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Renormalization Group Optimized Perturbation Theory at Finite Temperatures
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A ceceatly develuped vaniand of Lhe seecalled optioized pertarbalion theory (OPT) makiog i
nerrnrhatively comsistent wich renoermalizacion gronp (RG] properics, ROOPT, was shiom oo dras-
Livaally iosprosve il coovergeoce [or seeo leaperaluce Lbeoaries, Here L RGO adapled v loice
remperatire i= ilostrated wick o detailed evaloacion of the two-loop pressure for the thermal sealar
At fiwled theory, Wis show shad alresdy b Phe simpde ane-loop level this quantity & et ly sele
iwvarsanl by cossiruction aod turus sal o gqualitalieely reproduce, with & racher sioople procedure.
resnles from more sophisticaced resummation methods an teo-loap order, =ach as the twn-particles
irreducible approach typically. This lewesy osder ala vepracioees tbes exeet lurge- 0 resulis of U
Ch Ny model,  Although very close in spirit, oor RGOPT mechod and corresponding results dif-
fer drastically Trom similar varistionn] agproaches, sach as the soreened periarbacion theory or its
Qi Deversion, the (resumoeed] hand ceermal loop pectwrbaion theorv, The latier approsches ex-
hihit n sensihly degrading acale depenmdenos an higher orders, which we identify as a consequenos
ol missing HO invariance, o copirast RGOPT gives & considerably ceducest scale dependence at
two-loop bevel, eyen for relatively lnrge conpling waluea A 24 ~ 1), making results mach more
stahle as comparad wich standard perturbacion cheory, wich expected similar properties for chermal
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I. INTRODUCTION

It iz a well established fact that evaluations devored to describe quantum chromedynamics (UL phase transitions
el b b el ina nomperturebad e Gusion, suchoas vomerically soleiog e Ui Tatiiee [TACTI 1], which maoseadays
18 cansidered the mosi. reliahle way 1o tackle the praldemn ao o vanishing denzities. Tnfortanately, LOOCTY i a6l plagied
by the so-called sizn problem (2] which prevents: the method to b wsed o deseribe che transitions expected to talae
plaves il lowweer Lesnperistorees conl Biglee densibes, G Ll e T, venTei-Toespe peertorbuabive mesolis foe ey Q0T
physical quantities are within reach 2o that an appesling alternative would be to v2e chem in conjunction with some
resumirnation procedure inorder to geoncrete nonpertucbative resulits. In this vein, different soalytics] sochmniguaes
envisaged to combine the easiness of porely parnnrhative esaluacions with nonperiachative opeimization) resnmimation
procedures have been proposed in the past decades 37 Some of these mechods are based on s reorsenizecion of a
given inleracting Lagrangian, =0 Lhal il Teeoanes weitben in terms ol anarhibeaey maes paraoneber which, Tor osshess
theories, also worka as an infrared regulator (as in hard thermal loop reswmmations [4, 5], One of these approaches
is the so-cslled soreoned perturbotion cheory (SPT |6, 7.0 in which the varistional persmeter is deseribed by s
thermal mazs, The SPT was oviginally peoposesd o deseelle che thermodynamics of massless sealar theoriea, bt it
has been later gemeralized so that the equation of state of chermal gauge-invarians theories 4], such as QUD, could
alsoe bae obstaine]. This geoge ineariane generalization kocwn as hard thermal locp (resuomed ) perborbation cheory
[HTLpt) [8]. has been already nsed to calewlate QUD thermodimamic fiinctions up to three loop order at finite values
of the temperature snd chemical potential |9, 10], The SPT and HTLpt are actually conceptually similar to the
soeralled linear delts expansion (LDE]D and optimizaed peroocbation theary [OPT), developed eachier omder varions
different names [11-13] mainly in the context of gero-temperature field theories, Within this technique, perturbative
evaluations are performed using propagators wricten in terme of an acbitrery mass parameter, so that optimized
nonperturhative resulis can be generated by peguiring the mass parameter oo satisfy o varlaclonal ceiterion. The two
major problems the aboyve mentioned methods try to solve are the poor convergence and the notorionsly bad scale-
dependence of the standard pertarbotive series Bath for the chermal mass aned for e pressaee ab higher orders (see e,
[3) fior & veview ): not only the increasing perturbative orders show no elear algn of stability, e the scale-dependence
worsens substantially at hizher orders, at odds with what is intuitively expersed for most known perturbative series
al T = (L Part of this Tad Tehavior is commenly ecxplained 3] e e aoseeoidalele complizated ioleeplay of sell mnd
Tuwrd] thermal conteibutions. Actually, the dynamical gereration of a thermal screening mass g ~ VAT influences
the relevant expansion of phyvsical quantities, such as the pressnre, which are then expressed in powers of A rather
thasn A In bhis ense the prodictions are, ooprioci, less converpoot chan Fae the T = 0 case, vet mest of the interesting
thermal pliysics happens al rather moderate coupling values, so 1han one could expect a better behavior. Despite
the unsvoidable +' A “nonperturbative” dependencs, both 3P0 [6, 7 and QOF1 [14] spplications to hot scalar theory
slarvw Tooowe Lhiesses vt Tonnks bnncbesa] bonpercsee Chie siabaling of (e preedie Dioms whens Bigeler cordvas o She Tocspe e peunsion s
congidered. Given the inherent technical diffculties azsociatad wich che [three loop) evaluation of the (1 pressure
foor thier s of bt and dense quack maogter, e recent resalts io [10] represent an impeessive schisverent, However,
Hlee same resulis exhibal o snbaianial dereesog realealapenlance al inereasing Leo- and s Tnop oders, even Tor
moderately large coupling valucs, which remeing o surprising issue. "Uhi= i more pronounced for WULpt in QCD
applications al the theee loog level (00100 While 1he latler are sometimes remarkably close o ladtiee resolis Tor
temperatures down to 17 2 2T, for che eentral renormalization scale choiee o~ 2907 in the Mh-acheme, it appears
puzeling that s moderate scale wwrintion of s faccor 2 dramatios!ly afforss the pressure and relased thermodynamical
euantities by relative wrdations of ordes | or more, T s argued [10] that resemming the logarithmic depemdence of
HTLpt resnlts may improve this problem, bus as we shall explain below che missing HO invariance properties is more
b within the SPT/HTLpt appranch,

Recently, the standard OPT procedure ac zero cemperature bas been modified to incorporate consistently pertur-
hative renormalization group (RS properties, It owes shown to considerably improve cthe convergence of OPT, as
tested for the Gross-Neven (GN) model mass gap [13], and farther vaed to determine with a good accuracy the hasic
QCD scale in the M3 scheme, Aggz, and corresponding walne of the strong coupling d5[16, 17]. Very recently the
s miethod has been used to estimate [158] che QCD chival guark condensate. Here, we extend the constroction to
the case of a sealar theory with quartic interaction to ahow how this BGoimproved COFT (RGOPT) can easily cope
with the introduction of control parameters such as che temperature, developiog in detail the constroction presented
very recently in [19]. Using this textbook example we aim o llosteate how the RGOPT takes care of the seale
dependence problems of thermal theories, those being more clearly visible wichin the SPT 6. 7] and T Lpe higher
Inop results [2-10], but also present in other resuoomation appronchss,

Tn a nutshell, leaving azide technical decails, owr basie observacion is than the arbitrary variational mass introdueed
in the SF'L/OFL context can (and should) be treaced as any “proper” mass, from the RG viewpoint. In particular,
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should be ineorporsted consistently within 08 propersios. Lhis bring: cocial consequences alrepdy oo the form of
an explicitly RG-invariant pressaee, priog looaony Twenher peosved Seesimime] peclosbation approaches. T alao more
clearly separaces the hard and soft modes from 8 KO3 /seple dependence perapective, at least in an intermediate stage
of the calewlabions. To the more stencdond appecach Both conbeilobiees oo anised o sioee ol eelosonl guoanlities
are expresaed a8 A honetion of cthe ronpling and tempeeatire only, That being acrapted, ane vrealizes that most of
the observed womsening seele-dependence ot higher orders @5 actaelly due to o menifest failure of G imwrisnee
fexr v rrassaive Lhewrw, This is sl st pacbicnliody Drosgaeesl o the WIS scliwnoe Liegely osem] wiltlin STTHTT
methods, where we showr that minimally subtracting che vaewam energy divergences, withont finite vacunm energy
contributions, explivitly misses TG foeriaoes:,

[n addition, even when starting from an explicicly RO invariani pertuebative expeession, RO invarianees 18 generally
et ag a consequence of the standard (linear) modifcscion of percurbacive expension implied in OFL/SET. o fact
et Tues bsen selddoan appreciated o the relevanl lileratome so e, Howeever, RO propeerties can easily be restomad Ty
a conEistent nse of rencrmalization gronp propercies for o massive cheory, anfomatically inecorporated in the RGOPT
approsch [17], wherebs o drastically improved scule-dependencs follows naturally, This opens ap the possibility of
rathier simpdy exploiting many non-teivial SPT/HTLp resulis pecfarmed g o UCheessloep order so G, by impeoving
substantially their scale independence after applyving eppropriste RGOPT adapiations,

Ineidentally, other resammation appronches, like tepically the so-called “two-loop-$-derivable” appronch, (related to
the two-particle-irreducible (2P1) method) [20, 21) are manitestly scale lnvariant when applied to the scalar model
in & certain approgimetion.  In fact one observes interesting analogies (but al=o importane differences) between
ilee first nometrival (eo-loop) 2P crder and onr poecoop RGOPT resulls, as will be elaborated in o more detadl
below. However. as it happens the scale-invariance of the above-mentioned 2PI results |20, 21] is essentially due
to a renormalization that appears peruliar to the scalar model, inspived by the propecties of the Q0N symmetric
theory in the large-N limit [22] {for which indeed the teo-loop-D-devivable 2P1 vesults become exact]. Thus, to
the best of our underscanding, this acale invariance sppesrs somewhat aecidental and ditficnlt to translate to higher
orders and to QOT Incidentally, the 28T apoeanch has heen poshed even to throe-loop order foe the &% tesey in
Ref. [23], with remarkably stable resulis with respect to two-loop order, but the method becomes more involved, and
a definite seale-dependence reappears, slthoveh much more moderate than in the three-loop order ST and 0T Lpt
cases,. Other approaches like the sonpertocbative renarmadization geoup (NPRGY [24], sheold De TG st Ty
constriction. But eolving the relevant NPRO eqnationa for thermal QO beyond approcimative traneation schemees
beeomes very imvolved o proctice,  ¥We also romeck that our appronch shoees some gualitetive features with the
ideas invoked and the Tramework developed very recently in Refll [25], in which the anthors exploced some form of
massive renormalization schemne and ite consequenees, However, the HGOE'D difters snbstanzially in its approach as
i imsrporales by consteocbicn 17, 19 all relevant TG progecbies seslemadcally oedes Ty oeder, velving, bisieally on
standard perturbation theory. Being largely hased on {bot not limiced o) MS-scheme reaults, the RIOPT can easily
b extended to sy hipgher order colevlations: performed o the frumesork of ditferent medels, when sleeady avilable,
il ling theranal CRHOTE Therelors, 10 apgausns wooas hal che methoan] preseniesd e s conceploally siopler than
other more sophisticated reswmmation approsches mentioned aboe,

The paper iz organized aa followa, In the next gacticn we guickly review some basie resnlia of thermal sealar theory
foor ther froc cocrey at the relevant, cwo-loop level, Then, in section 3 woe address insoome details che O {non) invrisnee
s i Uhe massive case, paving special attention o che M8 scheme largely used in the SPT (or the similar HTTyst)
method, In the same section we also explain how to restore the perturbative RO invarianee ac arbitrary orders in a
ginmphe fushion. Mext, the resumnation Ty aptimized perturbation [OTT with the crocial modificstion to maintsin
its perturbative RO invariance, RGOPT, is discussaed in vacher general cerma in aeccions 4 and 5 respectively. The
method is then illustrated in details by evaluating the free enerey of a hot sealor feld cheory st one- and two-leop
Tewel in sections G oaml 7. We emphasize that all the constenction developed o Sees, 3 te T foe the o model (for
which we also briefly consider the large-% case) i3 actually move general., most of it being straightforwardly applicable
to thermal QCIN We oceasionally mention some properties anticippted to be similar (or eventoally different) in the
QT ense, Finally, our conelusions ane presented in section 8, and one appendix deals with sooee technical decails on
the RG-invariant construction of counterterms,

II. FIMITE TEMPERATLURE SCALAR FIELD THEORY

W vomsiler, as a stacting poand, P massive scalare Geld theory deseriled by the Tograngian densivy

—— Rt g AL
.{‘.=§|,ill_.-'.'.r_.ﬁ|;-.l—_—nl —?l’u H [2.1)



where we iotroduce a (yor wospecifiod) peneric mess cerm (md which een be chought as o thermal mass generated
Ty higher perturbative credems inoan originaglly massless cheney, e may Chen evaluaie che Tee energy using known
resulis from ordinary perturbation theory for the massive case. Then, np to che two-loop level the basic expression
ol Lhier (Rare) Trene coerggy s el ly 6,7, 306

oY i ety A : =t 22
.."._|—E : gt 4w 'I_E_( -"m + F5 . [ J :I

where e temperaluee s introduesd via Malsubaras imaginary lime formalism (pf = o) + p? with the hosonic
Matsubara wy, — 20l and we have also defined

f {TFJ TTZJ% (2.3)

The divergent integeals ave regulated osing dimensional regulavization techobgques with 72 = =2 while renormalization
is carried out in the MS-scheme. The term FF' representa all che relevant counterterms contributions to €(A) [see
Tied. [7] for details), After all the mass, coupling, and weoum enecgy connterterms have been consistently introdoesd
to cancel the original divergences, one abtaing the [MS-scheme) renormalized free energy [3, 7):

= 1 ; gl " i T A [ T myl’
[-.1:]-3.:.5_.-?““ [,++2|:1[(F)]—5T‘J..l:—gl ﬂl{‘_i{lll( )+J]m —TEIL[T}}. (2.4)

where we have cxplicitly separaced the thermal and non-thermal conteibaclons for later convenberce. Here and in all
related renormalized expressions below, @ representa the arhiteary renormalization scale introdnced by dimensional
repgularization in te MS=scheme, and A = Alpd Mote carefully in B 0240 thet S represents a possible nate vacowm
energy term which is nsnally ignored, i.e. minimally get to zero in the {thermal) literacure 7). However, within our
approsch this gquantity is necessarily non-zero and plays v cracial cole as w3l beeome clesr in che sequel

The standard {dinwnalonless] thermal ntegrals appeaciog in B 24 are given by

. 'r'l'l 'dl I|-|| dm 1 .

-

where £ = pfT and o = o /T, Thfferent integrals eoa b cosile veluted by cooploying devivatives such s

il

T Jafr] [2.6)

.-;rn I '|_|;.|'.'_:| =
Alsso, e high-T expunsion such ae

16 2 1
Jalz) == 1—;1"—1?1'34-& Epv_ lu{ ]+ .r'--— e (2.7)

is often n=eful since it represents a racher good approximation as long as > ‘i 1, ie, ¥ larger than m.

