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ABSTRACT
Various biological networks can be constructed, each featuring gene/protein relation-
ships of different meanings (e.g., protein interactions or gene co-expression). How-
ever, this diversity is classically not considered and the different interaction categories
are usually aggregated in a single network. The multiplex framework, where biologi-
cal relationships are represented by different network layers reflecting the various na-
ture of interactions, is expected to retain more information. Here we assessed aggre-
gation, consensus and multiplex-modularity approaches to detect communities from
multiple network sources. By simulating random networks, we demonstrated that
the multiplex-modularity method outperforms the aggregation and consensus ap-
proaches when network layers are incomplete or heterogeneous in density. Applica-
tion to a multiplex biological network containing 4 layers of physical or functional in-
teractions allowed recovering communities more accurately annotated than their ag-
gregated counterparts. Overall, taking into account the multiplexity of biological net-
works leads to better-defined functional modules. A user-friendly graphical software
to detect communities from multiplex networks, and corresponding C source codes,
are available at GitHub (https://github.com/gilles-didier/MolTi).

Subjects Bioinformatics, Computational Biology, Molecular Biology
Keywords Communities, Clustering, Functional modules, Modularity, Biological networks,
Multiplex networks, Multi-layer networks, Coffin-Siris syndrome

INTRODUCTION
Biological macromolecules do not act in isolation, but rather interact with each other to
perform their cellular functions. In particular, thousands of interactions are observed
between proteins, forming the basis of cellular biological processes. Thanks to the scaling
of the experimental techniques allowing interaction discovery, and to the development
of centralized databases, recent years have witnessed the accumulation of thousands
of physical and functional interactions of various nature (Sharan & Ideker, 2006). For
instance, data obtained from yeast two-hybrid and affinity purification-mass spectrometry
experiments inform on the physical interactions between proteins and their organization
as molecular complexes; mRNA expression correlations identify the genes that are co-
expressed in a set of experimental conditions, and signaling pathway data describe the
cascades of reactions transmitting signals within and between cells.
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Interaction data are usually represented as networks, i.e., graphs in which vertices
correspond to genes or proteins, and edges to interactions. One of the leading ap-
proaches to extract functional knowledge from biological networks is their clustering into
communities—or modules—of tightly linked genes/proteins (Aittokallio & Schwikowski,
2006). These modules are expected to represent the building blocks of the cells (Hartwell
et al., 1999). Clustering algorithms developed for community detection are frequently
based on graph topological properties, such as density or modularity (for reviews,Wang
et al., 2010; Pizzuti & Rombo, 2014). They have been thoroughly assessed on biological
networks (Brohée & Van Helden, 2006), and are widely used in biology (Arroyo et al.,
2015;Wan et al., 2015; Huttlin et al., 2015; Chapple et al., 2015; Katsogiannou et al., 2014).
However, they have been applied on single networks whereas recentlymultiplex (alt.
multi-layer ormulti-slice) networks (Kivelä et al., 2014) have been introduced in biology.
These multiplex networks are sets of networks sharing the same nodes, but in which edges
belong to different categories or represent interactions of different nature. As biological
interaction sources are diverse, biological multiplex networks contain sparse layers of
high relevance (e.g., curated signaling pathway networks), while other layers contain
thousands or even millions of interactions (e.g., co-expression networks). In order to
extract relevant biological information, it is thus important to assess the approaches able
to detect communities from these multiplex biological networks.

