])[zy] such that deg,, (r) < d
and g = qf + r. In this case ¢ and 7 are unique.

Definition A.3. — Let A be alocal subring of R[z]. We say that A satisfies
the Weierstrass Preparation Theorem if for any f € A which is z,-regular, there
exist an integer d, a unit u € A and a1 (2'),..., aqg(z’) € AN(m + (2'))R[2']
such that
f=u (mi +ap(z)zdt+ -+ ad(x')> :

In this case f is necessarily regular of order d with respect to x, and w and
the a; are unique. The polynomial 2¢ + a;(x" )24~ + - - 4 a4(2’) is called the
Weierstrass polynomial of f.

Lemma A.4. — A local subring A of R[x] having the Weierstrass Division
Property satisfies the Weierstrass Preparation Theorem.

Proof. — If A has the Weierstrass Division Property and if f € A is z,-regular
of order d, then we can write ¢ = qf +r where r € (A R[2'])[x] such that
deg ., (r) < d. Thus qf = 2% —r. Since f is x,-regular of order d, then g is
invertible in R[z] and r € (m + (2/)). Thus ¢ ¢ (m + (z)) and ¢ is invertible
in A. Hence f = ¢ ' (z% —r). O

n

In fact the converse implication is true under some mild conditions:

Lemma A.5. — |CL13| Let A,, be a subring of R[xy, - ,x,] for alln € N
such that
1) Apym N R[z1, -+ 2] = Ay, for all n and m,
ii) if f € A, is written f = >,y fxxk with fi, € R[2'] for all k, then
fr € Ap_1 for all k.
iii) A, is stable by permutation of the x;.

Then A, has the Weierstrass Division Property if Ay, and An+1 have the Weier-
strass Preparation Property.

Proof. — Let f(z) € A, be x,-regular of order d. By the Weierstrass Prepa-
ration Property for A, we may write

f=u (x;il +ay ()t 4 4 ad(x')) =uP
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where u is a unit in A, and P € A,_1[z,]. Now let g(x) € A, and set
h:= P+ x,119. Then h is also x,-regular of order d, thus by the Weierstrass
Preparation Property for A, 1 we may write h = vQ where v is a unit and @
a polynomial of degre d in z,. Let us write
v = kamﬁﬂ and Q= ZkafLH
keN keN
where v € A, and Qp € A,_1[zy,] for all k (deg ., (Qr) < d). We deduce from
this that
vQo =P and viQo+ vl =y
By unicity of the decomposition in the Weierstrass Preparation Theorem the
first equality implies that vg = 1 and Qg = P. Thus the second yields g =
v P+ Q1 ie.
g=uvu ' f+Q1
and Q1 € A,—_1[zy] is a polynomial in z,, of degree < d. Thus the Weierstrass

Division Property holds. O
Theorem A.6. — The following rings have the Weierstrass Division Prop-
erty:

i) The ring A = R[x] where R is a complete local ring (|Bo65] ).

ii) The ring A = R(z) of algebraic power series where R is a field or a
Noetherian Henselian local ring of characteristic zero which is analytically
normal (|Laf65| and [Laf67]).

iii) The ring A = k{x} of convergent power series over a valued field k (see
INa62| or [To72| where is given a nice short proof using an invertibility
criterion of an linear map between complete topological groups).

Appendix B

Regular morphisms and excellent rings

We give here the definitions and the main properties of regular morphisms and
excellent rings. For more details the reader may consult [SP| 15.32 and 15.42
or [Mat80].

Definition B.1. — Let ¢ : A — B be a morphism of Noetherian rings.
We say that ¢ is a regular morphism if it is flat and if for any prime ideal p of
A, the k(p)-algebra B ®4 k(p) is geometrically regular (where x(p) := pAT"p is
the residue field of Ay). This means that B ®4 K is a regular Noetherian ring
for any finite field extension K of x(p).
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FExample B.2. —

i) If A and B are fields, A — B is regular if and only if B is a separable field
extension of A.

ii) If A is excellent, for any ideal I of A, the morphism A — Ais regular where
A= l{in% denotes the I-adic completion of A (cf. |[GrDi65] 7.8.3).

iii) If V' is a discrete valuation ring, the completion morphism V — V is
regular if and only if Frac(V) —s Frac(V) is separable. Indeed, V — V is
always flat and this morphism induces an isomorphism on the residue fields.

iv) Let X be a compact Nash manifold, let N'(X) be the ring of Nash functions
on X and let O(X) be the ring of real analytic functions on X. Then the
natural inclusion N (X) — O(X) is regular (cf. [CRS95| or [CRS04] for a
survey on the applications of General Néron Desingularization to the theory
of sheaves of Nash functions on Nash manifolds).

v) Let L C C" be a compact polynomial polyhedron and B the ring of holomor-
phic function germs at L. Then the morphism of constants C — B is regular
(cf. [Le95]). This example and the previous one enable the use of Theorem
to show global approximation results in complex geometry or real geometry.