Finally, for later comparizon we recall that the thermol sereening mass (s, defined [27] by the pole of the {stadic)
propagavor, 8 chrained for weak coupling for the mazsless theory as a '_*:-m*h:nrlmrlw seviea which to lowest orders
reads [27]:

3 |1
mp _ Al = AN ( A L S s
T 03 {1 W (1!}-:.—1) 1677 ‘Eln T" 21n T f.dadl CHAHE L | (28

I, RG INVARIANT FREE ENERGY 1IN MASSIVE RENORMALIZATION SCHEMES

We now discuss the lack of RO invariance when £ 15 minimally set to zero in Eq.[2.4). Remark first that to obtain
[2.4), caleulations have boeen performe] wich an arbiteaey mass: o the dresed propepators Coainly to sobseguent]y
treat i variaticnally in the OPT SPT approach), with no prejudies at this atage that it should be a thermal mass of
order m® ~ A% in the actually massless theary, Thus from the RO viewpoine, evervthing in (2.4) should behave as
i weas s e oassiee soey, i pacbicolae e oeass shoolld bave s staendind anomsadows Qimension. Recall Phiad



the: (homopeneos) O operator soting on o phvsicnl guenticy with mess dependence, such as the free energy in the
present case, s delined as

) il i O il
i M P A S T | Wear B VO i a
Hg = Mgy T M gy SmlMmae k4

whers conr nommaliselion e che 3 Tooelion s

o
0 T b O SO SR (3.2)
i e
while: For dhe ancamalons s dirmensaom i s given by
”.‘".-.-:[-:'-_:I a o Lo =k = 32 o [-]-.?n-_:l
) LT
with [28]
(Ax1®o = 3; (dw)Pp = L ey =Y {dm)iay = .} (3.4)
Sl Ay =k ! '1.'_2: ol S B H:II 1= 12 - vk

It is easy to see that che rencrmalized expression, Eq. (245 requires a fnite & contribution to be RG-invariant,
as one can readily see by considering the coe-loop term which has an explicie oy dependenee, Thos, acting with
the RG operator, Eqg. (.10, on the BHS of Eq. (2.4) gives a noo-eero contelbiclon of oedes E010: —(1/25m®, which
is not compensated by terms in Eqg. (3.1) coming from the lowest ordere in A28 or M (A}, o0 Am?, those
bing at Jeast of nest order €0A), This is o manifestation of che fact that [pecturbative) RE invarianee geserally
oecnre from cancellations between terme coming from RO coefficients at arder A% and the explicit ¢ dependence at
the next order A**1, This con also be understeod alteroatively by considering solely the original bare contribution
toe thee Feee energy: although che laoeer only depends on the RG-lovarlant barve mass and conpling g, Ay (amld an
2e = 4 - I} in dimensional regularizacion), its findle pero is not A prionl seporately HG invariant. In other words
for wommsgive theory the Taandepemdent vacumn coceeye divergences coonot be abzorbed by an arbitracy redefingtion
of the vaeunm energy withont spoiling Bl-invarianes, Mow, a3 we recall helow che subiraction nesded o pecoven
LG inverisnee s perturbecively well-defined and cosy to construct order by order. The veeunm energy gets its own
anmalons dirmension which, within diensional vegolaciacion, s esseniially devermioes T Dl coedlicienis of (e
pole= in 26 = 4 — L), stemming from the remaining divergenees cnee the mass and the coupling have been properly
renwrmidized. This procedure had bBeen exsplaited o an caclice applicecian of the O o evaluake the vacowm enerpy
of e Gross Neven (massive) model [29) aml then extemiead wo che QUT case 30, 310 Similarly, a well- known eelated
reslt i that the Coloman-Weinberp offective potentiol for & geners! messive theory is nor WO imvariane without fnite
S enerEy” beems lepeadend of (he lelds, s owas origimally caoevied ool in Tel [32] anad i Uae MS-schene in
the context of RU-improvements of the effective potencial [33. Indeed. for the (N} o' model, the vacuum energy
anmnalons dimension s oven been compated up oo four- woed fee-loop order in Ref, 4]

Hovaeewerr, dn the hiest ol our koo ledge, chis poinn appeas wo Liave Been overlookesd o the eontext of Permal theories,
In applications of improved /Tesumimed massive perturbation schemes such as SP'U |6, HTLpt [9], and the standard
OPT [14] the caleolations aee mosily pecformed] within the 35-scheme and the T o= O waewom enevgy divergenes
18 minimally caneelled oot by appropriate (zern poinn] councerterms bac misaing ous those extra finiee subiractions
required by RO properties, In fact, o8 far as the purely pecturbecive mossless theory s concerned, the only mass
15 actually a thermal mass; TJ.'E.{._I ww AT2 o that the lack of RGO ivariance poanted oot abiove is cather postpons
to higher (three-loop) perturbative order A%, where it plainly resurfaces. Within the SPT. or the similar HTLpt,
appropches the variational mess parameter is similarly perturbatively of order m? ~ AT%, It is thus not sorprising
that the scale dependence observed within SPT/HTLpt vesults appears to worsen at higher oeders [T, 9. But more
generally one wishes to use the nonperturbative mass gap reanliing from such varistional approsches possibly bevond
stamdard perturbation for modesately lnege coupling values, as can e relevans near o eritical temperatore, Thos, the
lack of RL: invariance appears maore eerions gince a8 we recell in next section [see Eq. (4.1]), the variational procedure
formslly trosts the mass to be of the same pertucbative ceder s the lowest order considersd contribotions, like eg,
e “hard” thermal one-locp conteibastions of arder ~ A" T Moreover, tn the standard procedure one makes the
arhitrary renormalization scale p effectively temperature dependent by choosing u -~ 2717, auch as to avoid large
In /03T ) contributions coming from the remment scale-dependence. In chis way the pressuee can be studied as a
funetion of T/T, in QUD applications, where T is velated to the hasic QUD Agep, eg in the MS-scheme. But if
the scale dependence appeare not much relinble at higher loop orders. one mey guestion 85 well the reliability of the
correspomling T/T depeadonce of e prossove, even Toe e wellmativade] cenieal 0 = 22T preseripliom.
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Whike those fssues in M3 or related sehemes may perhops oot expluin ot onee sl the problems thet thermal theories
face with perterbalive expansions al inceeasing conpling, a part of these probilemes are lkely vo e redhead 15 one adopi =
from the beginning a prescription tully consistent with HO: properties. This problem appears partly circumvented
[Tt e apctmad by eathier elilasend Lo Brighier coelers] in Cheroad postorbaa v calealations performed o soane other renor-
malization schemes, where the zero-point energy, FylT = 0, s subdraceed for eonvenienes prior to any suhasguent
culeulotions. Indeed, subtracting che 0 0 contribation from Lo, (240 woashes out el the st p-dependent termes,
matkang seade-independiemee (heivially] sabisled wl one-Tecp order, wmd T Deivialle dad the Dan longs Teved as well. Bol
then the one-loop result becomes also trivial, wAth the coly left contribntion being che pure thermal, thivd term in
the: TS of Bag2.41, So, there are oo possible optiooded solotions of the OTT/STTHTLpt form, which can only bae
chrained at the two-loop levell Moreover, applying subeenquenily the atandaed SPT/OPT procedoure anyway apoils
KRG imwarisnce. looany casc ic i most comvenicnt to have a prescription generically valid both for zero and fnite
temperalors, so Lhal soblracting T = 0 contreibobions 5 ool saisbebory Toe aomore generial fromework, Sceordingly,
the subiraction procedure we will eonsider next onlv depends on 7 = O contributions ko 13 generically valid also
for T 3 11 Moreover, s remerkoble conseouence s that the subsequent mess optimizetion, as mplied by ROGOTT,
will give a ponteivial solution already al the one-loop arder, s very gimilar oo what & normally ehtainaed al two-
Inop order with the other mentioned resummation schemes [SPT/OPT, HTLPT, 2P0,...0, s we will examine in detail.

Following Refs. [16, 17, 24-31] the easiest way to construet an RG-invariant finite vacunm energy is to determine
Eg order by order as a perturbative series from che reminder of acting with Eq, (3.1) on the non RG-invariant fnite
part of Eq. (2.4}

i d )
ILI_I::TE:I::JI-\.T”:I = —Remnant(d, ) = —p—= Folfn = 0] nuice] [3.5)

where the RHE of (3.5) thus defines the anomalous dimension of the vecuum energy, As above mentioned, it is easy
e s Ehand, s o pertorbatbee series, £y has Che convenienn Dosme o M5 or similar schemes

i

o
EilA,m)=———% ad*, (3.6

k=0

where Lhe constant coellicients s are pertorlatively determboe] gedee by order, Teing, essentially determimes] T
the coeflicients of the [single) powers of Ina term at oeder & 4+ 1 (o equivalently by che single poles in /e of the
unrenormmalized cepresston) (17, S0), This proceduce Teeses non RG-iwmrisat remoant termes of perturkative bigler
cerclenrs Do bee czeen] Toe similiarly ones Ligher arder ferms are consideral, The apparently ol divergent Tebavior Tor
A —+ [ of this first order term i= actually not & problem sines, as we will see cxplicitly, it completely disappears from
1o Dinnind ressnlis:.

We stress that all che previons conaideracions, being only depsndent on che renormalizacion praocedore, do poc de-
prod on the thermeal contribution so that, at eebitrary perturbative ocders. the subtraction function represented by
Fep(3.6) ean bedetermings] simply Tronn the T = O coneeihabions only 1 Wole thal Fip (3060 s nol the anly pessilile
subtraction form in meneral, bt & very convenient cne in M5 or related schemes to proceed systematically at hizher
orclers, Moreover, il s particolacly coovenienl onee infrodogsing below che TRGODPT modificetion of pertorbsadion,
gince the 1S4 perm will be responaible for a non trivial RGOPT aolotion aleeady ab one-leop order.

Expicitly, one finds the RG-invaniant foem of B (2247 wop o teoeloop order with @ son-teivial Sy given Ty

Eo = —m* [+ ;- A+ 007 (3.7)
After some algebra one obiains
81 = gy = 8T &) =%=—1:
yy = Do libe s panlb i) 81 o SRS - 0.01309 (3.4)

where the explichih. RGodependence o the intermediate terme emphasizes the more general form of chese reaalis, while
the last terms are specific to the N = 1 &7 theory, To derive 82 according to the previous discussion we had to wse

T Mmoo, whien tls & = 0 and the T 7 0 eaidiibailkaie are nal o l:|:-|i|'i|.|:\.- :-l'||.l||u|.-|!|_ like in che e ol teo- aisd tarea-heaops HT Lt I!:l'!.
due to the systematic my/T expansion making such involved calmilations tractable, caation wall be needed to expand at o sufficient arder
in r.l|._,"|I sz Lo el sl b relevand tecms ol e e perbacialive cedee b corebrgcl e cormespanding =subilracticns in K, I'il}':



the: (3" = 0] In g cocficiont at throe-leop order given e, o tef, 7

Chee may egguivalently derive the linite subleaction in Fog. (370 in an alternacive manner by ROG invarianee consiler-
ations solely on the bare expression of the free enerzy. For completenesa, this i3 presented in che appendiz. Instead
ol minirnadly subbracting (he Buee wcouom coeege dveegence, an TGzl connterbeeom s ke addend e caneel
ihe remnant divergences, and neceszavily ineorporates also che game Bnite subiraciion teros in Eqg. (35), As a
mon-trivisl crosscheck of our ealoulacion, Lot vus note chat oo setine with the 1060 operator, Ly, (53], on the results
piven by Frs (370 and (32) une recovers, Toe W = 1, cha resalle o le A of the anomalons dimension 3,080 (wilh
petfy S = 2m?4.0A]) which hes been caleulated np to four and five loops for arbitrary N in Kef [34]. (Actually
wir el v used divectly the results o |34 io the preseot seolor made] eose oo devive the s in B, (3020, bat thee
above derivation waing the basie available perturbative expressions shows precisaly how 1o procesd for an arbiteary
theory, where the vacuum cocrgy anomalows dimenston may oot always bo explicicly amileble. |

Chiwe s Lhad 4 Twe sobikrction wath s, explicilly depemching on BG coellcienis, wcrpoerales @ son-trivial BG
dependence already at first Jone-lcop) crder, only depending on already known one-loop standard RO eoetficients.
This result has important consequences for the subsequent OFT application, Now, there is o subtlety at chis stape;
while the s sublraction erms are steietly necessary Lo recover RO nvacianee at order A%, Les up o neglected 3577
terms, they enter the free energy expression at order A*~' as Eq. (3.6} indicaces, For instance only s is needed to
recover BG-invariance st one-loop C015, bot the next term sy d= of order Q(11, so strictly spesking 51 shoubd also bae
included in the full “one-loop™ free energy pesmles. This appeard as a complication a priorl, meaning that at order &
one needs in principle the more demanding information from [the In g coethcient of ) perturbative order &4 1. On the
ol Tver Tan] e BG invarianes s constrocted perlarbabively, one may expect thal Che sioplest oinimal prescription
of keeping only the & terms at order A*¥ should already be a good enough approximation. Accordingly, we mainly
consider below the simplest prescription but also examine hoth preseriptions, indicating the differences whenever
relevant. We will see that, after the modification of pertuebative expansion implied by RGOPT, Incorporating the
higher order gy at order A% makes no crucial differences, even at one-loop order, the resnmmation results heing
ok very sensitive o such purely pertarbative vaciations. The sane stability wich cespoct to such vaciations was
also ohserved at vanighing temperatore in Ref. 17] (where those different prescriptions were incorporated within the
intrinsical theoretical ereors of the method),

1t shonld be elear from the previons derivation chat by congtrietion the snbiraction terms make the free energy
perturbatively BG-invariant, Dut just to crosscheck 6 in o meore poedestrisn way, Lot ug pow roexamine the result at
one-loog order, with the —sg? (A subd raction inchded in e, [2.4), using (e atandard one-loop RO running conpling
and mazz, These are given from intesrating respectively Lo, (521, (420 which vields che standard textbook resuls:

=4} ; o
:-.r,;;:m;_uu-o —:-L.J.r,.-t.tl..i\] w3t i 22t Lopd ). (3.9)
A fiy ! [Gx2 " jE E
T =175 1 G )
mig) — mipn) (1 bl o) o ’—) = i) (1 —— M) n = EJ[H}) : (.10
M BED S i

where Mg and o] are the ronpling and masa at some arbiceary eference acale . Expanding Eog 2.4} to Rrst
order in A (i.e. to order A") one obtaing:

(4713 Fn = e ey -—FF% - ';I::l-'hl a4 +HTI'E|:%!' e — .L—l._:'_:-]rl 1= f.-lll.:'l.]] + thermal paard
= mt ) [— s = § + 00N (3.11)

[where --. astands for g-independent terms). This velation explicitly displaya the cancellation, wp to terms of higher
order £MA], of all lnwe contributions coming respectively from che original one in Eq. (240, and from the running
coupling and mass (Lhisd and ol tenms respectively o BgOR100] We have neglected above che thermal eoon-
tributions, but incloding these does not alter the results since the exact P-dependent contribntion does wot depend
explicitly on g Alternotively, when the high-T cxpanston s considered, the expbeit ogdmse in Bo. (240 35 repleed
by a lnp /(45T with the same ecefficient consistently. It 29 inatroctive to pueh this exercise a step forcher now
incorporating in the free-energy (2.4), restricted at one-loop order, sll thermel contributions in the high-7° limit, from
Eep (2.7), annl pluggiog into e resulting expressicn e = vogs. the slandae] peetirbative cheemal oss, Fo 2080 alao
reatricted at first order. Then, the expression only dependa on the coupling, and uaing Eq. [3.9) gives the reault:

ST [ axt % . T
(Ar) Py = T |==— 4 =M} = ==
: ! _ T2 T T

e AN+ O Inp) | (3.12)
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where all g dependenee has been eaneelled out up oo order A2, sinee s, ~ A2, This wos expected sinee the subtraction
takes care ol e T = 0 lowest arders p-dependenee as choen previonsly, while 1he thermal conteibation oo Syl /T in
Erq. (2.4) does not depend on the scale. More incerestingly, one recognizes trom B, (3,12} che standard perturbacive
coquension for Che pressaee which, vpon wsing the comrmom ooermalissaiion wille che free pas preessaee Ty = :TET'I'If'EH:,l
and Ay = Alg?, can be expressed as:

] e T [3.13])

In purticular, the term— #0/ is incorporated in the final reals Eg, (5.12) onoe veing B, [2.8) sinee — sgmdk, A ~ €A,
The latier gives a contribintion {1587 7 tn PRy, making thia complate coe-lonp expeession ronaiatent with the stan-
dard perturhative eocpression of the pressure up to order A%2, while the original (unsubtracted) perturbative one-loop
pxpressinn is nob, giving an expansion similar o (3030 Tol wich o twine too lege g* erm —(1574) 9. However, this
agreemnent is merely an aceident of one-loop order: at ten-leap order, ineluwding che next order snberaction term from
[3.7) deses not give the correct massdess porturbotive prossure when replaciog ws by sep, (o pertieular the subtraction
—sg e SN Bappens to ke exactly cancells] b 1 hae] conteibeiion of arder &, o0 AT Bal this 18 nel sweprising,
gince more generally che perturbative masateas preasure [27] cannot be oboained consistently from simply replacing
the: perturbstive thermal mass (2.8 in the expression of the massize pressure, However, when the mass is traded
for a variational parvameter, like in che OPT/SPT eesummacion approaches to be recalled next, one may recover
the massless pressure results under specifc conditions, This is made possible beeanse the OFT construction snd
meiss aptimigation dreasticel by meadifies the massive conteibasions as compared seith che original pertacbative sxpansion,