As the majority of current clustering approaches takes as input a single network, the
interactions from the different sources are classically aggregated into a unique network,
herein calledmonoplex, in which all the edges are equally considered, regardless of
their molecular nature. For instance, in the chaperome network (Brehme et al., 2014),
protein–protein interactions and co-expression associations were aggregated and the
link-community clustering algorithm (Ahn, Bagrow & Lehmann, 2010) was applied on
the resulting monoplex network to identify communities. However, considering all the
interaction categories as equivalent likely excludes important information, because the
gene/protein relationships have different meanings or relevance (Battiston, Nicosia &
Latora, 2014). On another hand, approaches known as consensus clustering aggregate a
posteriori the communities obtained from several independent networks (Senbabaoglu,
Michailidis & Li, 2014; Lancichinetti & Fortunato, 2012). Finally, more recently, different
topological measures have been adapted to multiplex networks (Kivelä et al., 2014; Battis-
ton, Nicosia & Latora, 2014), and a handful of community detection algorithms can take
multiple networks as input (Mucha et al., 2010; Shiga & Mamitsuka, 2012; Papalexakis,
Akoglu & Ience, 2013; Bennett et al., 2015). To our knowledge, these 3 sets of approaches,
namely network aggregations, consensus clustering and multiplex approaches, have not
been extensively compared and evaluated.

In order to do so, we carefully explored modularity-based approaches by identifying
communities from multiplex networks using (i) the union-, intersection-, or sum-
aggregations of the layers of the multiplex network, (ii) the consensus of the community
obtained on the individual layers and (iii) a natural extension of the modularity, called
here multiplex-modularity, that allows identifying communities directly from multiplex
networks (similar to Bennett et al. (2015)). Importantly, the strong assumption that all
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the network sources share the same community structure underlies all these approaches.
More generally, this assumption is implicit for any approach returning a single commu-
nity structure from a multiplex network.

We investigated whether combining multiple network sources could improve the
detection of communities, in particular when noise impairs the inference of the com-
munity structure from individual networks. More particularly, we assessed the influence
of important features characterizing biological networks, such as their heterogeneous
densities and the weight of missing data. We first ran extensive simulations on random
multiplex networks generated with a community structure, and mimicking the sparsity,
the heterogeneity and the incompleteness of biological networks. We then showed that
(i) the aggregation of the layers of the multiplex networks through their union and
intersection ultimately erases the community structure, and (ii) the multiplex-modularity
clustering outperforms the aggregation and consensus approaches. Importantly, the
multiplex-modularity approach is more reliable than all other approaches when the set of
studied networks are incomplete or heterogeneous in density, i.e., when networks display
features of real biological networks.

We then studied a real-case of multiplex biological network composed of 4 interaction
layers. Communities obtained with the multiplex-modularity are more associated to
significantly enriched biological processes compared to their aggregated counterparts.
We detailed, as an example, a module that clusters the proteins implicated in the Coffin-
Siris syndrome. These proteins are clustered with proteins involved in other syndromes
displaying overlapping clinical features.

Finally, we provideMolTi, a standalone graphical interface allowing the users to
cluster multiple input networks, annotate the obtained clusters and parse the resulting
communities.

MATERIAL AND METHODS
Multiplex networks, modularity and community detection
Monoplex and multiplex networks
Let X be a (monoplex) network, i.e., an undirected graph. We use X for its incidence
matrix too, where the entry Xi,j indicates the presence (Xi,j = 1) or the absence (Xi,j = 0)
of an edge between the vertices i and j.

Amultiplex network is a collection of undirected graphs (X (g ))g sharing the same set of
vertices (Kivelä et al., 2014). A basic way to apply standard graph approaches on a given
multiplex network is to first aggregate all its graph layers into a monoplex network. We
considered here three types of aggregation, the intersection X∩, the union X∪ and the
sum X6 of the graphs in (X (g ))g , respectively defined as:

X∩i,j =
∧
g

X (g )
i,j ,X

∪

i,j =
∨
g

X (g )
i,j and X6i,j =

∑
g

X (g )
i,j

for all pairs of vertices i and j, where ∧ and ∨ denote the logical conjunction and the
(inclusive) disjunction respectively. Note that X∩ and X∪ are unweighted graphs whereas
X6 is a weighted graph.
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Modularity
Under the assumption that a network X has a community structure c and by putting ci
for the community of the vertex i, the Newman–Girvan modularity (Newman & Girvan,
2004) is defined as:

Q(X ,c)=
1
2m

∑
{i,j}
i6=j

(
Xi,j−

kikj
2m

)
δci,cj (1)

=

∑
a


∑
{i,j}

i6=j,cj=cj=a

Xi,j

2m
−

∑
{i,j}

i6=j,cj=cj=a

kikj

(2m)2

 (2)

wherem is the total number of edges of X , ki is the number of edges containing the vertex
i (i.e., the degree of i) and δci,cj =

{
1 if ci = cj
0 otherwise .

The modularity was initially conceived as a measure of the strength of a community
structure (Newman & Girvan, 2004). In the original article, it is defined as the sum over all
the communities a, of the proportions of within-community edges (first term of Eq. (2))
minus the expectation of these proportions in random networks with the same vertex
degrees (second term of Eq. (2)).

This modularity has been extended to deal with weighted graphs, by considering the
sum of the weights instead of the number of edges (Newman, 2004).

Multiplex-modularity
In order to extend the modularity of Newman & Girvan (2004) to multiplex networks,
we measured the strength of a given community structure in all the graphs of a multiplex
network (X (g ))g by considering, for all communities a, the sum of the proportions of
within-community edges over all the graphs minus the expectation of this sum under the
same model as in Newman & Girvan (2004). Since the expectation of the sum of random
variables is the sum of their expectations, we obtained the Eq. (3). Reorganizing this
sum shows that it is equal to the sum of the individual modularities of the graphs of the
multiplex with regard to the same community partition Eq. (5). Themultiplex-modularity
of the multiplex network (X (g ))g is defined as:

QM ((X (g ))g ,c)=
∑
a


∑
g

∑
{i,j}

i6=j,cj=cj=a

X (g )
i,j

2mg −

∑
g

∑
{i,j}

i6=j,cj=cj=a

kgi k
g
j

(2mg )2

 (3)

=

∑
g

1
2mg

∑
{i,j}
i6=j

(
X (g )
i,j −

kgi k
g
j

2mg

)
δci,cj (4)

=

∑
g

Q(X (g ),c) (5)
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wheremg is the total number of edges of the graph X (g ) and kgi is the degree of the vertex i
in the graph X (g ).

The multiplex-modularity could easily be adapted to multiplex networks containing
weighted edges.

Clustering algorithms for community detection
The network modularity was initially designed to measure the quality of a partition into
communities (Newman & Girvan, 2004). Several clustering algorithms were subsequently
developed to identify the communities by optimizing the modularity (Blondel et al., 2008;
Shiokawa, Fujiwara & Onizuka, 2013). Finding the partition optimizing the modularity
is NP-complete (Brandes et al., 2008) and thus requires meta-heuristic approaches
when dealing with large graphs such as biological networks. We applied the Louvain
algorithm (Blondel et al., 2008). The Louvain algorithm starts from the community
structure that separates all vertices. Next, it tries to move each vertex from its community
to another, keeping only the changes increasing the modularity, until no change increases
the modularity. It then replaces the vertices by the detected communities and iterates
the same operations on the new graph obtained, until stability. This algorithm was
applied to the networks aggregated as X∩, X∪ and X6 . Adapting Louvain to the multiplex
networks required replacing the optimization of the modularity by the optimization of the
multiplex-modularity defined previously.

Resolution parameter
A general issue with modularity-based clustering approaches is that they may fail to detect
communities smaller than a certain size, depending on the graph size. This phenomena is
known as the resolution limit (Fortunato & Barthélemy, 2007). This issue is overcame by
adding a resolution parameter γ to the modularity formula (Reichardt & Bornholdt, 2006).
The parametrized modularity Qγ is defined as:

Qγ (X ,c)=
1
2m

∑
{i,j}
i6=j

(
Xi,j−γ

kikj
2m

)
δci,cj . (6)

The greater the resolution parameter γ , the smaller the communities maximizing the
corresponding modularities. The parametrized multiplex-modularity QM

γ of a multiplex
network is defined accordingly.