In the case of the Artin Approximation problem, we will be mostly interested
in the morphism A — A. Thus we need to know what is an excellent ring by

Example ii).

Definition B.3. — A Noetherian ring A is ezcellent if the following condi-
tions hold:

i) A is universally catenary.

ii) For any p € Spec(A), the formal fibre of A, is geometrically regular.

iii) For any p € Spec(A) and for any finite separable extension Frac (f) —

K, there exists a finitely generated sub—%—algebra B of K, containing %,
such that Frac(B) = K and the set of regular points of Spec(B) contains
a non-empty open set.

This definition may be a bit obscure at first sight and difficult to catch. Thus
we give here the main examples of excellent rings:

Example B.j. —

i) Local complete rings (thus any field) are excellent. Dedekind rings of char-
acteristic zero (for instance Z) are excellent. Any ring which is essentially of
finite type over an excellent ring is excellent. ([GrDi65] 7-8-3).

ii) If k is a complete valued field, then k{x1, -, x,} is excellent [Ki69].
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iii) We have the following result: let A be a regular local ring containing a field
of characteristic zero denoted by k. Suppose that there exists an integer n

A - .
o 1s algebraic

such that for any maximal ideal m, the field extension k —
and ht(m) = n. Suppose moreover that there exist Dy,..., D, € Derg(A) and
x1,..., Tn, € A such that D;(z;) = 6; ;. Then A is excellent (cf. Theorem 102
[Mat80]).

iv) A Noetherian local ring A is excellent if and only if it is universally catenary
and A — A is regular (JGrDi65] 7-8-3 i)). In particular, if A is a quotient
of a local regular ring, then A is excellent if and only if A — Ais regular (cf.

[GrDi65] 5-6-4).

Ezample B.5. — |[Na62|[Mat89| Let k be a field of characteristic p > 0
such that [k : kP] = oo (for instance let us take k = Fp(t1,--- ,tp,...)). Let
V := kP[z][k] where x is a single variable, i.e. V is the ring of power series
220 a;x’ such that [kP(ag,a1,---) : kP] < co. Then V is a discrete valuation
ring whose completion is k[z]. We have VP C V, thus [Fracf/i: Frac(V)]

~

is purely inseparable. Hence V is a Henselian ring by Remark |C.9|since V is

Henselian by Example

Since [Frac(V) : Frac(V')] is purely inseparable, V' — V is not regular by
Example and V is not excellent by Example iv).

On the other hand, let f be the power series Y .7, a;x', a; € k such that
[kP(ag,a1,...) : k?] = oco. Then f € V but f ¢ V, and f? € V. Thus f
is the only root of the polynomial y? — fP. This shows that the polynomial
y? — fP € V[y] does not satisfies Theorem [3.2]

Appendix C

Etale morphisms and Henselian rings

The material presented here is very classical and has first been studied by G.
Azumaya (JAz51]) and M. Nagata ([Na53| and [Na54]). We will give a quick
review of the definitions and properties that we need for the understanding of
the rest of the paper. Nevertheless, the reader may consult [Na62|, [GrDi65],
[Ra70], [Iv73] or [Mi80| for more details, in particular for the proofs we do
not give here.

Example C.1. — In classical algebraic geometry, the Zariski topology has
too few open sets. For instance, there is no Implicit Function Theorem. Let
us explain this problem through the following example:

Let X be the zero set of the polynomial y? —z2(x+1) in C2. On an affine open
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neighborhood of 0, denoted by U, X (U is equal to X minus a finite number of
points, thus X (U is irreducible since X is irreducible. In the analytic topol-
ogy, we can find an open neighborhood of 0, denoted by U, such that X (U is
reducible, for instance take U = {(z,y) € C? / |z|? + |y|*> < 1/2}. This comes
from the fact that x?(1 + z) is the square of an analytic function defined on
UN(C x {0}). Let z(x) be such an analytic function, z(z)? = 22(1 + z).