To summarize this section, starting wich Bg. (240 ineluding £ from Bg. (.70 to obtain a pertarbatively RG-
ivariand. Meee energy provides o sownd basis Tor more elaboraie resommation procedores Dke Che OPFT e lod 1o b
addressed next. As above mentioned, an excra advancage of the auboraction terms (3.7] starting with 174, i= that the
optimization proceduee will provide a noon=teivial muoss w040 aleeady at che lowest one-loop order, in contrast with the
stamdard 5PT amd HTLpL approaches (where at aoe-loop order the mass optimization gives a trivial A-imdepemdent
eolution [6-8]]. Thiz is & weloome fenture specially for more involved theories like thermal QD where higher order
contributions are challenging 1o evaluate, and o comparison between successive orders s orneial b estaldish the
stahility of the reswmmation resnlis.

v, IYPIMEELD PERTURBATLON THEOQRY (O1¥1)

The Lazic featiuee of the optimised perturbation cheory [OPFT (appearing alao under different names and varia-
tions [11 13[), & to introduce so oxtrs paranctoer O < 6 0 1, which interpoluces boeteoen O and S in Ligo 02,1, 2o
Plead e roass v s Crsalend Do o arbaleiery weial paoaoneter, This s pecborbatively sogoealenl Lo taling oy slaamlamd
perturbative expansions in Aly), after renormalizacion, reexpanded in powers of 4 after subatitucing:

wm= ]l =4, A=Ak, [4.1)

This procedure iz congistent with venormalizabilicy 29, A6, 36] and sauge invariance [1l], whenever the latter is
relevant, provided of course that the sbove redefinition of the conpliog is performed consistently for all interaction
terms and eounterterms appropriate for rencomalizabilicy and gange invarlance in a given theorv?. Note that in
Ee. {4.1) we hove iotroduced sn extra parameter, 2, to reflect a priori a certain freedom in the interpolation form.
As will he ddemomstrated beloar this pacameter plays an esseokial role wicthin oor method For allowing compelling
constrainis to be imposed.  Applying Eq. (410 o some given rencrmalized perturbacive expansion for a plysical
quantity, Ploe, A, reexpanding in 4 to order &oand ceking affereards che & = 1 limit {to recover the original
mossless theory) leaves o remnant se-dependence at any finile 6%-order. The arbitrary mass parameter m s then
most conveniently fixed by a variational optimization prescription known as the principle of minimal sensitivity [13]

R
f;TF”‘- (e, A = 1)y =00, (4.2)

< Cronlrary Lo whal i somsdimes claimed (and worked aul] in Lk Literature, the QT AEFPT A HTLpL Goes pedl peeed] sy exlea courilarier s
brsides the standard anes of the corresponding mnssive theary: in partioular all seemingly sew divergenees generated at arbitrary orders
Froan ther frst replacement in Eq. [14.1] are evidensly related wo she gingle stacelard mass counterterm. Moresver st acrbitrary ocders,
teinperatisre=depeisdent divereisss and asansine] conntarierms Sl e APEERS, nA -::-\.|||x:l.-|:| fiviim AT al pinciph=, proviced 1l
oot leeps the mass as an arbatrary parameter and carefully suaeract 2ll pested subdivergences antil renormalization bhas been completed,

Lrlore using: & papeguaslion givieg perborbalivaly owoee 70,



]

thus determining o pontrivial optimized moss AL, with nooperturbative A-dependence, realizing dimenstonal tramns-
muntation (more preciEely, e lor asymplotically Tees theories al vamahing emperatoees, Lhe opiimieed mass s
automatically of the order of the hasic scale A ~ pe~"™ *! in contrast with the original vanishing mass).

T simpler (FF = 17 moalels, alovanishing lemperalures, U progsloee ooy e seenoas oo paeebicolar e of Sorder-
dependent. mapping” [12], which has heen proven [37] o converge exponentially fast for the £ = | &' oecillato
cocrpy bevels, For bigher dimensional £ = 1 reonormlizeble maodsels, oo riporows converpence proof exists, althoush
e OT'T e shoswnn Do gaebially cdianp the Tetorially aleeewenl Qinfeaesd renoemalonsd perborbalive Belovior al Lrge
orders [34]. Mevertheless, this technique can mive rather suecesshil approximations o some nonperturbative quan-
tities beyond the large- 5 for mcan Geld) approeciomntions ina lorge varicty of physionl situations which inclode the
sty of phase transitions within condenaed matter related renormalizable models 39-12] as well as within QT non
renormelizable cfective models |43

W empliasize (st al findle temperalares the very sione Tasae alen has bren exploite] by the SPT 5, 6/ HTT 0 |3
method, where in chis chermal context che acreening chermal mwase i3 treaced as an arbitrary variational parameter,
and in By, (4.2} P also depeaads on T like ez, By, (240,

V. REMORMALIZATION GROUP COMPATIBILITY OF OPT

In most previous standerd QP (or similarly SPU and T Lpe) applications, the so-called linear d-expansion is uzed,
assuming a = 1/2 (Le. m? — m*(1 —4) for a sealar mass) in Eg.{4.1) mainly for simplicity and economy of parameters
while the more recent approach. developed in Refa. [16-17 . differe in two cricial aspects which turn out to drastically
improve the convergenee, First, it introduees o straightfocaeed mocciage between OPFT and renormalizstion growp
(RG] properties, by peguiring che {daeodified s expansion to sacisby i addiclon po che OPT Eqa4.2), a standand REG
eqiation:

o
pa- P A d=11 =1, (5.1)
ik

where the KO operator wee defined in Lg. (510, Moreover, cnce combined with Lo 4.2, the RO equation takes the

relucen] eoaeslies= o

-i+-x[.x-.i P¥ N Ad=11=n (5.2
TR T SSi e a8

Therefore, Eags (520 and (4.2] if veed togecher, complotoly determine eotimdzed m @Soond g § "variational” fixed
v walies,

Since interaction and free terns trom che origingl perturbative series are racher drastically reshmifled by the modifi-
cabion impdied Ty B, (2,77, the TG bnvarcizonce B o0 geveral no Tonger pectorhabively salisfed, even when thee priginal
pertirbative series s RG-imvariant price o perfarming (1.1, Thia apeiled ROy invarianes has to he reacored in sone
mannet, and thus Ly, (5.1 pives s noocciviel additions] conseeniong, Lhis fescure has boen seldom spprociated snd
consideral in many former applications of the d-expansion OPT method o rencrmalizable Ueories (perlags in par
becanse in many analyses with more elaborated theories che QP i= restricted to first order. where RO improve-
manks are supposed o play aominor rolie], This imporians role of TeG properbies was reeognized moach earclier in Tels,
[29. 300 where to recover the RGoconslatency the standard linear d-expansion was reaumnmed to all orders. Indeed,
this resmmmation can be done, at least for the pure BG dependence up to teo-loop, but the result comes as 6 rather
avalved integral representation, nok practies by iotaibive woed malang Qitfiealt o perform the mass aptimization or to
generalize to other physical guantities and ather models. In contrast, the purely perturbative procedure togecher with
E(3.1) appesrs s considerable shortent, straizhtforessd to spply to sny model, Intoitively, just ps the stationary
podnt solutions from Eqg, (4.2] are expeeted 10 give aensllde approsimaclons, ar suecessive orders, to the actually
massless theory, one similarly expecta chat combining the latter with the RO solutions should further give s sensible
seppence of hest approximations o che exactly scale invariant all oeder resnlis,

Atill, a well-known drawhack of the standard OPT approach i3 that, beyvond lowest order, solving Eq. (4.2) generally
gives maore ad more solutions at incceasing orders, some of which sre likely o be comples-valued, More generally,
witlsond, some fnsight on the neopertarbative belavios of (e solotions, B may he diflicole oooselect the eight one,
and the unphysical complex-valued optimized solutions st higher crders are embarrassing.  This is incidentally a
problem eneountered Grst ot three-loop arder io ST 7] o TT Lpe applications to QODE] The mass optimization
15 then replaced by alternative prescriptiong, most often waing simply the parely perturbative aereening mass, bt
accordingly loosing a more nonpertur bacive ingredient from the optimized mass, Dot B0 considerations also provide
a pemsi Dl wiy o, whicd s D second maio dilTeeenee son] pesse Feadare of the presenl RGOTT version, For COCTY g
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compelling seleetion criterion was proposed, in which only the solutions) continasusly motehng the standard pertur-
bative [asymptotically free) RG behavior foe vanishing roupling are eetained (16, 17, This preseription can easily be
generalized to any model, like the non asymprotically free (AF] o' cheory, by similarly requiring to asymprotically
mabehe Che solubios Go e standand pertoelad bee hebayvior e seoall conpling, ey Toe Gxed s aod acbitrary seabs
s

] - -
- REFS hris ;

Mu )~ | byln = FE 2 [ — ] . 5.9
G (“ u.fr.J |~ (.t!-). e

Abzern lernperadore Lhis Lorns oul boggive i nnieque sedotion Fae boch che BOG aned OTT eggoadwms, upe fo richer high
orders, An additicnal welcome featnre i3 that by requiving at least one RO soluckon to flfill Eq. (53] leads to a
stromp peocssary condition an the lesic interpolation, Ty, (200, uniguely determining & from the aniversal (schaemme-
ilependdent b liest order RG coellicienia: o = <y 0y, a3 we derive inomore deladl below., A conneciion of the OPT
CEpOnent o wi:h G anomalous dimensions /ericical exponents hod also been established in o very different contest,
in Alee = 3 & mode] for the Bose-Finstein condens e (BEC) eritien] temperatore hilt by two independent OPT
approaches [41, 42], where it also led to real OFPT aolntions 42, However, AF-compatibility and reality of solitions
can appear to be mutnally exclusive beyond lowest order, depending on the particular model. A simple way out is
to further explodt che RG freedom, considering a pecrtorbaciee renormalization schame change o allempl o recover
RGOPT solutions both AF-compatible and real [17]. We will see that thia extra complication is not even necessary in
the: prosent ease, where (ot least up to the teo-loop crder] the BG-compeeible solutions remain resl for 8 large range
of relevant valoes of the cowpling and temperatore. Al cheae featnres ave easy o generalize at Aolte temperatures
due to the fact that RG properties are essentially determined by the divergence structure of the T = 0 part. So, the
oaly complication is technical since at Onite temperatuee the previows Eos. (4.2, 0511, and (5.2) come with an extra
T dependence. Lot s now illnstrate explicitly all those leatures by evaluacing che RGOPT modification of the free
coergy of 6 thermel scalar Held,

VI 1-LOOF, a8
A, T'=n

Lt ws first brumcate To, (240 ab strict one-loup arder, woed ficst restrictiog to T = 0owhich i simpler and sulfcient
tee detarmine Lhe RG-exponent o in Bl 1], We hawe

2
AL 3 g1 41 H 5
() AT -0 - = m! - tm ( d+2ln—], i.1)
.I 1] ’ E' % 1”._3- I.
where the superseript Bl emphasizes the (percurbacive) RO invariance of this quantity, At this arder the caleulation
i edemsenbary sl can best ilustrate e main stops. Mo, spplving B, (407, performing the d-esxpansion Lo onder

A consistently, and taking afierwarads 5 — 1, givea:

2 RO T - N it
[4=x]°Fy I:-"I":',-"I'— 1y =1m I:_TI | —du)— 3 |:~3+2||| F):I . [6.2)
Mote that the C{1) term rf~11|||i|||u'| wmpennedified [his is s geners] property of OPT: exponding ot order & aned taking
4 — 1 leaves the order AY term unatfected due to the sereening feom A — #A). Then, requiring Eq. [G.2) to be
perturbatively RG-inverinnt after thi=s modification of the perturbative series, e, applving the RO Eq. (5.2}, on gets

m [(1 ] rJLJ RN =D, [6.3)
T ]
which wniguely fxes
w1 -
— =, (6.4
& hn I 6.4

where, in Egs. (6.3) and (6,41, we made che BO coctficien: dependence explicit to emphasize the generslity of these

ressulis. Al Lhis posinl several remacks are o order
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# 1] the vory sene esult, B, (640, wous obtained |16, 17] Jup co o trivial b difference of npermelization by w fetor
2], while consicdering vhe ROGOTPT foe QO Cwiih appeopriate QOTI values for chose RO coellicients], The expo-
nent o i universal for & given maodel. in the sense that it only depends on the Hre-order HG coefficienta, which
are: renormslicad o schere independent, Poethicemwee, al wanishing, cemperaduee, Fogo (6.4 greatly improsns
the convergenms of the procedure an higher ondere: ronaidering oaly the et RO enaflicients by, v, dependence
(i, oeglecting higher 080 ordors sod non-100 tormoes), it sives the exaes nonperturbasively resummed result at
Pl Tiest & oeider aned anw soevessive onder |_|'|"J. This b= vt Ll e Tor o= 102 [Tor o sisdar r||:|.-~-e~-_:l1 wheres 1w
convergence appears very slow, it amy.

= 2] The stamdar] Honear A pansion interpoedalbm, widely osed e seen lamperaiore mndels amd o SPT/HT L,
takes a — 12 [7, 11, 14, 8]

m? = m*1 - 4) , 6.5)

thus ouwr BdE-compatible exponent, (G437 18 theee Limes amaller 2. Tndead the standard OFT/EPT interpolation
(6.5 leads co an unmatched RO equation, while the OPT equation (4.2) solved for Afm) (or equivalently for
A gives, in the pertarbative regime @ m

. libed
My )~ — i (6.6)

in clear contradiction wich che frue ronning by a weong overall sign plua a factor three too large.

# 3] AL the very frst non=teivial & order, ance hewing fixed o = =y /0y the BG equation s satished and thus does
nod give furcher constraint. We will 2ee chat ai che next and higher orders in &, Eq. [6.4) 15 always vequived for
the RG equetion to have at least one solution matebing Bq, (330, In eddition, i€ also fixes A in terms of the
ather parcameters (e ol che only momadniog paconetoer @ T when considesing the thermal pert ).