Consensus clustering
Consensus clustering approaches compute a unique community structure from the
community structures obtained on each graph independently. We implemented a
consensus clustering approach inspired from Lancichinetti & Fortunato (2012). It first
computes the community structures of each individual graph with the standard Louvain
algorithm. Next, each community structure is transformed into a new graph in which an
edge connects two vertices if they belong to the same community. We obtained the same
number of new graphs as the initial number of graphs composing the multiplex network.
These new graphs form a new multiplex network from which we infer a single community
structure by using the sum-aggregation approach and the Louvain algorithm.
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Simulated multiplex networks
Random graph models
Stochastic block models (SBMs, also known as planted partition models) are among the
most intuitive models of random graphs with community structures (Holland, Laskey
& Leinhardt, 1983). In SBMs, the number of communities is set a priori and each vertex
i is assigned to a unique community ci. The presence of an edge between two vertices i
and j is drawn independently conditionally on the respective community assignments
of i and j, and with a probability that only depends on these assignments. Note that
edges are independent conditionally on their communities, although not independent
in an absolute sense. For instance, two edges involving vertices of the same community
are more likely to be both present than edges from different communities. Hence, the
parameters of the SBMs are the number of vertices, the community structure and the
matrix π in which the entry πql is the probability of observing an edge between a vertex
of the community q and one of the community l .

A natural way to generate multiplex networks (X (g ))g with a community structure
is to draw independent realizations of SBMs sharing the same community structure.
This means that all the graphs are drawn independently and, in each graph, all the edges
are also drawn independently, conditionally on the community assignments of the
vertices. The parameters of the multiplex SBMs are the same as classical SBMs, except that
instead of one matrix of edge probabilities, we have a collection (π (g ))g , the g th matrix
corresponding to the g th graph of the multiplex network. To ease the interpretation of
the simulations, we parametrized edge probability matrices with only two values: the
probability pI of an internal edge and the probability pE of an external one. All diagonal
entries are equal to pI and all non-diagonal entries are equal to pE .

Network incompleteness and missing data
We simulated missing data by setting an arbitrary probability for a vertex to be absent
in a graph, and using it to randomly remove some vertices. The community detection
algorithm was then applied to the incomplete multiplex networks. In practice, whenever a
vertex is missing in a graph layer, it is considered as not interacting in this graph.

Biological multiplex networks
Four biological networks were constructed from different sources of interactions between
human genes or proteins. A network of physical binary protein–protein interactions was
created from the PSICQUIC portal (Del-Toro et al., 2013) and the CCSB Interactome
database (Rolland et al., 2014), and contains 60,669 direct interactions between 12,110
proteins. A co-expression network was constructed from RNA-Seq data downloaded
from the Human Protein Atlas (http://www.proteinatlas.org). Spearman correlations of
expression were computed between all genes based on FPKM values in 27 tissues and
44 cell lines, and correlation ≥0.7 were selected as interactions (1,107,547 interactions
between 9,212 genes). A pathway network was constructed from Biocarta (http://www.
biocarta.com), Spike (Paz et al., 2011), Kegg (Kanehisa et al., 2008), PID (Schaefer et
al., 2009) and Reactome (Croft et al., 2014), using the R package graphite (Sales, Calura
& Romualdi, 2014). It contains 166,761 interactions between 8,839 genes. A network
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of complexes was constructed from the CORUM database (Ruepp et al., 2009) using
the matrix model, and contains 36,762 interactions between 2,528 genes. For detailed
protocol and options, the markdown is available at GitHub (https://github.com/gilles-
didier/MolTi). Data were fetched and networks created in May, 2015. Networks in the
Fig. 4 are represented with Cytoscape (Saito et al., 2012).