In fact we can construct z(x) by using the Implicit Function Theorem as fol-
lows. We see that z(z) is a root of the polynomial Q(x, z) := 22 — z%(1 + z).
We have Q(0,0) = %—S(0,0) = 0, thus we can not use directly the Implicit
Function Theorem to obtain z(z) from its minimal polynomial.

Nevertheless let us define P(z,t) := (¢t +1)?> — (1 + 2) = t> + 2t — 2. Then
P(0,0) = 0 and 2£(0,0) = 2 # 0. Thus, from the Implicit function Theo-
rem, there exists ¢(x) analytic on a neighborhood of 0 such that ¢(0) = 0 and
P(z,t(z)) = 0. If we set z(z) := x(1 + t(x)), we have 2%(z) = 2?(1 + ). In
fact z(x) € B := (C( ;7(25:)3) The morphism C[z] — B is a typical example of

an étale morphism.

Definition C.2. — Let ¢ : A — B be a ring morphism essentially of finite
presentation. We say that ¢ is a smooth morphism (resp. étale morphism)
if for any A-algebra C along with an ideal I such that I? = (0) and any
morphism of A-algebras ¢ : B — % there exists a morphism ¢ : B — C
(resp. a unique morphism) such that the following diagram commutes:

A2

C— >

~Q

Example C.3. — Let k := R or C and let us assume that A = M

and B = w for some ideals J and K. Let X be the zero locus of J in
k™ and Y be the zero locus of K in k"*™. The morphism ¢ : A — B defines
a regular map ® : Y — X. Let C := % and I := (t). Let fi(x),..., fr(z) be

generators of J.

A morphism A — C is given by elements a;, b; € k such that fj(a1 +
bit, -+ ,an + byt) € (1) for 1 < j < r. We have

n af]

o0x;
i=1 v

filar+bit, - -+ an+byt) = fi(ay, - 7an)+< (a, - aan)bi> t mod. ().
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Thus a morphism A — C' is given by a point z := (a1, - ,a,) € X (i.e.
such that f;(ai,---,a,) = 0 for all j) and a tangent vector u := (by,--- ,by)
afj

8.%1'
a A-morphism B — % = k is given by a point y € Y. Moreover the first
diagram is commutative if and only if ®(y) = x.

n
to X at x (i.e. such that Z (a1, ,an)b; = 0 for all j). In the same way
i=1

Then ¢ is smooth if for any x € X, any y € Y and any tangent vector
u to X at z such that ®(y) = x, there exists a tangent vector v to Y at y
such that Dy(®)(v) = u, i.e. if Dy(¢p) is surjective. And ¢ is étale if and only
if v is unique, i.e. if D,(®) is bijective. This shows that smooth morphisms
correspond to submersions in differential geometry and étale morphisms to
local diffeomorphisms.

FExample C.4. — Let ¢ : A —> Bg be the canonical morphism where B :=
% and S is a multiplicative system of B containing %—5(3:). If we have a
commutative diagram

%)

P

n

Q=——n
~a<~—>WW
<

—

with I2 = (0), the morphism Bg — % is given by an element ¢ € C such

that P(c) € I. Looking for a lifting of 1 is equivalent to find € € I such that
P(c+¢) =0. We have

oP

(24) P(c+e)=P(c)+ —(c)e
Ox
since I2 = (0). Since ‘?)—I; is invertible in Beg, %—5(0) is invertible in % i.e. there
exists a € C such that a%—f(e) =1mod. I. Let i := a%—i(c) — 1. Then
oP
1—i)=—(c) =1
a1 i) 2 ()

since i = 0. Thus there exists a unique ¢ satisfying and ¢ has necessarily
the form

e =—P(c)a(l —1).
This proves that ¢ is étale. Compare this example with Example
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Definition C.5. — Etale morphisms of the form ¢ : A — %p where
P(z) is monic, p is a prime ideal of A[x] containing P(x), %—5(33) ¢pand pnNA
is a maximal ideal of A are called standard étale morphisms.

Theorem C.6. — ([IN73| III. 2) If A and B are local rings, any étale mor-
phism from A to B is standard étale.

Ezample C.7 (Jacobian Criterion). — If k is a field and ¢ : k — B :=

W, where m := (x1 — ¢1, -+ , @, — ¢) for some ¢; € k, the morphism
¢ is smooth if and only if the jacobian matrix (gg? (c)) has rank equal to the
J

height of (g1,---,¢r). This is equivalent to say that V(I) has a non-singular
point at the origin. Let us recall that the fibers of submersions are always
smooth.