Ted s next consicler Che otler OFPT constraint given by Eg. (4.2]0 56010 neglacting the thermal part, amd polling oot
an overall tactor yields

[ 1 I ( T
B I -
— = |l — || =1. .
" -5.1,'L+:! , +u11z.5'ﬂ 16.7J
Olee resulily remacks the explicit eact seale-ineacianes ol Fog 0670, thes ol s solulicn, provide] thal one ases Tor
A = Mpy) the exact {one-loop resummed) running in Leg. [3.90, since the expression 174000 + bolng i= explicithy
p-inebepenchent, Takting, aprarl ae weivial oo = 0 solotion, Fepfl 70 Tee e roeeeer mlereesLings sodo i

sl = et oW (6.8

which i scen to be compatible, for A O, with the porturbative frst order stendecd WG solution obtsined from
sslving Fop {3220 e Ape) an Dl coler, Waonely, For liesd e ] acbiisandy small g, 0 exlhobsils iofrares] Dresdom:
A m) = {by Infm )yt

Moreover, plugeing B, (6.8 within che modified waevom cocepy exprossion (6,20 e the case of wanishing tempera-
tures, gives a remarkahly simple resali:

wigd

W ; (6.9

_.""_.-_.-:_.'Fl.. .:'._;l = -

Diespibe its somewhat trivisl look, Eg, (6.9 represents o nonperturbative resolt, inthe sense thet it only involves
the expression of /! from Eq. (G.8]. Apart from che one in Eq. (6.21 all A-dependence disappearsd {in particnlar the

ag/ A term has eonsistently disappeared upon wsing the OPT gap equecion (8,710, Therefore, Eq, (6.9 gives a non-
trivial T = 0 (negative] vaciwm energy eontribntion and resembles much che lavge- N nonperturbatibve resole, up to
appropriate identification of A, but here obtained from the OPT. When higher R arders and non-BO contributions
are included, they spoil this simpde form result 17 0 as does also the thermal peee, that we will consider next, In
tleese cases there ave rempant coupling dependences, once having wsed the solucion of Eo. (4.2) within the pliysical
expression of the wnewum conergy,

* I LAY e e 3 lighl sk Navors o = 9 /3y ) = 4 AU s e s alELanind I miadler Lhsn Che linear case snlue o = 1 Tor Tecmios e,
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B. T20

Lt us mowr consider the chermeal concributions in L, (247 seill at one-leop order, Afver performing the d-expansion
o the bowest correspomling order 8 we olitaln the T 2 0 ree energy, similarly as in [6.2):

; et | | pu? 1.4 ¢
g el U 1 e, - Lo
(A ERSp 20,6 6 = 1) = m [ %~ 5 (3 | J_uI—R!)] - J;.{—I_] : (6.100)
where the first term spmi1 dad /A et {8y A% is the only one sffeesed by (4,1) st this lowest order, Coleulations

are slightly meore eolvesd Chan Tor T = 0 bt onde chad Pl S espans o awned sobsepoent OPT mdoimiziion eekion
involve successive derfvatives of the thermal function S, Gm 100 For more generalicy and to make contact with various
el resurmmation methods, it tomms out to Le poctioulacly comeeniont to express ol owe TRGOTT resolts o termes of
the one-loop renormalized self-energy, including all thermal dependence:

A ] g a me a i :
Eff:iim—ﬂ |'=":--_|..:'. I::I:". (IHF_ ]) - T url [?}:I . [ﬂ”l

[where for completeness the mass counterterm reada £°° reads sAm? /(2¢]). This simple factorization is possible for
the scalar ¢ model up to the teo-loop level, beennse the teo-loop contribution [the lost order A term in B, (2.40)
factortzes as the square of one-loop expeesstons (e, graphs with o different “nesed” wopology only appear at the
three-loop level for the Ad? interactions),

Then, noting that 7%= [ In(p* ~ m?) = 2Ea/A, the eonct solution of the OPT Eq. (4.2) can casily be written in
the: form of & self-consistent “zap” equation for &
T - 1 L% A =] ﬁ"'? i m'ﬂ TR b
me = dr} i Eg J""E M In— — 1) +T°J, T | , [6.12)
which like the T = 0 previeos case, 15 exactly sealesbnvasiant By constroction, as owe will llostrate more explacitly

bl

I MHgrcsaion, codeoedion With faege- N and JPT results

A an important digression, we point out that B, (6,127 b recopnised as the very spmme solution obstaimesd foe the
large-& CHN) &' model in Ref. [22], upon appaopriace by definicion for the large-5y ease. Indeed, in the leading 1 /N
approccimetion, the only contributing graphs hese che one-loop strueoare, and the mass-gap equetion can be solved
ey, Wore prevcisely il is easily fooml Trom e arhiveery & RGoooefliciens given ey in Rell [28] that in oor
normalization,

N—& N

(47 by &) 5 (A} N 4.: : (6.13)
aor Lhat in partieular we have for the ceocial exponent n (4.1]:
_ I?."" b ! :
n= ﬁ:% (’f_—i) — _.IE foar & — o (.14

for which values all our previous constroction, s the cormesponding mess gap equation in (6.12), reproduee exact]y
the large N results in [22). Note in particular that e = 1/6 for &% = 1 while accidentally the large N value of o = 1,2
is the standerd linear one, but here being fully consistent wich RO properties, The fact chat the one-loop RGOPT
reproduces exactly the large N oresult can be seen as the finice temperatore analog of similar RGOPT propesties [15]
cbtained for the large & limit of the GN model.

Similarly, Eq. [6.121 i also recognized as the very seie form of mass pap solution obtained io the 200 formslism bot
al two-loop order[21] {or also in the tadpole approsdmation for the self-energy  20]), except that in [21] the correct
by = 3/(1677) is effectively replaced by by /3 becanse, ae explained by the anthors, only one channel out of three
is koo into secount ot this evel of che 20T approsimation, similacly to the leadiog 178 approsdmation.  We will
come ack below on this appacent by value mismaceh when discussing che perturbative reexpansion of the pressure to
make contact with standard percurbation resules, Lo fect, the analory with Bef, [21] soes further, in particular their
coggaressioe ol Ll mass o soluion s also exactly seale sl ol Swoesloop order, and Chie Tres energy involves, aller
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renormadization, o term e S(24), onee agein identionl to our subtraction terms - m* (32 in B, (6.2), when
taking by — Iy/3. But the origin of this 170 term in el [21] s very different, smerging apon uwsing e gap equation.
lneidentally, the scale-invariance of the 2P| reaulcs is esgentislly due to a renormalization procedure that is peculiar
Lir Lhier seadir el inspara] bae Che e 3 Tieoid 23], which thus appears taoogs as e, accidental, sned Tioilead to
the firal non-trivial tawo-loop level, In contrast the mass gap (G120 is obrained aleeady ac the one-loop level, and it
should be clear fromm the provicus construction that the RO GELD systematio procedure i appliceble o sny modael at
arhibrary oredirs,

2 Ueclann BOOAPT mass gap and pressire aaditinms

Althomagh Fapo (612} roay essaly Tae salved oomeeically, 10 s instroctiee Lo comsider nest the approximation given Ty
the high-1" expansion, which i3 very precise as long a5 17 2 o in tact this condition can be easily checked a posteriori
considering the optimized solution @, A one-loop level, it turns out that the optimized mess alwave satisfies this
criterbon for all the relevant range of roupling valones, Therefore, we will non need 1o solve the exact Fo. [6.12) for all
practical purposes. In the high-1 approcmation (2.7, che one-loop order OPFT Eq. (4.2] produces [discarding the
trivial sodution mo= 0} a simple gquadeatic equakion fore we

Lo T R i 6.15)
rJ“—A—.-_r- F42rvm—- et [ 15]

where m = T and we defined for shorthand nocecions the /T dependent part L = Ilnjp/{(47T1e7], As slready
explaines] alwwve the TG Eag. (5.2) reduces 1o Eo. (6.0 which s aleeady sacisfed for Eog. (G.4], thus it ghees oo additkonal
constraint,

Solving Eq. (6.15] gives tao rea] solutions, but coe s olearly wophosionl, giving e < O for soy A0 The other anigue
physical soluticn is thns

. y
1 Tt I:ﬁ iy

A : : (6.16)
I m N ir..r'

where for moore generality we kept. the dependence cn fy explicin, Despite the apparencly minor medification of the
sories represented be B (620 ot this ficst order, che solotion given by Ty (6.06) bas clesrly o ponpertorbsgive
dependemee on A We stress Uhal the varational mase (GG s aoeelalend o the physical sereening mass [27] in
Lg, (28], and thus has no repson o reproduce the lecoer, Moroower, ss enticipecod, Lg. (6.16) is striccly cractly
sepbe-invariant, provided thal oo uses Tor A = 300 the exact Tone-loog resuonrmed ) raoming ine B GR8) [wow with
ji being temperature-depandent as usnal), asince the expression LIAG + bplr = 1A = by lnp + - -~ 8 explicitly
prindependent, Inoother words the mass sup o (6,161 sctuslly cnly depends oo the single parameter Al ), where
Jag 18 s relerewrs scale, typically = 25T,

Bafore we procesd, it is workh deo comoment o litcle maore on chis resolt: cecel] thst price 1o e deexpansion, thae
hasie one-loop expression (Aeat line n B0 2400 with the fivan term s in the subtraction £, & by consvrnction Ri-
invariant to one-loop order, ée0 up to neglected higher order termes A Bat what 35 more remarkable is that the
cpfirmal s resalting from solving (4.2 1 eracty sealesinvriant toall creders (ol conse “all orders” hat neghsting
genuine higher orders in the running coupling, Le. keeping only the by dependence to all orders). This @8 a direet
consequence of the walue @ = =y /hy i the nterpolacing relaticn, Bo.04.17, This resalt 3s che finite temperature analos
of what was similarly ohtalned generically for sero temperature GO in Ref. [17]: namely, “all-ovder”™ {one-loop RG)
resumimed results ave correctly obtained by che very first ROOPT & order, Indeed. since this is & generic result,
wo anbicipate that applving che same proeedaee o cheemal Q0T will give similar cne-loop resulis, with an OPT
eqiation and solution very aimilar to Ega, (6,150 and (G160 up o obvions changes in some factors, but alse exhibiting
exact seple-invariance ), However, this exact seple-imvariance i= due to the form of the exect one-loop ronoing of the
coupling, perfectly matching Egs, (G105, (60060, which does not geneealize anee inclodiog Wigher RGoorders o e 3
function and non-RG dependence at higher orders. As we examine in next section, at the two-loop C{A) order, the
sy imvwrisnee resulting from RGOTPT extends bevond the teo-loop pertarbetive order at which it s imposed by
constricticn, bk a (moderace) seale dependence prappears wnavcidably at a fisdte higher perturbative arder, peecizely
at order A%, thus one order higher than neively expected.

T proseesed one iy expeon] Fep (616) perlarbalively, which i3 easile seen Lo e an expansion in &, s expeciol.
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O then findss;

- 111 Iy . .
LA %."%w-'rlujl—rllli—ﬁ[-i-—2.".1}[?:._11]*"2— Lo (g d)* 4+, (6.17)

where we kept the &y dependence explicic an purposs,

As an important side romark, up to now we bave considered the sitmplest minimal preseription of ineorporeting only
e —ee? (s /40 subleacting an one-Teop ceder, sleictly neeessars Toe rerovering peclocbalive RGO nvarianes, Tl s (s
opportune to mention what is changing it incorporacing the next order subtraction 2, # 0 term from [3.7), being
Tormendly also of one-logp order, To Gecl Uiis simoply amounts oo che replacement By — Do 435y = Ly — 2 consisient Iy
in all previons expressinns (G000, (GG and (G177, as enuld be easily teaced by conalatently introdiocing —m® & into
Lo, (6100, (6,12}, Lhercfore, it means that at onc-loop RGO order 5 can b simply sbeorbed by o changee of
seade (or renormalization scheme} defnition, g — pe®t = e 2 Thos apart from changing the referenm sabe with
respect to the AMS-scheme, it does not really change phyaical resulta: it redefining aceordingly the coupling with a RG
evolution g —+ e 2, wo obtain strictly identical results, With this in mwind, for now on we procecd with the simplest
chioiee &) = (1 al one-loap.

Coming back to Eq.(6.16) it is obviously an expansion sclely in the asingle parameter (840 Using the &y value from
Eq. {3.4) we have: 7/2h/3 = 1/(24/2), which tells that the first order coefficient differs from the standard Debye
masd in (28], :'i‘li:, ro (AS24)T# being 7 larger. This originates divectly from the correct value by, = 3,/ 162%) used in
a = /by in (4.1}, which is the only value compatible wich BG invariance, The fector 3 in by s the statistical feetor
criginating feom three similar graphs conteibating 1o the 3 Tfunction, as & wellknown, Thos, e fiest pertorbative
coefficient of the Debyve sereening mass would be obtained from Eq. (6.16) if one would take by /3 = 1/(16x%) as given
by o gingle loop contributing to the self-cocrgy ot one-loop, se wepgoed o Red [21], The standwed perturbative term
of order A, comparing with Eq. (2.8]. is also reproduced provided again chat, one takes by = 1/{162%) in Eq. (6.16).
But, as mentioned above, Eq. (6.16)-(6.17) reproduce exacily [at arbiceary orders) the large Y-results (e.g. Eq. [5.7)
of ref. [22]), ns can be checked upon identifying the correct large- N wloe of by = 1/{167%) in the oormalization of
[22). Thie factor 3 discrepancy in the optimized mass for the & = 1 @' model from fy mismateh is not a problem,
ginee the OFT nonperturbative variationonl mess. not beine e phyeical peremeter, s oo physicsl connection with the
perturbative physica! sereening maoes o g, 28] andd s Dhereloee ool eeguieed toovegeonloee Dhae Taiter, Toedeead, there
are IniA) terms appearing &t the three-loop arder in the genuine sereening mass[3, 7], Eq. (2.8), that are not present
in the cepansion of Eq. (6.16) which only iovolves A sod AY? powers, Incidentally the fact that the standaed OPT
or SPT/HTLpt corvectly reprodiuces the first two oeders of the thermal perturbative mass expansion [, 8] appears in
retrospect merely accidental, due to the common canonical choice & = 12 in [4.1), ie. a5 if one had taken @ = 50,/
wills by = By S35

The (exact) expression given bw e (G16] ia plotted as a tinetion of the coupling in Fig. | in the very commean
normnalization/d] A - 245°, where it is compared to che standard porely perturbotive thermal seroening moss, mp/T
wille seale deprmdews llostrations,. Tooparbeafar, we remarck che saluration of the oplonisesd mass Toe galliciently
large coupling, which agrees qualitatively well with what i= obtained ac the teo-loop order in [21]. This saturstion
et b seen more explicitly e espuoaling g, (67061 Lor strong coupling:

it 1 ELe =
T T B

The above relation veveals that even if we do not expect one appracimation o be valid for arbitrarily large conpling
the relation 7T = 1 is abways velid while @7 <0 1o che more perturbecive range (see iz ), Therefore, the
high- T approximation wsed wo decive chose analyiic expressicns s Tully jostified a posterior. Concerning Uhe scale
dependence, in order to compare with standard results, we v8e the plivsical OFT solution, Eq. (6.16G], replacing
A= Ay by its Pexect” one-loop running, coupling in Bg. (390, We take po = 297 ss o reference seale, and vary as
wsual the scale poin the range (=7, 477]. The plot in Fig. 1 iz onlv made for illustration and comparison with the
standard perturbative thermal mass, since ns explained carlier Eq. (6,161 is cxoelly scale-invariant, ie. the RGOPT
1k B[ IIrl riH 1 ]IiL"i JI':.!IIJIII]F Erl & L 12|i(:k!|1'5!’|. IH':.TIH '.'i'l.“ll rIII MRS H':'il.‘ll!. u F:".'I.!II I:F':Ifl':! 'ﬂ'ﬂlll‘lrl. LISE! I‘III"' 'rl.llE:ll"::l:iill:lill.l"

F AT, R EY]

extremely moderate, barely visible on the same plot

! We anticipate that for (300 @t happens accidentally that 55 000D = by (00172, where +51000) is the gloon anomakms mass
dirnersion es=ily caleulalds Trom Lhe ralevanl countsarierm givan s g, in “ "JI Thus e = 17F Tor e pleonic conbrilolkees se Lhal Lhe
annlogunas ROG-compeible OPT mass [6.17] will coincde foe the St few pecterhaceee terms with che QD gloon serecning mnss 53]

¥ Except for the fact that at soone laree seale @, depending oo 3207770 value, one hits che paive (one-loop) Landan pobe, mare precisely st

rJI.'I:'.!:'.l": — el eI TH [ retanes lar g — -_-'.5\.|:-!1'I":|Il':£‘-1 =T lhe Lamedan pole s rascied sl o) 23T s BUG.
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rert I=lhap
B ROPT | =hsm

FIG. 1. RGOPT msass oo/ T at oue-loop (671 oeder {Lhick Lioed, vemus standand ooe-loop pecbwrbative owass as lunctions of
alpn = 2T = [Alpa)/240* with scalo-dependemes, Groy (light Blued bands: variation of the standard perturhative mass
between o= =1 and 40T using the exaet one-loop Tonning soupling in B, (39), M the BRGOPT mass has actoally mero
ihibckvess sipee L is exactly scale-invariant.