The 4 biological networks correspond to the different layers of the multiplex biological
network, sharing the same set of vertices (i.e., the complete set of human genes or
proteins, considered here equally). Each layer is incomplete and provides information for
a subset of genes/proteins only, the information for the remaining nodes being unknown,
and therefore considered as missing data.

Assessment of the detected communities
Adjusted Rand index
The comparison between community partitions is performed by computing the adjusted
Rand index (Santos & Embrechts, 2009), a widely used measure of the similarity between
two partitions. The closer two community partitions, the greater their adjusted Rand
index.

Annotation enrichment
The actual biological communities are unknown, but the accuracy of the detected
communities can be assessed by verifying their consistency with known biological
processes. We performed exact Fisher tests (Fisher, 1954) to search for enrichment in
Gene Ontology Biological Process (GOBP) terms (Ashburner et al., 2000) associated with
the genes/proteins of each community. The Bonferroni correction for multiple testing was
applied on the Fisher p-values by taking into account both the number of tested ontology
terms and communities. Similarly, the communities were screened for enrichment in
disease genes extracted from the CTD database (Davis et al., 2014) and filtered to select
the curated gene-disease associations (marker/mechanisms/therapeutic).

MolTi software
We developedMolTi, a standalone user-friendly graphical software.MolTi detects com-
munities from multiplex networks provided by the users, by optimizing the multiplex-
modularity with the adapted Louvain algorithm.MolTi further optionally performs
Fisher tests of annotation enrichment for the detected communities, and allows an easy
exploration of the results.MolTi and corresponding source code are freely available at
Github (https://github.com/gilles-didier/MolTi).

RESULTS
The multiplex-modularity recovers accurate communities from
simulated multiplex networks
We used stochastic block models (SBMs) to randomly simulate multiplex networks with
a reference community structure, and composed of 1–9 graph layers (Methods, Section
‘Random graph models’). To reflect some of the characteristics of biological networks in
the simulated networks, we generated multiplex networks composed of sparse, dense and
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mixed graphs. In addition, the incompleteness of biological networks was simulated by
node withdrawal.

We chose the Louvain algorithm that optimizes the network modularity (Blondel et
al., 2008) to identify communities. The multiplex-modularity is defined as the sum of
the individual network layer modularities with regard to the same community partition
(Methods, Section ‘Multiplex-modularity’). We adapted the Louvain algorithm to opti-
mize this multiplex-modularity (Methods, Section ‘Clustering algorithms for community
detection’). The Louvain algorithm was directly applied to the multiplex networks
aggregated through their union, intersection or sum (Methods, Section ‘Clustering
algorithms for community detection’). Finally, we also computed a consensus clustering
of the communities detected on individual networks (Methods, Section ‘Consensus
clustering’). The adjusted Rand index, which measures the similarity between two parti-
tions (Methods, Section ‘Adjusted Rand index’), was used to compare the communities
identified with the different approaches to the reference community structure used to
generate the networks.

The intersection and union aggregations, and consensus clustering, fail to
recover the community structure
We first observed that the identification of communities from the intersection of the
graphs composing the multiplex network eventually leads to detect less accurate commu-
nity structures (Fig. 1). An exception occurs for the simulation of dense graphs, for which
we observed an improvement with the intersection of multiplex networks composed
of 2 and 3 graph layers (Fig. 1C-1). In all others cases, the accuracy of the communities
detected by the intersection aggregation decreases with the number of graphs composing
the multiplex networks. Indeed, as the probability of observing an edge between two given
vertices in all the graphs decreases with the number of graphs, the intersection tends to be
empty.

A similar behavior is expected for the identification of communities from the union of
the graphs composing the multiplex network, as the union aggregated network tends to
be complete. This is observed for the simulation of dense and mixed-densities multiplex
networks (Figs. 1C-1,2 and 1B-1,2). However, the adjusted Rand index increases with the
number of graph layers on sparse simulations (Fig. 1A-1, 2). This unexpected behavior
comes from the fact that these simulated networks are so sparse that their unions do not
saturate, given the number of graphs considered here. In summary, both the union and
intersection aggregations ultimately lead to lose the community structure.