Definition C.8. — Let A be a local ring. An étale neighborhood of A is an
étale local morphism A — B inducing an isomorphism between the residue
fields.

If A is a local ring, the étale neighborhoods of A form a filtered inductive
system and the limit of this system is called the Henselization of A ([Iv73]| III.
6. or [Ra69] VIII) and is denoted by A"

We say that A is Henselian if A = A", The morphism 24 : A — A" is
universal among all the morphisms A — B inducing an isomorphism on the
residue fields and where B is a Henselian local ring. The morphism 24 is called
the Henselization morphism of A.

Remark C.9. — If A is a local domain, then Frac(A) — Frac(A") is an
algebraic separable extension. Indeed A" is the limit of étale neighborhoods
of A which are localizations of étale morphisms by Theorem thus A" is a
limit of separable algebraic extensions.

Proposition C.10. — If A is a Noetherian local ring, its Henselization A"
is a Noetherian local ring and 14 : A — A" is faithfully flat (in particular it
is injective). If ¢ : A" — B is an étale morphism of A", there is a section
c:B— A, ie cop=1idyn.

Remark C.11. — i) Let ¢ : A — B be a morphism of local rings. We
denote by 14 : A — A" and 15 : B — B" the Henselization morphisms.
By the universal property of the Henselization the morphism 15 0 A :
A — B" factors through A" in a unique way, i.e. there exists a unique
morphism ¢" : A" — B" such that ¢ 014 =150 ¢.
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ii) If p : A — B is an étale morphism between two local rings, ¢” is an
isomorphism. Indeed ¢ being étale 24 factors through ¢, i.e. there exists
a unique morphism s : B — A" such that s o ¢ = 14. The morphism s
induces a morphism s” : B* — A" as above. Thus we have the following
commutative diagram:

AL>B

e

Ah ¥ . ph

sh

Since sop =14, (s0p)? = s" 0" =id4. On the other hand (" 0 s)" =
phosh = z% = idp. This shows that ¢" is an isomorphism and s" is its
inverse.
iii) If ¢ : A — B is an étale morphism between two local rings where A is
Henselian, the previous remark implies that ¢ is an isomorphism since
15 1 B — B™ is injective.
Proposition C.12. — Let A be a Henselian local ring and let o : A — B be
A
mg
Then there exists a section s : B — A such that

an €tale morphism that admits a section in for somec > 1, i.e. a morphism

A

=
my

of A-algebra s : B —

s = s modulo m€.

Proof. — Let m := s~ !(m4). Since s is a A-morphism, mN A = my, m is a
maximal ideal of B and % is isomorphic to %. Since A is Henselian and the
morphism 1 : A — By, induced by ¢ is an étale neighborhood then v is an
isomorphism. Then ¢~! composed with the localization morphism B — By,
gives the desired section. O

Remark C.13. — Let P(y) € Aly] and a € A satisfy P(a) € my and %—5(@) ¢

my. If A is Henselian, A — %mA+(y_a) is an étale neighborhood of A,

thus it admits a section. This means that there exists §y € m4 such that
P(a+y) =0.
In fact this characterizes Henselian local rings:

Proposition C.14. — Let A be a local ring. Then A is Henselian if and only
if for any P(y) € Aly] and a € A such that P(a) € ma and %—g(a) ¢ my there
exists y € my such that P(a+7y) = 0.

We can generalize this proposition as follows:
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Theorem C.15 (Implicit Function Theorem). — Set y = (y1, - ,Ym)
and let f(y) € Aly]" with r < m. Let J be the ideal of Aly] generated by the
r X r minors of the Jacobian matriz of f(y). If A is Henselian, f(0) =0 and

J ¢ mA.%, then there exists y € m'y such that f(y) = 0.

Example C.16. — The following rings are Henselian local rings:

— Any complete local ring is Henselian.

— The ring of germs of C* functions at the origin of R" is a Henselian local
ring but it is not Noetherian.

— The ring of germs of analytic functions at the origin of C" is a Noetherian
Henselian local ring; it is the ring of convergent power series.

— By Proposition any quotient of a local Henselian ring is again
Henselian.

— The next example shows that the rings of algebraic power series over a
field are Henselian.