Wexh, ooming {0 the pressore i has a racher simple expression al chis one-leop order, in terms of the OPT mass g
and normalized to the ideal gas pressure Py = o237 090 (atil] keeping the general by-dependence ):

pin 16 m? 16& 46 (1 it o

e 2 | e e s e o e | e e Lo | - B ST .19
B T T IETE T ot (b..,:. ) i 16.18]
where we remind that this is actually an approcomation aceording to using (2.7, which we argoe @5 however procise
at the 1077 level wp 1o o = wm/T < 1 One can thus plug the OPT mass expeession, Fag. [6.16), nto Eq. (6.19) to
obtain the full A-dependence, After some slechre 3o takes s compact. form:

W] 5 B A : q e i

“Pn G)=1- 3G L:;r:- (146 4 ;JE [L: (1 | ij b Ol (6.20)
where wer ddelines] 10060 = 1/000A000 1+ L = 1 0T A D)) v =T 2, To erophisise thal, s esactly ssdec s, wndd
only depends on the single parameter Afug ). Expression (6,200 also explicicly separates the “perturbative” fivst three
torms from the clearly “oon-pertoarbscive” Tost cern, aoed B valid iooplicitl o she hish-T approsdmation e indicated,
but verv precige as long as @ = 1, corresponding to 6 2 3.3 meaning very anrong coupling for Afpy) ~ F/h. The
firat neglected term in (6.20) is actnally — 15 [R]/ 112855 2% = — 147 107" ¥ (which i3 indeed exactly the last term of
Ly, (58] in [22] o the larme-5 normalization of 800 One shenld be evidently cantions not toowse (6,.50) beyond its
range of valilily, Lepiadle Tor we 22 T, oan such o cise one radher solves the exael maes gag, Fa. (G.12)).

Une ay also easily derive the perturbative expansion of the presaure, which reads o few Hrst orders

% =1 = Err - %-.;"ﬁr.“-""‘ + il' Fopr — Alex® — %'.‘.E (L — —;_: o d — E [Fop (Lo = 120 + 6] 0*
+ VB [20Ly Ly — 3) + 0™ + 2Ly [Lp (Lr — 18) + 18] 0! + Ofa?) | [6.21]

where o = Bgd. Wee romark again thae the ones and feocloop standard pertorbative terms for cthe physical mnssbess
pressure [3, 7, 44] would be reproduced by Eq. (6.21) if effectively replacing, following ref. [21], by — b /3 = 1/{167%).
But it is easily seen that the correct cocfficients of the leading logarithm terms of the pressure st arbiteary onder
e o™ In" Y p) and @™tV "0 (appearing firae at theee-loop order M) are given by [Bad /300 Infpe) A0
with the eorrect §y (comparing with Ref. [44] where the ealeulation was performed up to order o lna vsing RG
techobgues). Thus taking bS5 B ool consistent bevond 1he fest two pertosbative terms, B (6.21) being RéG
invariant by construction corvecely repraduces che leading logarithm atrocenre tooall orders beyvond two-loop order,
W stress also that Eg, (6,210 cormectly ceproduces sll perturbative tecms of the loepe- resalt in [22], when taking
e correct valoe of e large-2 by, Sinee oure expeessions 06,107, (6.20] are valid for arbitvary N owe can o principle
followy continmonsly the pressure from large & to & = 1, and while doing this there is no reason to abropily modity
thee eorrect Bal V) to some ather Ycfective” bo waloe, Tt is aseful ot this stage to compere this behavior with the ST
pressiire wp to two-loop or higher order [7], basically biuild on taking o = 1/2 in (4.17: it does reproduce the coafficients
of the standard perturbative pressure up to second ™2 order, it not the correct leading logarithm coefficients at
preder o ] Bevoan], as a0 consequense ol missing RO foeacianee (0 wonll neesd B veseale T — 30 e veprodoes
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those logarithms), So, the scale dependence of the 3PT pressure is wnmotehed at order 0? and bevond if using the
stamlard ronning conpling witl hy.

T'hnz, keeping the correct &y, which i3 compelling in our BG-based approach, the optimized resnlts Bgs. [6.200) and
(G.27) dilfer fromm Uue fest L lermes ol e standan] Droesless ) pertacbal e prissone e soall coopliong saloes Ty
Mpeg] = Apert(p20] /3, for the canonically normalized conpling of the & = | scalar model. But this is not a prohlem,
simply o differeon calibration: che cosctly seple-imearionns OO prossure (6,.20] only depends on the single conpling
O ar eyquiviadently Mgl sUl1 s sarbibeaey paearnester al his stagge, sioe e ooesded s owon Tully spescified Ty aoe diada
fixing a physical input scale, jiy. o the pressure a3 a fwnction of this coupling has a limited physical meaning,
When poing to higher loops, sinee the oooperturbative TOOTT appacetimptions veswen more higher orders, it s oot
surprising thai they differ feom atandaed perturbation when expeessed in termes of the orviginal perturbative conpling
M), and one cxpocts to obiain & better approximation for laree coupling, The only mendstory feature of any such
approximation = eecbanly e Stefr-Boltomeonn Toonil P — 5 for & = 0 beivially folflled] Ty (6200, Tocdeed, (e
features do not contradict truly physical results, as this apparent discrepancy disappears iF expressing the pressure in
torms of the physioal muss: to see it owe solve B, (4,20 now reciprocally, for Alwed, s replacing it in (6.197, Tt gives
sz

PGPy =1 — 1527 ((B=?) + 152 (8n%) + 0010425, (6.22)

But here & = m/T is arbitrary as we already used (6.15) to fix Alm). Now. teking for m the physical screening
mass [27] mp in Eq. (28), as easlly checked it exactly reprodieces the first owo terms of the standard plysical
pressure [3]. Thus if we would plot our resulis in terms of the sereening mass, Pl;-i-n'f,,-"T*j. we would have very good
agrecment with standard results for sufficiently small screening mess m,, and deviations for larger m®, bt the study
of seale dependence which s our main coneern, specially for large conpling values, wonld be moech morve difficult. In
the sequel we keep the results (6.20) in terms of the M5 coupling Alpa). which scale dependence is well-defined at a
given perturbstive crder, sinee aur aim s oaindy Lo compare the scale dependenee wich other resulis o the literatuee
alse mostly expressad in terme of the mnning conpling.

The cxact expression for P75, BEq. (6.10). is plotted in Fig, 2 where the RGOPT result is compared with the
stamdard perturlative expaosion al ceder A~ pf0 The pressore Toe the eescaled conpling 3 — 303 is also shown on
the same Figure just for che aake of illuatration, which socordingly compares becter wich the standard perturbative
pressare for simall coupling walues, The troproecanent of scale Cioddependence of RGOTT & onee apain drastic ab chis
cane-longp order: using Che exact one-loop reswmmed conpling, B, 03290 the REGOPT peessnre 3 exactly scale-invariant,
which & obvious in Lg. (6.100 sinee M is itself conctly seale-inverinnt and the combination 1/50u) | byl too, as
clisscaesad b, This fesdare is el Mlosiede] Tee Fige 2 b comparing, the TIGOTT with the stomlamd pertorlstise
pressure at one-loop which has o notorionsly larze seals dependenca.

T conclude this section we stross that all che peevions: SOPL one-loop results, reproducing smeng other thing:
il exact laorge=N resnlia, only relv g0 far on the very alimple maaabve one-Toope lee energy geaph aml the knowledge
of the first order KOG cocthicients by, 9. Uuc these resmles are not too surprising sinee the HO properties, if fully
cpalosilen], mvelve informmstions ool arders Saisy™ and Ssoper-dinise” oo griaghe lile Dwese explicitly resammed in
the large-N limic in [22].

L M

e o BOROT (-
— T |-ag

Erl-
Wl oy

FIG. 2. Ome-loap (471 ROOPT pressure {chick), and rescaling A — AS3 (dnshed 1, versuz standard ane-loop (detted, light bloe
bands) presare as fanetion of 9 = /A0 24 with sealedependence between @ = a7 and g = 437, NIz the ROGOPT prosane
lias actwally wero thicksess sloee 0 s exacily seale-iovariauol.
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VIL. 2-LOOP, O:f)

We nowr switch to the two-loop order, thos incorperating wll the terme in Ly, (24, adding che subtraction terms io
Fep. (3.7 and (380, and then peclorming the d-pxpansmn consiatenl e lo omler & el qelling 6 = |, For simplicity
we trst consider the minimal prescription taking only 5, £ (1, and wrill alao later consider the relevant changes if the 2,
L, formadly of crder A, 5 also inchaded, The i neeee Ty st bwe-long order s thal s dhe TOG relalion, Fago (5.2,
gives in general a nontrivial addivional constraine, chat can be naed alternatively to the OFT equation, or combined
with the latter to comploetely fxomognd A incerms of the ooly remainiog free parameter, @00 (apart from che overall
dimensinnal depemlence in T o Thia s ancd er dillerence with standaed OPT o SFT/HTL L, n0owhich the conpling
remaing undetermined and the generally adopied prescription iz to cake ita percurbative value as a function of /1
anid o reference coapling Alpg) value, Tnooor case, as ceplained proviously coe of the TUG solutions & mstching this
stamdard perturbative bebavior for A — 0, hu for moderace or lavger conpling values it will give a nonperinrbative
deprodence. One may thus followr at this stape different possible presceriptions: either, one can use any of the two
OPT and RO equations, ta b solve] costeanarily Tor s AL oot asing, s taeosloop erder ronoing coupling, in order o
compare with other resummation methoda, Alternatively, cne may conaider the full RG and OFT combined solutions.
Whatewver way, neither the optimize] mass o solotion of By (4.2], nor the optimized coupling & when combining
tlee former with the conseealng given by Eeo. (525 have Intelnsic undveraal phoysical meaning. Boch should betber e
viewed as intermediate stage values, to he nsed only within the physieal quantivies auch as the pressure P, A, 5/ T).
In particnlar there is no contradiction between the “fixed” oprimized coupling A and the standard running coupling,
obtained from a different (standard) perturbative BG equacion,

Like for the one-loop approximation, we can express all teo-loop RGOPT resulia in cerms of the one-loop self-energy
defined in Eq. {6.113. After some algebra, the C001, 6 = 1 ree energy takes a compaet form:

et 1 & 1 u Dy | L
o=~ faay (mn = 3+ 3) + 3 [ i+t = (5) B gy5h g

whoere (e Docdex “F1™ o Che Integeation means Galang the Doite paren of This aleesedy renormaliee] expression. We alao
kept as much ar possible a general dependence on B3 eceificienta, The first chree terms ariginate from the subtraction
terms s in Egs. (3.7)-(8.8], Notice also che different coefficient 170350 us o reole of expanding to CAY), insteud
of previcus 17201 al one-locp A arder, As alveady mentioned we s consider foe simplicity & = 0 in the seguel,
while the cffects from sz # O (that incorporates s 1O part of the three-leop contributions) will be disenssed loter.
Mexl wller straopbitloeward wamipolationes che OTT Fa 72200 and Dhe rechecesd TG operstor, Fey (502), aoquires a
compact neat form:

Ly L il (7.2]
Jorrlm. A 5} = gh{ - .uj.xJ 3° + % ?A)_ &

-

f} - = e, _——N —|.-'I'I __ "...
n.pm,xi1 .'1[ hm a\|] Ast=0, 7.3)

with i = (42172, #2E(A) = bAZ + 1 A3 I3 che aandard 2-Ronetlon resteleted 1o two-loops, and recalling also that
4, = —1. We have defined for convenience the reduced (dimensionless) self-energy S(m, 3. T) = Eg/(m*A) thus
iilq]r'|n'1|1]r'||1 af &, which makes the coupling dependenee wery Srimsparent in Baos, f??_.l and [7.3). For complebeness
and further wse below we alan have from Eq(6.110:

)
- R _
Eg = —I:ng A ("-i' + i

as s p
a2 o o T 4

e o A {].I : ._."_gl_m_,-'T_,) ; [T.4)
Wote that in principle the reduced RG Eq 78] b8 only valid when combinesd with Fo. [T7.20 aloce the Tatter remmoves
the &y, part of the complete RO operator in Eq. (5.1 Clearly, in che sbove normalization. the complete RO Eqg. [5.1)
resinils

Fromn = fra + 2l forr =0, (T.5)
where the ancmalons mass dimension 5 [truncaced an the two-loop order ) was defined in Eoq. (3.3), Therefore, to

obtain the most general solution miA) consistent with srbitrary coupling values, Eq. (7.5) should be solved. As we
slindl sese Dielonwe, Ul solobiomes st (A aned we o (A0 are very close Toe sulfciently sodl A Dt ean deparet sabstantially
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fromm ewch other for arbitrarily larze coupling, Uhe adwosege of weing the redoeed RO operecor 3= that the solution
can he more easily fownd when locking for the nlersection betwean the bwo BOG and OPT solutions megpp [A) andd
A

Befure procesliog, ancother digressiog, remack s Ul the staolard OPT SSDT weonld cormsponed oo moneh sinpler
OPT equation than Eq. (7.2, since in pacticnlar the fean twa (anhoraction) terms gy, & woitld e alsent, resulting
in a simple OF1 sclf-consistent solution: w? g, Moreover the modificd RG Egs, (7.3) or (7.53) are wsslly never
comsichere] willin the sGaneond OTPTSTT o HTT o apeplicationes, The Guel thad ae OTT som] RG relalicons, Fag. [7.2)
and Eq. {7.3), are more involved is expected aince the one-loop RGO already gives nontrivial results qualicatively
similar to two-loop stuodeed OFT ST, Accordingly, the relative complesicy of ROOTT sgoations et teo-loop s
due to the more information they carry oo higher RO orders, and 2 a price For a meoee efficient and R{-comsisiaent
resumimation procedure. At this stame che OFL and 105 Lgs, (7.2), (7.0 coudd be solved exactly for Alm, /7)., being
resspeecLively i am] cobie algehesse sgoaboms e A Bot b cornpasre with most resalis in che Tierabore i s omore
customary to rather solve for a mass gap sl A, 2/7), to ohtain in a next stage the pressuve or other thermodynamical
guantitics ss a function of the coupling,

Clonsidering firsl. the [redaeead] Rl Bo, (7230 s hest sodverd inoa fivsl stage a8 oa stmple gquadatic sguation for
E{m, p, T7) whose mass gap solutions are:

s P lzﬁ'."i—ll_ﬁ'.'"':':l_:lil';"]

PR -'=J.:|.'.2= :3__5,'|;|+::|T.___5,_::

(7.6)

where agaln the explicih, BG dependence has been kepr for geneeality, Nobe that the conpling dependence s entieely
coitained in the RHS of Eq. [7.6) since by definicion & does not depend on A, prios to using the RG Eq. (7.3]. Just to
o where we stand before considering, the more nvolved exoct mas: pap solotions at tee-loop order, let us consider
Eep. (7.6 by condely neglecting the two-loop A-foeetion coofficient, by = 0, or equbvalently taklog che leading term when
expanding (T.6) for A = 0 . [t gives immediately Spai(d] = 1/(3A) which, recalling thet 8{m, 0, T) = Ex/(Am?)
and using (6.11], is nothing, Lot che once-loop mass gap Bg, (6,81 consistently recovered, Onee we gse a0 nonseros
by = 0 in Eq. (7.06], at it should at owo-locp R arder, one conld congider a perturbative expansion of Eq. (T.6] 1o
gradually include higher perturbative order corrections to che one-loop solution (6.8, bat it i= algebraically not more
commplicates] o sodve B, (767 eaactly, Mo Do Gt Fo. (V.61 also vellects apoesihle complization appeaciog ol Dwoeloops
order for large conpling values, dne to the owo-loop nloeaviolet Hxed point (UVFR at A = —hy/h since &y < 0, see
Eeg. (5.4]. This purely pertoarbotive TUVET s totally sporiows, not only sinee it disappenes of theee-loop level (whiees
the next coellicient iy is positive[28] and large enongh an that posaihle non-teivial lxed points are comples) but more
generally sinee the existenee of nonperturbative LVER i excluded by the mumerical evidence for the triviality [47)
of thir g ey, Wesertheless, singe Uhie TUGOTT constraston Tesically relios on perbacbalive TUG properbies, ome
may worry that some of our two-loop resnlea conldd he affecred, 37 driven by thia spuricua UVEE lndesd the [+
solution in Eq. (7.6) is singular ut the fived poine value of A, which means thet @2/ Sg{fm?) » 0ie s+ 0, while
Ulee (=] soldubion is regular: Sga(—=hg g ) oo T S0G 1, which means thal il s a poned Dee aolotion nol wongly driven
by the UVEP. 'I'hu=, in the sequel we should be careful o identify any behavior that could be an artifact of this
pertarbabive Txed poind. Mow, i e of cthe rescalo] cooplivg A = 2402, the UVTT s ol g ~ 1866, and e
maximin of the S-funetion (beyond which che coupling is driven o a really wrong behavior), 18 ar A = =20,/ (3 )
i g~ L33, Both values wre to be considered voery larze couplings, where the salidity of o resammetion procedure
15 anyhow gquestionable. Therelore, 2 long as one auays salely below These large roupling valoes, say nol oo neh
above g ~ 1 in practice, our reenlea should vemain valid. Moreowver, here we are basically focusing on the R facale
invariance s in very geneeal termes, rathier than an the pecaliae nonpertucbative Qyvoamices of e @ medel, which
18 beevonud the presenn scope. Ancther peroperty bo noclee is that che exact BGosolutions, . [7.6), heoome complex
at a coupling A. = —3by/(2h)) = (4x])227/ M corresponding to g = 2,28, thus irrelevant since located beoyond the
fizesd point mnywny. Yot ane shonld keep oomiod shat indepeodently of the presence of nen-trivial pertarbative fized
poants, complex optimized Rl solutions are nnavoidably expected to oceur ab soame higher perturbative order from
exactly solving the OPT and RO equations, ss discussed above,