The performance of the consensus clustering increases slowly when considering more
than 2 graph layers, showing that a general community structure may eventually emerge
from that detected on the individual graphs (Figs. 1A-1, 1B-1 and 1C-1). However, the
accuracy of the consensus clustering never outperformed nor got close to the Multiplex-
modularity accuracy in our simulations.
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Figure 1 Adjusted Rand indexes between the reference community structure used to generate the ran-
dommultiplex networks and the communities detected by the different approaches.Multiplex net-
works contain from 1 to 9 graph layers. The indexes are averaged over 1,000 random multiplex networks
of 1,000 vertices and 20 balanced communities. Sparse (resp. dense) multiplex networks are simulated
with 0.1/0.01 (resp. 0.5/0.2) internal/external edge probability matrix. Mixed multiplex networks are sim-
ulated by uniformly sampling among these two matrices. Each vertex is withdrawn from each graph with a
probability 0.5 to generate missing data.

The multiplex-modularity better recovers communities in
heterogeneous density and missing data contexts
In our simulations, the accuracy of the communities detected by the sum aggregation and
the multiplex-modularity approach is consistently better than the accuracy of the union
and intersection aggregations, or the consensus clustering. Importantly, the accuracy of
the communities detected by the sum aggregation and the multiplex-modularity approach
increases with the number of graph layers considered. Although the community structure
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seems undetectable from a single graph, it is almost perfectly inferred by the multiplex-
modularity approach when a sufficient number of graphs is reached. For instance,
communities are recovered with Rand Indexes over 0.9 with 3 graphs for sparse multiplex
networks (Fig. 1A-1), 4 graphs for mixed multiplex networks (Fig. 1B-1) or 9 graphs for
dense graphs and sparse multiplex networks with missing data (Figs. 1C-1 and 1A-2).

The sum aggregation and multiplex-modularity approaches show very similar
performances on sparse and dense homogeneous multiplex networks (Figs. 1A and 1C).
However, these two approaches do differ for mixed-densities multiplex networks and
when missing data are simulated to account for network incompleteness (Fig. 1, Methods,
Section ‘Network incompleteness and missing data’). In these cases, the accuracy of the
multiplex-modularity approach is better than the sum aggregation. As expected, in a
missing data context, the community structures are more difficult to detect. All the ap-
proaches based on the aggregation of layers composing a multiplex network are sensitive
to missing data. Nonetheless, the multiplex-modularity approach still identifies adequate
communities when the number of graphs is sufficiently large, and is particularly more
accurate than the sum aggregation approach. Additionally, we compared our multiplex-
modularity approach to GenLouvain, a general approach to detect communities from
multiplex networks incorporating inter-slice connections (Mucha et al., 2010). In most
simulated cases, GenLouvain has a behavior similar to the the sum aggregation approach
(Fig. S1).

Multiplex-modularity identifies relevant modules from a
biological multiplex network
The identification of communities from 4 biological networks and the issue
of the resolution parameter
We constructed 4 biological networks from physical and functional interaction data:
a protein–protein interaction network, a network of pathways, a network of protein
complex, and a mRNA co-expression network (Methods, Section ‘Biological multiplex
networks’).

These networks are sparse, heterogeneous in densities and incomplete. Their densities
range from 0.001 to 0.023, with an average of 0.01. They are also prone to missing data
as their sizes range from 2,528 to 12,110 nodes (Table S1). Missing data is indeed an
important feature in biological networks since insufficient depth and coverage of the
interaction space leads to incomplete interaction datasets (Venkatesan et al., 2009; Braun
et al., 2009).