Exzample C.17. — If A =Kk[xy, - ,x,][ for some Weierstrass system over
k, then A is a Henselian local ring by Proposition . Indeed, let P(y) € Aly]
satisfy P(0) = 0 and %—I;(O) ¢ (p,z). Then P(y) has a nonzero term of the
form cy, ¢ € k*. Then we have, by the Weierstrass Division Property,

y=Py)Qy) +r

where r € my. By considering the derivatives with respect to y of both terms
of this equality and evaluating at 0 we see that Q(0) # 0, i.e. Q(y) is a unit.
Thus Q(r) # 0 and P(r) = 0.

We have the following generalization of Proposition

Proposition C.18 (Hensel Lemma). — Let (A, my) be a local ring. Then
A is Henselian if and only if for any monic polynomial P(y) € Aly] such that
P(y) = f(y)g(y) mod m4 for some monic polynomials f(y), g(y) € Aly] which

are coprime modulo my, there exist monic polynomials f(y), g(y) € Aly] such

that P(y) = f(y)g(y) and f(y) — f(y), 9(y) — 9(y) € maly].

Proof. — Let us prove the sufficiency of the condition. Let P(y) € Aly] and
a € A satisfy P(a) € my and %—g(a) ¢ my. This means that P(X) = (X —
a)Q(X) where X —a and Q(X) are coprime modulo m. Then this factorization
lifts to A[X], i.e. there exists y € my such that P(a + y) = 0. This proves
that A is Henselian.

To prove that the condition is necessary, let P(y) € A[y| be a monic polynomial,
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Ply) = y?+a1y? '+ +aq Let k := AA be the residue field of A. For
any a € A let us denote by @ the image of a in k. Let us assume that P(y) =
f(y)g(y) mod m4 for some f(y), g(y) € k[y] which are coprime in k[y]. Let us
write

F)=ym +biy™ 4t bay, gy) =y F ey 4t
where b = (b1, - ,bg,) € k% c= (c1,--- ,cq,) € k%. The product of polyno-
mials P = fg defines a map ® : k% x k% — k¢, that is polynomial in b and ¢
with integer coefﬁcients and ®(b,c) =@ := (ai,...,a4). The determinant of the
Jacobian matrix (b o 1s the resultant of f (y) and g(y), and hence is nonzero at
(b, ¢). By the Implicit Function Theorem (Theorem , there exist b € A%,
¢ € A% such that P(y) = Pi(y)P(y) where Pi(y) = yd1 —|— bydl 4t bdl
and Py (y) :yd2 +51yd2_1 + -+ Cdy- [
Proposition C.19. — 18-7-6) If A is an excellent local ring, its
Henselization A" is also an excellent local ring.

Index

C; field, [A7]

étale morphism, [94]

étale neighborhood,

Lojasiewicz Inequality, [8]

algebraic Artin Approximation Theorem,
B4

algebraic power series,

analytic Artin approximation Theorem,
2T

analytic relation,

André homology, 27] [44]

arcs space, [I9]

Artin function, [53} [59]

Artin-Mazur Theorem, [70]
Artin-Rees Lemma, [59]

Bass-Quillen Conjecture, [3]

Becker Example,
Cauchy-Riemann equations, [86]
Chevalley function,

constructible subset, [T6]

convergent power series, [} 2]
Denjoy-Carleman function germs,
Diophantine Approximation, [62]
equivariant Artin approximation, [87]

excellent ring, @ @

faithful flatness, [7] 29

first order language, [50]

flatness, [6]

formal relation,

Gabrielov Example, [78]
Gabrielov Theorem,

general Artin Approximation, [39]
general Néron Desingularization, [3§]
Grauert Theorem, [79]
Greenberg’s Theorem, [45]
Greenberg’s Function, [4§]
Henselian pair,

Henselization, [96]

integral closure, 48] [54]

Izumi’s Theorem,

Jacobian Criterion, 22} 27]
Jacobian ideal, [3] [9]

jets, [T4]

Kashiwara-Gabber Example, [72]
Krull topology, 22]

local ring, |Z|

nested approximation theorem, [74]
Ploski Theorem, 2§

regular morphism,
smooth morphism, [04]
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standard étale morphism, [06] ultraproduct, [51] [56]

strong Artin approximation Theorem, [52] Weierstrass Division Property, 34 [00]
theorem of Chevalley,
Tougeron Implicit Function Theorem, [24]

6] Weierstrass System, [36]

Weierstrass Preparation Property, [00]
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