A. T'=0D

I'o get some more feeling we hrst explore the T = {0 cage, which is much simpler since both R and OF1 equations
cun b solved apalyvticslly, e for lom e in terme of the [rescaled) coupling g = 30724 (o its reciproesl function
MlInne/p)). The (real parte) of the OPT and R(3 exact solutions, expreased as In'mig)/u|. are plotted in Fig. 3. We
alen show for comparison the one-loop solution (dotted) from Lg, [6.70 Lhe physical branch solutions are clearly
whenbifiesd, e thase oatching standasd peclacbabion Toe g g0 e owith lixed s Todp — 4o for 4 — 0t [aee
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FIG. & T =0 two-loop (8" ordes (T (dashied ) and B0 {thice) {real parts of) solutions n2(g), g = /A/24). Also shown
is the one-loag solution (dotted ] from B (6.7,

alen the discussion after Eg, (6511, Ooe also secs che asymptotio value Inoedip == 172 reached for large conpling
g eonsistently with Eg. (6.7 The two-leop OFT (dashad) phesical hranch hecomes complex foe g 2 208 [whees
there iz a corresponding bifurcation on the figure), in fact very close above the intersection between the two (real)
physical branch solutions, aceurring at g == 208, In(ig ) = 000833, thus at /e elose to 1 and s guite strong conpling
valie. The (T branch B eeal again at about o 2 6 (wheree the dashied corve shows a little esmp),. The RG plivaieal
branch becomes slso complex at a slightly higher ¢ — 228 walue, as already noted above after EqiT.6). There ave
alg two other combimed TG and 0T salutions (intersections ) sieting on the complex branehes, see Fig, 3, bat these
are to he considered unplysical solucions sinee ot connected. with the pertarbacive branches. One can also note
that the RG branch hes a pole behavior around g = 2, which i= & consequence of the above discussed perturbative
UVFP at g = o —ha/{24h ) =~ 1.866.5 The reciprocal function gilnm/gq) would show a frozen behavior at g =~ 2. In
fact, we stresa that the behavior around g = 2, ineluding the aolotiona hecoming complex, & all driven by this naive
perturbotive two-loop UNVEDR, so thet one should simply oot trust what happeos for g close to those wloes, say for
g2 Uio beon the safe side. (Naotiee howeser that oo the Ggore the one-leopelike Belavior B eeeoveral for omeh
larger g walues). In partienlar. the above mentioned res. CEYD anc HOG intersection solution at § ~ 2008 is bevond
the: UNVET, thos wery untrustabde, From coosnples o other theoricos [17], we expoet that ot higher orders ghe TRCOTT
intersection solution may deerease halow the UVEP and scabilize to a more reaannably perturhative valne,
switching on the thermal contributions modific: coctfcicnss of the relevant 10 and OFL equations, which will resalt
el inlerseeling points e e Bl wn] OTT salotions wich samewhal lower conpling values g 1 e gewerie T
values as we examine in next subsection below”.

B. T=0

Considering now the chermal contributions, one may solve mumerically Eo, (781 (or the full RO B, (7.5)) and the
OPT Eeg(7.2), wsing e el espressaom ST, T Trean Bl [6.170, to elhitain e = T as Tonetion off A al sonme
chosen geale p. Conerecely, o aolve the OPT gap-equacion exaccly for arbiceary temperature, it is convenient to first
sodvie B, (7,20 a5 8 linesr equetion for 30m ST, 000 o tecme of A and 8o/, 5010, gving trivially

o B |

8= =
Am? 3 An? 2 - 3AA)C

(7.7)

tor b Ehen solved numerically s aomass gap A, /T as fooction of the coupling and seale, vsing the expressions
of 5, 5 in Egs (6.111, (7.41. In che right hand side of BEq. (770, taking ool the firse term, dominant for A — 0, one
immiediately recovers again the one-loop REOPT mass gap solution Bg, (6,81 Just like for the sbove diseossed TREG

mass gap [ T.6) when taling b = 0, wehile che second cerm of B, (7.7 clearly gives higher order corvections if seen as
a perturbative expansicn. (However, for large conpling values of order g = /4724 ~ | such a perturbative expamnsion
of B, (7.7 would not give n very accurste mess gap solution so it s hetter to salve it exactly momerically),

The exact OPT Eq. (7.71 and RG Eq. (7.6) are ilusteated with theis roots for a eather strong coupling wlue g = 1

 The pale of Inmefp bs not exactly st che Axed paint of (A7 dae to che mass-dependence entering che RO Eq. (520

T When conplex selutions occur on phyeical brapches, one ey rescoover seal solusicas by pecforming o perturbative scheme change, ==
(i in |'| ?1 Hist this meee tnsolved] comese of action ean be aecdend o the 0 cas, Al lenst at the ||.'.'\-::-||||:-E| livel. We anticipata Fussaear
that for thermal QU RGOPT will unavoidably gres complex seluzicns, mainly duc to the opposite signs of the &, by cocflicients due

Lis sy sl e Trewadoon
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in Fig, 4. As one con see, inpencral both the two-loop order O sod RO eouations hueee theee real solutions, antil
two solutions become complex (eonjugates, which lagpans Tor g 2 200 awd o 2 228 respectively Tor the OFT and
B equations, Sinee this is well bevond the take peroarbacive UVEF, e cannot trist the detailed consequences near
sapcde L compling wadwes. For more modersde coopling, waloes s ostrane=] o Fige 4, were b5 one TOG aned one OTT
golution with very large m/T % |, in fact behaving for emall A as 15 ~ e/ a5 one can easily trace even from the
onc-loop mass pap Ly, (6.120 for mooe T the 7200 (m ) torm in (6.12) becomes neplisible and one simply rocovens
e T = 11 soluticon Qe sefAd). Bl for T 22 0 s solobom does ool Bave Dhe progecly ol a0 thermad ouss, e = 0
for 1" — 01, 80 that the other roots are the physically relavant ones. Lhe behavior of the two intermediate and larze

4

i
i | 2o Rl Eg
-+ -l 0T B

i
I - £ Ey

-1

-l

{I.I ! i L[ [ 1] Ei w=mT

FIG. 4. Hoots of the twoeloop (8] exace OPT Eg. (7.2 wnd BG Bag (T80, as compared with cae-loop OFT Erqg. [6.12) for
g = 3 A ) 3 = 1, o = 22T, The g-axie values are choee of fope Ege (720 fac Eq. (73], and Eq. {6.12) in convenbent
COHTIMEN it s,

visdues roots is gquolitatively similar to the one-loop GIFT also ilusteated and large- mass pp solotion |[22], indesd
recoversd as abwove explained at one-loop crder, What s new as compared po one-loop order and seen on Fig, 4 are
the two extra roots with the lowest = = m /I values both for the OF 1 and HO equaetions. Concerning the RO root
weil et Toawessl o o LT wandue, BB vy Gesee] G B 1l ginee beiwen by chee TR Dl oot Tor X — —fg g, 00 pives
x = (0, and we shonld reject iv aceordingly. The ocher (MPT eoct with lowest @ = (LG value 8 more special: it s
e casily ansdveed by solviong the conct OTFT Lay, (720 for Alore/3, which is a strople gquedratio equetion, It can
alay T semn Lo correspaned Lo Che preborbabively acdi] siboalion where Che seconed Geeon in B (00 denioales ower Uhe
first term. 'L'hen matching with the perturbative behavior, it mives an “nltrasoft” mass w1~ (min /200 + CA?) for
A = (b, which contradicts the expected behevior of 8 thermeal mess m -~ VAl om meneral grounds. thar was indeed
Towmma] s v logs omders A higher orders his cptimdean] maes bas o slonlar] poser secies o0 A Soowe consider Chis
solution as a spurions nnphyvsical one, an arcitact of the mare nvclved teo-locop OPT egquation. Therefore at two-loops
order we identify unigue phvsical QT and RO solution, which are reel and positive for all relevant coupling valwes
al coanpadible witly the pertorbative Tiebavior of o thenmal mass, correspomling to Uhe Lw inltermesliate valoe rooeis
mear @ == 1 illustrated on Fig. 4. Onee correctly identified, those physical sclutions have s qualitative behavior not
drastivally different from the ane-loap cedee OTT salotion of (G120 aparet Tram the more ipvalves] slgebirn, Note alse
that solving Egs. (7.6) or [7.7) for E[T.l.',]n-:_,l.ll."‘?"]] une ean choeck snalytionlly that for Axed /T waloes, the physical
Al solution decreases logarichmically in the teo exdreme limits ¢ < 201 and g 2= 2077, baving a maximm in
between, a behavior qualitatively quite similar to the larze-5 or one-loop case,

Alternatively for any solutions, as long as @ = 1, ane can salve analyvtically hoth BGoand OPT eguations Dl wsing
the high-T" approximation (2.7 and derivatives for the relevant thermal incegrals, giving

4 o ; i Zx Ix® i
Ser=m/T = ll= ~ T (f_--.--+ e J_z) . [T.8)

In this way one obtains respectively quartic Hi: and cabic GFLD eqgnations in @ = w7 which are not particalarly
telling but gives slpebraic solutions. We checked thas wll the approsimase high=T G solotions for e s the pressare
P/By for relevant scale values =T = ¢ < 4aT are excellent, departing below 0.1% from the exact T-dependent
solutions, at least np 1o a value of the (rescaled] conpling g = -.,ﬁ = LA, aimply hecause & remeains always lowen
than about ~ 1. Concerning che OFPL solutions, they can give £ = 1 ac large coupling g = 1. partioularly for the
Tigher seabe choiee o= 42T, o owhich cose the bigheT approsimaiion slarlts o il and we hetler s Dae exic
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T-dependent numerien) solutions ® of Eq, (7.7

el g

1. Clpmrpariann et stcedond portiachetion foary

The OFT phiysicn] solution b e folloviog pertorbogive expaosion

_ ) —
Mg
I

| g [ — . . .
o ﬂ'1,|,-' ;1.-"'&'-9- YRR Lt T (5 — 2Lp)AME lui = [ — ALy)A" .o (7.9
consistently with the fivst two terms of Eq. (6.17]. Coneerning the rerma of order A%'* and A, the (leading) logarithms
cocficient of Lpoare the same witl respoet o U one-loap copansion B, (6070, as it should be toosll orders, Thee
differences appear only In the conatant erms, dioe hot b Lo gy 2 0 and ather terms of aeder A% in e original expression
of the free energy (7.1). Noto that the relative smight of &, is chunged at order 87, with s, /3 in (7.1), Cuite similarly,
incorporating, s 2 0 gives differences only visible ab order X% nok given in Eeg, 1799, =000t has very livthe effeet ot beas
on the perturbative mass expansion. Plugging this in che pressure expression and expanding perturbacively [while
keeping the coupling free for the moment] we obtain the resio of the teo-loop ROOPT pressuree to the jdeal gas ome
Py = :I:ET:_."."-'K'] as:
2k E K, F, = E
Forr 540 2 Bed + 20y —20/8)0? — 2 VB(Lr —13/6)0%7 - 2[Lo{Er —40/3) + 44/3a+ O(AT?) , (7.10)
Py it 1 3 1
where v = Iy A, giving the same frst owo perturbative terme as the RGOPT one-loop reanls Eg. [6.210 We remark
ale, just like in the one-loop ease, that if rather solving cither the OPT or the RG Eqgs, (7.2}, (7.5) reciprocally for
Afwa ), and then taking for s the physical screening mass Eg. (28], one consistently recovers the standard pectorbative
expression of the phyveical pressure up o two-loop order, Hemark that the eect of incorporating 23 # 0 instead of
thee simpdest choice with only sy, appeaes st in che very Tost nooslogarithonie term of order itk e A dn (7100,
replacing 4473 —+ 637 /46 — 4[3] /5, which has very little effects upon the final numerical reaults as long as A remains
repsonably perturbative. This 38 completely experted sinee perturbasively m¥eA in (3.7) i= of lowest perturbative
preder o Mg o sa X
Alternatively, we also consider the seluticn iAo/ abtained from the (]} B Eqga, [7.3) and (7.5). The latter
copusbions con be solved for the cosct 2 -depondence fret e guedratio cquation for $0m /1 o/ and then mumerieally
for sl A /T Bl as mentinoned abwwe Lhe high-T approximation 3 exeallent in chis case for all relevanl coupling
values. 'U'he high-1" approximated B equations gives owo negative and teno positive 21 solations, the latter having
Tudbe 1w corres perborbative bebavior, Tl wills one salorading Guslere T Boepe coopling, which s iTlosirded] o
“anlution 27 in Fig. 5. In Fig. 5 we alan show the sacale dependenme in the range &7 < o < 40T bor all solucions
o' T
=== oorr s 3

B RC Solutlon 1
mem R solathon 2

s

4

il g

(S 8] i hE | (88 i [

FIG, 5 Two-loop (4') optimized mass solutions obtained from OFT Eq.(4.2) (dashed, lght Bloe on line) and RO Eeqg5.2)
twn =olutiom=: thick lines (greem an lined and dot-dashed {red on-line] respectively, ns fonction of g = /AL 724 with seale
dependence 7T < u < 4=T.

* Buch remarks are important to keep i micd in view af possible applicatiaes o thermal QU for which beyond the one-loop lewel onby

i i . . .
hiph=1" expansion resull= are seailshile I!&l..
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FIG, 6, RGOPT ane-leop (hlack line] and two-loop (dot-dashed, green omn line) vworsns standard perturbative pressore PYPLig =

o ASE) ar one-loop and teo-loop,. The differemt bands give che acale dependencs becween o= a7 and @ = 47T, MNB: the
BCGOHET ome-loop cwrve has actually wera thickeess sinee B s exnctly sealeinvariant.

I =mig.u)/T. The “lower” walues RG solution 2 bappens to reach a maximum and then decreases vowards wzero
for large coupling g =~ 156 {not shown in the Gzure), wo odd bebavior which is in feet completely deiven by the
pertarbative two-loop UVEP. Incidencally chis soliucion exhibicg an exivemely small, almost totally pegligihle scoabe
dependence up to g ~ 1, as can be seen in Fig, 3, in agreement wich what i= intuitively expected near a RO fxed point.
The corresponding proessure, if plogging this sclution wichin (7,17, s even smaller seale dependence. Although we
shall simply diseard this sohition, since the naive teno-leop UVEP contradicts 1he genuine nonperturbative dynamics
of the @' model, it is worth remarking that the corresponding ROOFT solution faithfully reflects the quasi scale
mvaariant. hebavior of e TVETL Tl reroaining [then oobiue phsical] TG solotbon 1 exhilaits o moee pronsones)
feale dependence a8 seen in Fig, &, which will be furcher explained below, [t has a pertarbative expansion for small
coupling with the first two order torme idention] with the othor QT solution abowe, 10790

T 2 (13 — 121y
i T BPORERN L RTINS . ol o oo i 7.0, B (64 16EIAZ 4 - - 711
= X 'I" Hl._, ) ahy I 1.I'I!§Ii'|frﬂ":l+ iy 1A+ [T.111]
where e can eazily check thal 1 coellicients of L, vhua of To g, ave idencieal) which sloald L the case wo all orders

consistently with 10 iomwrinnes propertics,

Thie perburbsabive eegunsion ol P00 s identice! Lo (7000 Goae the Diest e arders ] e Lo cowelTicients ol all prders
if we use instead the (A ST solucion, Eq. (711

Remark in Fig, 5 the intersections, for ditferent poseale walues, between the RO aod 087 solotions, which only exdst
for the higher of the twn RO aolotion beanches (namely the phoaieal solucion oot influenced by 1he pertacbative 1TV
fixed point}. Those intersections can be considered as the full ROOPT solution, which Is unigue for a given g input
seple. Wie shall come back Titer on chose ol TRGEOPT solutions, while lor che sake of comparison with standamd
perturbacion vesulia we consider at che moment the BG and OPT aolutiona separvately, as given fanctions of the
coupling,

In Fig, 6 we plot the exact tecelonp RGOPT pressere PP R0 = /00240 Dlashed lines), as obbaine] from the
mass solution of the full KRG Eq. (7.59), compared with one-loop RGOPT and standard perturbative one- and two-loop
results, with seale dependence in the ringe =T < < 43T, To study the scale dependence we use s stanpdacd runming
coupling exact at two-loop oeders. The generic exact expression for the two-loop mnning Alp], generalizing the exact
one-loop running in Eq. (3.9], can be expressed (see e.p. FRef, [31]1in terms of the (implicis) Lambers “function”™ [45]
Wiz} = Infx/W):

.-!'||:_|'J.:|:|

M [ Asad, In £ ]

(7.12)
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where L= log/ pn snd where we consider s vsual the referonce soule oq = 207, Actuelly Bq. (7.12) gives no visible
difference (al least up to the relevant marderately large coupling values here stadisd and the mnderale range of seale
variation] with a more handy perturbatively truncated expansion at order A%

k)

AMUpl ~ A Y wa) bl (LA (,-ljb_-.b.ﬁ'J e (3.!-*;;;' [ %-!ﬁb..b“) Moo, (7.14)

Lhe HGOPT improvernent on scale dependence with reapect to standard perturbative reaals is drastic for che pressure,
as onnz e clenrly see o fpore G, althoueh scale reaciane: s oot couct ot owo-Toop like it i ot one-loop orders there i
a maderate residual arale dependence, clearly visible in Fig, 6 for mcddaracely Targe (reacaled ) coupling values o 2 006,
What &5 alzo clearhy scen in Fis, 6 is the much better stability of che BOOPL results, sinee up to g = .5, both the
sl dleguenlenee aned Chie difTerenes Tt one- sl Pancleap RGOTT pressare e Tiard by wisibide al the G seale,
in contrast with che alveady pocrly convergent standard pertnrhacive pressure for chose valnes, Accordingly, there
are important extra coneellations of che scale-dependenee happoening when mid, o) optimized solutions from Fig, 5
are plugged into 4w pressure expression P50, A e in Eg (V110 Buoe we emphasise again Dhat the ogtimized
TS T.'i.':éf;-r[ﬁ..__u] ar .'FL#,;-:; [A, i)t order-8% are intermediste, wophgsied quantities, therefore not expected to be
themselves scale-invariant in general [although ac coe-loop order, 1IaEH.|.-;'}..,u] in Eq. (6G.16) is exactly (one-loop]
soale-invariant as eplained above), Within the RGOPT procedure, RG-invarianes is by construction required only
for the pressure which represents the actual phyaical ohservahle, eesnliing in Eqa. [T.3) and (7.2) optimizing the
pressure, Accordingly, the further cancellation of scale-dependence of the two-loop OF1T or RO messes foeri A @) or
ritgecs LA, g} onee plugge] into the pressore P25 (e, A e, s expeeted From the cesuemmation propercties of the RGOPT
procedure.

The residual seale dependence of the two-loop ROGOPT pressure is unevoidable doe to the ROOPT construction being
ok et bt vesaeliing froan che optimization of actoally owo-loop restvicred basie feee cncegy by constronetion, wheore
terms of order A* and higher arve truncated. {In contrast che one-locp reaults above were exactly scale invariamt
beeawse of the perfect motehing of the cosct ane-loop ranoing, coupling with the mass gap 06,16]),

O o make those statements more precise Ty stodyving esactly at sehich pertuebative order the seale dependence
Ieappears: examining the perturbacive expansion of the pressure above in Eo.(T.100 in which the coupling is replaced
iy its running exprossion ot troneated tao-loop order (so andy with bo, by dependenee] Egs, (7020 and [7.24), w0 Juse
checked explicitly that the leading scale dependence teappears firan at order A%

(2] M T i e .
E‘T (18] [soading = Wv‘]{rr (ﬂ.. In = =2 m.:;} 4 EMATY (7.15)

i.e. formally at four-loop order, that is one order higher then the naively expeesed throe-loop A* from standard [RC
mvaariasee preogperbies?. This Tsdaee can G antieipadan] i et wich a Tude nsghl withon invelven] explicil high grder
expansion caleulations: recall that the ROGOPL construction including the subtraction terms In (3.7), tomether with
U Tela invawrnnee presceving, mlerpalabion (4.17, gearaalees thal e twocTocp eee energy {2240 is TRG imsarianl. o
to neglected three-loap terma, of crder O0m’ A", bt for arviiteary mass . This implies chat the mass gap obbained
cither from the G Eg, (7.6] or O0YD o (7,70 s o cenoant, seale dependence appearing perturbetively at onder
i JT% s A 4= -+ X8 o), s ool easily e chiscked Ty explicit expansion too, Soi mesns thal the lowest pessible
order at which a remnant scale dependence appears in the free eneroy (210 is given by the first subtraction terms
sy ot A, miving rommant scale dependence ot perturbative order A% o g, In contrast the remmant seale-dependence
of the stamdard perturbative two-loop pressure appears al the expected order A
Using alternatively the RC solution fTL:'fé rAL, we find o residoal percorbative seale-dependence reappearing also consis-
tently at order A7 with the same coefficient of In e than in Eg.(7.05) anl a very similar constant term, with ~ —2190.5
in Eq. {7.15) replaced by o~ —20008, However, we stress thao BEgo |7.153) allows to understand the perturbative be-
hawior of the remnant scale dependence, but does oot properly reflees the actual nepperturbative scale-depondence of
the full RG or OFPT sclutions, which we naed for the plots in Flg, & Indeed the actual valoes and scale dependence
of the prossure for relatively locge coupling g > 0.6 sre very diferent than what wonld b obtained by o finite order
perturbative truncatbon at order X% Accordingly, the moderate realdual scale dependence seen on the plots for large
g valuee appears much better than what [7.15) would give, ag a result of furcher nonperturbative cancellations among
sucerssive higher arders (of course higher orders of the RGOPT resummation sy bised on s two-loop truneated
free energy ). Clearly when g becoroes of order 1 e /T 03 aleo ol oeder 1 so thal the previous perturbative reasoning

* When rescaling the coupling as A — 24¢°, the leading remeant scnle-dependence in Bq.[7. 150 gives: - (00075 Inp e — 192555, where

Lo Jiswe= oeder coelliciend= are roaprnly o ardec CH10 in Uais nocenalizalion.
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PPy
L]
LE | x"'\..\.
i
. ™, — ROOPT I-hoap
.,
R Eay, 2=limp, =2
-
' OFT Bz, 2-laop, 52
L5
"y
i
i 1 (B} : Ir L4 I.I g

IPICL. B Bame /s in Pig. 7, but with 82 200 Fa. -:"]-.F:l.

wills [T5) v longer apply amd e simply rocosers That e scale insrianee s goaranles] by consbrociion ap o
remnant terms of order m! A% In .

Mg anether illustrotion, in Fig 7 the exact pressure obtained from che OF°L muss selution of L. (7.2 is compered with
e e alitained froan the RO equation. Althangh hed b RO and OPT solucions have perarbalive seale-dependence
reapparing at the same A7 order, like in {7.15), the nonperturbative scale dependence of the OFT solution is almost
megligabale updal g == &, while for larger coupling enloes 6 heeomes more important than the one of the TG solution
[as one can see alao for the corvesponding OPT mass in Fig, 5. We also remark in Fig 7 that the pressore obiained
from the G mess romains eloser to the one-loop ROOP'T pressure for large coupling values, so that the convergenee
appears better, This, together with che becter seale independence for lorge coupling, s pob very sorprising sipee the
R mass solution originates from the BG Eq. (7.5) ac the owo-locp level, In concrast, the COFT solution resulta solely
fromm the mass optimization, Eqg, (4.2], which incorporate: RO properties more indivectly: it alse exhibite good sesle
invariance up to relatively large values o 2 0L, hevand which it degrades quite rapidiv, Also, the fact that the RG and
OPT solutions are very close to each cther until relatively lerge coupling values g = 0.6 shows an overall consistency,
Ty gt ifving the relatively small Jack of exace RG bvariance, since for an exact ponperiarbalive resull e OPT
and R solutiong would be identical.

We pow consider incorporating the s ¢ 0 term foan B, 0370, which formelly belongs to the two-loop onder,
We alrescdy mentione] aliove thatl pertucbatively it evidently coly aflects the Ceeexpande] pressore (7000 al order
A~ A%, Aceordingly, it does not atfect the perturbative order &t which the moderate residual scale-dependence first
resppenrs, Eg, (7.13) However, the nenperterbatioe RO and 07T pressuces wre affected for loeger coupling salues,
as intuitively expected since ncluding sy # 0 incorporates a (RO part of the theee-loop conteibutiona. Tndeed, as
ghown in Fig, & it improves slightly the (nonpercurbativel scale dependence of che KOG pressure {long dashed). in

achlivion the OT o] RO pressores aee closer wooeach other o Targe conpling valoes (bl che scale dependence
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FIG, 0, ane- and tao-loop RGOPT pressare versuas cne and rwoeloop standard perturbative pressure and two-loop SPT pressuns,
with scale-dependenes.

ig still better for the RO solution chan for the OPFT cnel. More remarkably, with 22 2 0 the two-loop pressure
chitibned Mrom (e RG mass gap is seen 1o almost entncide wiach che onesloog pressare, ap o relatibvely large coupling
g~ 1, thus improving the apparent eonvergence further more. Actually, thia rather spectacular coincidence with
the: one-loop pressure for o large cenge of coupling valoaes is peccly socidental: after spplving (4,11, there are some
partial cancellations of the two-loop contribotions happening e relatlbvely lnege conpling salues (doe to opposite signs
a1, 82), between sy /3 = —1/3 and the dominant two-loop term sah = 24g%e; (see (7.1}, (3.7}, (3.8)), with & maximal
caneellation for g = 1, with '.l-'l-_!',l!.sg = 173, Binee the sy values depend oo the pasticalar TG cocMcients, inoa different
tleenry A and & may have the aame gign, or rather diferent magnitades, possibly giving no auch partial cancellations,
Mevertheless the coincidence with the cnc-loop prossure 3 cooellent oven for relutively large intermediate conpling
vialues g o o= LG — 0L7, where 2defag = 12 — 16 does nat sk e caneellabion eoech eloetive, Aceordingly, Dheee
is also clearly & more generic aeffective stabhilization of che perturbative series reanlting from che HGOPT construction,
with an improved comeergonee aoed sople dependenc: when ineorporatiog higher BE crder dependenee, ss intuitively
e el

A Cemparisen wndl obher (20 god 8L varationed ressonation approaches

This atability and improved acale-dependence i= alao illnstrated in the next Fig, O where the Rl pressure is
cornpercd with o steandard teo-loop OTT/STT (7, 140 e precisely, discarding £y in (870, tulinge o = 172 in (4.1],
aml using solely Fo. (421, To eompare with another mass peescreiption, insteacd of the mass aplimisation we oae the
soroening mass, 15g0 (28] (consiscently cruncated s owo-loop order), plugmed in the expression of the free cnergy,
similarly 1o the preseription mostly adopted for QOTY HTLpt 9], M. One sers thad nsing the optimised mass within
the SFLAOPT gives a better acale dependence, although SFT wich oprimized or screening masa hoth have a definitely
strompger seale dependence then the RGOTT for moderately lucee coupling values, To quantily what s illustrated
in Fig. 9 more precisely, len os imdicate (e relative scale waclation of the varions mechaods for che relabively large
[rescaled) coupling value g{277) = 1: the cormesponding variation of £/ Fy between g = 71" and 457 i= — &%, L8%,
1.3%0, L35%, snd 0035 respectively for the 2-loop standecd perturbation, ST (optimized mass), SPT (sereening
mass}, RGOPT, and RGOPT with 8y # 0. Bevond o 2 1 the owo-loop RGOPT scale-dependence increases more
rapidly. but. is still only ~ 161077 for g ~ L5 {while for such large coupling the relative variation of the standard
perturhative two-loop pressure is as large gs ~ (1,23, pnd the seals variations of che HTLpt and standard OPT methods
hecome very important tea], 1 owould alzo be ateresting to compare gquancitatively our scale variation resnlis with
the residual seale-dependence appearing in the 2P1 approach at three-loop order [23]). However, s precise comparison
appears difficult, since the renormalisution scheme and scale wsed in [23] are completely diferent and not casy to
tramslate inbo the present seale variation in che MS-rcheme,

The ROOPT improvement on scale dependence at che owo-loop order may not pppesr so spectacular as compared

1@ Using the perturhative screrming mass inswead af the opsimized mass gan 18 cssensinlly the procedare in [ILTpt applications to (7T
Lrszmuse Lhee opslirniesal mias= bias oo resl sololions I'k'l.l
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with 3PT, mercly a fuctor ~ 2 — 4 for @ ~ 1. cssentially becanze che teo-loop order SEYU seple dependencs here
illustrated is still moderate. Bul at the three-loop level the SPT acale dependence becomes much Tanger [7] (and
similarly WULpt QUL of order 1 for moderately large coupling.  As previously explained this can be traced
bodh tooar # 90y in (4.1] togetler with the missing, G fvaciance Trom oed In g werms for arbiteary mein (2.4):
ginee pertirbatively m® lnge ~ A% In g, the lack of acale invariance an formally one-loop order in the original masaive
frew: cocrgy remaeing somewhes seroened ot one- woed two-loop thermel perturbesive copansion order, until it plainky
resneBerss al Cheerc longs A2 oemler. Remmaokalily e ST pevssiee s vven s calenladed e eeeently by T Toop
order [16], and these reaulcs show very mood conversence with respect to two- and thee-loop SEL for the central scale
chidoe g 227, Dot the romoans seale depeodence is oo lusteated in (26 Acconding to owr geoersl acgoments
we dn not see how the missing Bli-ronsiarent nne-leap eemes conld be compenaated by going eo higher arders if nod
present from the besinning. o contrest the RO OELD scale dependence remeing very moderate, sy illustrated in Fig,
G when including a RGopark of che theesToop cooteributions Tean =2 2 00 Woreower withoot explicitly calealating
the full three-loop or higher order BGOPT pressure, we can be eonfident chat the scale-dependence shonld further
improve at higher orders: being built on perturbative RO invarianee at order & for arbitrary e, the RGOPT mass
gap will exhibit remnant scale depemlence as 5® w0 AT = - QA gl this the dominant seale dependence
in the free energy (namely the lowest perturbative order at which scale dependence will resurface), coming from the
leading, term —syg m? /A, should be of order (AT,

Coming back to the teo-loop arder presaure, e have also checked the variation of our pesniles against varions pertue-
bative truncations: for instance given that sl our ealenlocion relies on che basie teo-loop free energy (2.4), it may b
unnecessary relinenent to use the exact ruoning coupling as in (V.02), Thus we looked o vaviation when truncating
the running Eq. (7.14}, at order A%, or A% only. Also, we atadied the effect of truncacing in the RG Eqgs. (7.3) and [7.5)
terms of arder A%, originating from the b A8, term in {3.2), ns it is formally one order higher than perturbatively
strictly vequived (and the by -dependence encers anvway at lower ciders in che RG Eq. due 1o the —a /A subtraction].
We obtain very good stehility, since the maximal reaulting variations, tor the relatively large coupling g = 1, and
soale chodoe g = 47T, is below 1079 far Pracs /P, and somewhat worst bl reascnalily below 10 ? for Popr/ Fa.

A0 Full ROOPT te-loap solution
Finally, wo v esalenlade Frﬁ-i_‘-_,r..r.-"ﬁ; for 1T cornplebe Pwoelonp WGOPT soluticn, given by the noncbreivial inder

gection between the KOG and OFL equations (a5 illustrated in Fig. 31, as function of the only free scale parameter,
thut we choose as £/ (2xT) (so the standord central scale choice corresponds to £ 1), Ideally for an all onder
caleulation with exact acale invariance one wonld expect both RBG and OPT equations wo give identical i, /T
eolutions. 'U'his is indeed the case for simpler models, like typically [13] the large &-limic of the O0N ) CN-model. Lat
Towr o0 vmeares apveslven ] Uheery aoac Boibee camler cnne espuear s seome DiTere nees Tetseeen e TG o] OTT solalions sinee: Teds
properties are only imposed peronrbatively, thoae retonant differenees reflecting che lack of exact Bi:fecale invariance.
Just like the stotionary mess solution is expectod to approioete the sotuslly meesles resale, the intersection between
Ve CFPT sum] RET corves il a given arder, delining Daacialmnal ) Slaeds poinl™ mass amld conpling, 18 expected Lo give
a sensible approximation to the cxectly scale-inveriant nonperoarbazive result.

For the staneard ceniral scale choice &= 1, the solation correspondiog to Che aoigoe intersection of che phosien! T
and COFT branch aolotions, readily seen for o and § in Fig. 5, gives:

[

i ! pia
F=— =041 §=1 — = (.825; 29T ~ )7, 7.16
T F=\n W \7-16)

ohtained using the simpler high-T expansion solutions, [NB for ¢ 2 .5 approximately, (8 = @{p)/T remains smaller
than 1, justifying & posierborl the high=-T approgimoation. Typleally, for & = 8 the high-T" approximation is alveady
corvect gt the level of (0.2% and differences are completely negligible for amaller 2.}

The vesaalt o (706 needs Teecher comments on s physics] interpretaticn. Recall thae che iruly nonpertorbative
massless presaure expresaion LA T, @/ T 5, I that was available, would actually be a function of the single
coupling AMpe = 22750 given at some input zcule, theoks to exact scale invecienees: for sny renormalizetion sesbe
chodee g the nouperturbative ronniog ALe ) woull exactly compensate the explicit 0T depewdence. Tncidencally, chis
is precisely the situation happening at the one-loop RGOPT order, where the exactly seale invariant £/ Fy in [6.200)
only depends on the single parameter A ), Now, s bigher loop orders o the standerd perturbative approschies
[or similarly in the SPT/HTLp. appeoaches alter expresaing the mass gap @A) in termd of the coupling), due to
imperfect scale invariance giving remnant perturbative terme In"{p/ (209, one avolds lerge logarithms by fixing p
of oreder ~~ 20T, whind makes Ve seale effechvely Tadependent and allows Lo shaly BPFIACT /TR0 by saying e
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coupling ws o function of the scale/tomperatuce, o our cuse, using the seeond RS consteaint Eg, (5.1) enforees
R invarianee al a limited (heee Gwo-locpg pecuichatlve onder, mimicking exact RG invaciance. AL T = 0 bwor
loop arder. az alveady mentioned in Sec. YVILA there i3 also s non-trivisl intersecting (OF'D and B solution at
o o 2O, Infwie S o= LOE seee adso Tl G0, that gives e Do energy as Py o l|:|.'1', which sull reguives o relerene:
phyzical srale oo be Tully determined *'0 ALT 20, combining the OPT and Bér equation fxes AL/ T and sl p /T
fr.a-jr womiven w4 input, which slso fixes P75 a o (7161, Dus this combined solution s somewhat seademic for the
P
compare with, Moreover, since the gcals invariance of the RGO pressure is still imperfect at two-loop order. the
rernmnd seale dependence irplics diferent &0 walocs foe different o7 iopot choives, Foe nstanee, solving similarly
the OPT and RO equations for ¢ = /(20T = 172 {respectively ¢ = 20 gives P/ F, = 0.88] (reapectively 00921]. This
is consistent with the previously cxamined remnont scale dependence of the RO and OPFL pressures at such relatively
Targe: conpling values.

Ag ahove mentioned one may expect thao che full RGO solution for arbitrary scale input conld give a sensihble
approximetion of the penoinge nonperturbative seale dependence of the coupling, What Eqg, [7.06) indicates i= that,
for 1 Tee pliysically reasonalile scale chinfes g~ 29T, Whe opdimieesd conpling o aml mass 0T are bobh ol arder 1, Dving
in the rather nonperturbacive range where the sott modes ~ 94" beeome comparsble with the bard modes -~ T, Had
wir rakher found optimized values &, 5 <2 1, we would ot learn much bevond standaed pecrtorbation theory, However,
we canhot easily follow the combined solution over an arbitrarily large range of scale: the physical beanch solution
remains real for relatively large variations of ¢ = 1, but becomes comples for & = 0.27, which corresponds to the
alresuly mentioned complex BGosolution for e lerge conpling A = —'3|'.l.:._. 1201, TIIIIH as already stressed we shoald
not trust our results for g above g = 1, which eorresponds tof 2 6. For ¢ > 1 (respectively £ < 1) within a reasonable
range, the combined REOPT solution gives slizhtly smaller (respectively larger) optimized § values ss compared
with the one o (T.16), anlike the standard pertucbative RO behavior of the ©% model at small conpling. Tndesd fo
even larger p 7 2T, where one expects to recover the four-dimensicnal T = 0 ¢* maode] properties, the RGOPT
read solution gives o slowly (loganthmicallv) decreasing, coupling and mass, which appears ronghly consistent naively
with the expected triviality property 47). Conversely, for p < 20T one expecta to recover the three-dimensional
high-T" limit, such that after eventually repnching v masimum, the eprimized coupling is expected to decrease appin for
pee 20T Bk i s diMieolt do Fallosy e Wl RGOPT selution hercasing complex for g 20T, Moverieless, even if
they have no real intersectionas, the QP and RO eclutions can be reliably determined for @ =2 277, as discussed in
e, VILE, and for fixed mo 2507, Aapr(ua/ 10 or Ags {020 decresse lopurithmicslly for g 277

Mote thal when incorporating e vy 2 0 tenm Teom Fa. (A7) che Tell RGOPT solutions similar Lo (V16) are shilted
to a different scale but wich the same qualitative hahzm-:rr g0 che net etect of 82 # 0 appears essentially as a
rencrnalicid m schenme regleliniLioo, witheod deastically choonging Dhe mesoles, T |-:]|'||I ally, for =g & 0 the Toll TRGOTT
solution & alveady complex for ¢ = |, while real anlutiona appear o slightly lasger © 2 L0 values, with m:rrm;mmimh
optimal P/ values vory close to the one in (7167, This sitply refloess chat the ocourrence of complex [0
saslubicns a0 given Dy dbepensd el con e renormaliaation seleane, so Dan meal sodobions conld be recoeereasl in
principle from appropriate percurbative scheme changes 17, Lat this i= & much more Involved task in the present
finite temperature case, Moreover, sinee the oon-trivial TG soed 07T intcrsecting solution happens fivst ot teo-loaps
order, it & probably safer not o take as a very frm pradiciion the result n [7.16), aor to vary in a wide range aroind
the preforred value g~ 272" From the cxample of 2 = O results in other models [17] the ROOPT variationsl fixed
g =onlotwm = omore Tikely foostalalize al e chres-longs order, aml peobahly witl aomere pecborbabive sl of e
optimized coupling.

mstbed, speenally e e svormeteie phase stdien] bene wlese Deene s oo peecbicnbiae ploysiesd iepol lesmpeealome e

WVIIL  CONOCLUSIONS AND PROSPECTS

Let us summarize our main results. We have shown chat the standard treatment of the free energy {pressure) in
massive thermal theories, with minimally subcrected connterterms, s primarily done in resummation approsches
Tike OPT/SPT HTLp ypieally, lacks RG iovarviance. We have then recalled a general simple recipe o restore REG
invarianee, leading unavoidably to additionsl hnite, temperature-independent wacwam energy  contributions, sys-
tematically decivable in a perturbative Tshion,  ¥We hoee oot explained that che QPT/SPT HTLpE resumomsation
methods hased on the modificavicn of the percorbative expansion oo the linear d-expansicn in general do nod
preserve BOG invariance, which cen however be restored for a different interpolating preseription, g, (4,10, uniguely
dictiote] by umiversal Gl order RG coelficiens, o = <00y, Moreover, the resoliing RGOPT resomomation can usse

- Similarly for QUIF ab zero temperatere]| L6, 1V the pica decay constant has been used 2s o reference physical scale, ard the analog of
L cannilaneal B aeed DT solutions completely Dxed By _."."|,::;¢D.
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the: [0 equation as an alteronative or sddisional combined consteaint to decermine o self-consistent ponperturbetive
mass [amd eoupling], o oaddition 1o the aole stamdard OPT prescripiion using only Phe mass oplbimization. We
have then illustrated the RGOEL in decails by evaluating che free energy of & thermal scalar field theorv at one-
anil Lwosloog level, Tl resulls shise o solstantial iopeosermen] regaeding Chis Depe ol aonpertorbabive approasad,
Wamely, we abdain exact, B3 fscale invariance al the At non weivial one-leop RGOPT order, which alao repreodoces
all the exoet lurpe-V cesults 28] of the QU scalar maode], As owo-loop RO OERD arder. the seale dependence snd
slability sure el ially armproses] op o relativele Targe conpling vidoes, with sespencl Doomesl ol D ol e v Tl
resummation approaches. Mot surprisingly the preasare abtained from che B mass gap equation happens to have
better omvergenee and seale dependence proportics for lueee coupliog then the pressure cbosined frorm the OFFT s
gap. We have alao illusiraiad che full BGOPT vesuln obdaingsd from ecmbining the B and OPT equations, therefore
completely fixing the coupling and mass for o given ioput scale, with results that can be considersd a: s variational
approsinmatson e Lhe truly seale sariand oompeerbaebsad e 2l order pesole, Revoaad beoeleops arnder, sinee all relesani
perturhative results are available ac chree-loop order [7], the RGOPT procedure can be applied, but we leave this
for future work as it becomes algebraically and monerically somewhot more invelved, Besides, we sre confident
ihat iowill further improve the seale dependence with respecn wo the two=loop resulls, withoot explici Dhressloop
caleulations: az explained che RGOPT construetion will guarances the ROOPT free energy to be perturbatively REG
invariant up to neglected four-loop Qe X0 terms, for arbétrery mass m, This implies, after wsing the (OPT or
Ri3) gap equation, that perturbatively a rembant scale dependence appears in the free energy at ovder ~ A, The
game line of reasoning also explaing why the lack of RG invariance of OPFT/SPT st formally one-loop order m® for
arhiteary ey, remains partly hidden st ones gogd eeeceloop bol resorfaces maximally at pertorbative threeloop order
A We also see that the RGOPT anticipates che predictions by cne perturbative order, the exact one-loop results
bring qualitatively similar to stunderd twoeloop reswmmation cesults, Therefore, one may aepoe similacly that the
two-loop RGOPT reaults should be gualicaclvely comparable to {acandard) SPT three-loop resilts ' (with a sensibly
better seale invariance)., Indeed, incorporating the s, anberaction cerm at two-loop ovder. which inclodes s [RG)
paart of the three-loop contribations, foether mproves the convergenee and seale dependenee in the ponpertorbstive
coupling range. For these reasons considering che full chree-loop concribticons is cereainly a weleome refinement but
nob necessary s crucial one in order to demonsteate the effciencey of the mechod which constitutes our main goal here,

1t should be also clear that the whole construetion illustrated in percicular in =ecs. 3 1o 5 is actuslly more general,
sl Ul B0 ks apeplicidale vo CUOTD Wi Tivers alesaly roenionen] sonne progaerbivs anticipabed o De steoilar, or somebiosees
difterent, in the YL case. Une could expect that the thermeal QUL application may be a priori mnch more difbealt
thasn the troditicnelly simplor sealor model, But given thet the diffiools pewee dependenee and eelsted CROTE fzopes
T heen folved] by the HTL formaliam [4, 8], the elahorate pertecbative HTLpe caleulations performed for thermal
QD up to three-loop order in [¥] should be readily adaptable to our RGOFL mechod, which in a first stage relies
cribirely on pertarlsad e calenlobwmes To HTTpe ondy vaewone coerpy, maes, ] comepling, connlerberme e neressary
to renormalize the thermodvnamic potencial. The quark mass anomalons ditnension is just the atandarnd one, while
e sl s aocamelones ditncnsion B casily cxtragted from corresponading known countertermes, given e, in |8, 9],
Thus e sabslraction procedore o eeeoneer BG nvavianee will work jusi Tike o Dhe sealae mealel, applying RGowith
Eq. (3.1], (53], and the modifed incerpolation Lg. [4.1% Moreover, the LT Lpe formeliszm is inherently a hizh-1
expuension, thoerefore itowill pive OTT and TG equations iooow T andd g, simpler Chan che somewhiad invelved teosloaps
exact T-dependent mass gap Eqa. (7.2], (7.30 (excepn chat tor (O, HTLpt ac owo-loop order involves s ln terms,
due to the two-loop QUL free cocrey sraph structure). Finally, for QCD che koown first four coctcients of the
A-function, fy- -+l all have the same (negative) sign, such that oo fake pertocbative xed points, such as the ome
present here in the scalar model, will obstrct che identification of correct BGOPT selutions. We are confident that
a similarly improved seale-depeadence and overall stehbilicy will be obtaiped also from REGOPT adapiation of HTLpt,
which could potentially par eonlontation wich chermal QO Taltice resnlis con even Brmer gronnds,
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L2 (3 course with the limitations that sar twa-loap results, whils resamening somes KRG deperdenivs of higher arder terms, does not reprodoce
Lo _lrru'ﬂ threw=lody cantribatbane, in partic lne tlivee e by Ll |.|:||~::-|::|||:- thermml “Lazkerhall” graph [T, -1H]. W e Thee =aililiaetion

term spd from (3.7, (L8] s included, ot is related from MG properties to the single logarithm cocfficient of this three-loop baskethall
iraqah
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Appendix A: Alternacive devivatlon of subtractlon terms from bare RG-Invariance

For completeness i= this appendiz we derive the subtraction cerma in Eq. O3.8] alternatively by RO invariance
consicderations sidely on the Dare cepresstun, . Thee Dare Troe energy ot teo-loop level consists of B 024) plus the
remnant divergent terms [T, 3] (after mass and conpling renormalization au this oeder) with 2 =4 — 2e:

: LT I AN
(Amy &y regidual) = —m* [— 4+ — 1| — || . (Al
Sl ! 1 T EE |\ 16w | S
As amply explained, minimally subiracting Lg. AL would not produce o finite BO-invariant expression. lostesd, an
eoeplicitly THG-imvariant counderterm ean he wreilten 17, 29, 30 in che general {pertarbstive) Torm in lermes of the ToG
invariant bare mass and couplings as:
g mf 2
(471 AEL — Hnle} (AZ)
A
with Hyle) = 5. ! an arbitrary series in e, most conveniently determined pertarbatively order by order. Now
demanding Eq. (A2 to cancel the remnant divergent terms ln (ALY upon nsing in Eqg. (A2 the well-known expressions
of the mass and coupling countercerms up to two-loop order, reading in our convention:

Ao hy TR
R e LT g, ot ) TS ) BN ST A3
=T Tt l(ze TEl* T kA3
iy i wlw+b) | wl .z -
AmE — =]l =Af | ——————+— A= Ad
- i de [ Hie® de | i

expanded in A and ¢ series, after some slgebra it woigquely determines: ha = sooand fy = s, given in lg. (3], Dot
it Teswve auleitional finile sublraction terms dlentical t Fe. (3287 Note thal it neovssarily iovolves an s/ wsing
in Eq.(A2) simply my cannot cancel the ane-loop diverzence in Eq.{Al] sinee the lacter is O{A"). (f course for the
prosent S maode] his construction s equivadent (o e ane peckaeonis] in 34
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