Altogether, the 4 biological networks contain 17,003 nodes and 1,371,739 edges,
among which 1,338,086 appear in 1 network only (Table S1). The Louvain algorithm
adapted to the multiplex-modularity was applied to identify communities from this
biological multiplex network. The classical Louvain algorithm was applied to the 4
networks individually, and to their union, and sum aggregations. Considering their weak
performance in the simulations, the intersection-aggregation and consensus clustering
approaches were not taken into account in the following analyses.

Didier et al. (2015), PeerJ, DOI 10.7717/peerj.1525 10/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.1525/supp-1
http://dx.doi.org/10.7717/peerj.1525/supp-1
http://dx.doi.org/10.7717/peerj.1525/supp-1
http://dx.doi.org/10.7717/peerj.1525


As some of the biological networks considered here are very large, we used the
resolution parameter γ to reduce the sizes of the detected communities (Methods, Section
‘Resolution parameter’). We tested the clustering of the 4 individual networks, sum and
union aggregations, and multiplex-modularity approach with γ parameter values ranging
from 1 to 15. We next elected the parameter value γ = 5 that gives module average sizes
lower than 50 proteins for the sum, union and multiplex partitions (Fig. S3). The number
of modules obtained from each individual network ranges from 85 communities for the
Pathway partition to 1,320 communities for the Co-expression network partition (Fig.
S2). Using this value of resolution parameter, more than 800 communities are obtained
from the sum and union aggregation networks, and 350 from the multiplex-modularity
approach. The communities obtained with the multiplex-modularity approach display
a median size of 17 proteins per community as opposed to a median sizes of 2 proteins
per community for the sum or union aggregations (Fig. S4). The multiplex-modularity
communities are hence more balanced and easier to interpret biologically.

The multiplex-modularity clustering identifies communities closer to the
individual partitions
We computed the adjusted Rand Indexes between the community partitions obtained
from the 4 individual networks and from their sum and union aggregations, and the
multiplex-modularity approach (Methods, Section ‘Adjusted Rand Index’). We observed
that, on average, the multiplex-modularity partition is closer to the individual network
partitions than the aggregations (Fig. 2).

The multiplex-modularity identifies communities enriched in gene
ontology terms
To assess the consistency of the communities, we tested their enrichment in Gene
Ontology Biological Process (GOBP) terms (Ashburner et al., 2000, Methods, Section
‘Annotation enrichment’). The communities detected by the multiplex-modularity
approach are more often associated to at least one significant (q-value< 0.05) GOBP term
than the sum or union aggregation communities (Fig. 3). For γ = 5, for instance, 38% of
the multiplex-modularity communities are annotated, compared to 14% and 10% of the
sum and union communities. Overall, these results suggest that the multiplex-modularity
approach is extracting relevant biological communities.

Clustering of proteins involved in the Coffin-Siris syndrome and other
syndromes with overlapping clinical features
As an illustration, we screened the modules obtained with the multiplex-modularity
approach (γ = 5) for enrichment in disease-related proteins (Methods, Section ‘Anno-
tation enrichment’). Twenty-nine communities are significantly associated to at least one
disease. Among those, one module contains the 6 gene products known to be associated
to the Coffins-Siris syndrome (q-value= 5×10−10, Fig. 4, Methods, Section ‘Annotation
enrichment’). This syndrome is a rare congenital disorder characterized by specific
cranofacial and digital features, microcephaly and intellectual disability, among other
phenotypes (Kosho & Okamoto, 2014; Vergano & Deardorff, 2014).
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Figure 2 Adjusted Rand Indexes between the partitions of the 4 individual networks and their sum-
aggregation, union-aggregation, and the multiplex-modularity approach. (A) Mean adjusted rand in-
dexes for γ = 1 to γ = 15. (B) detailed adjusted rand indexes for γ = 5.
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Figure 3 Percentage of communities associated to at least one significant GOBP term, for γ = 1 to γ =

15.

Figure 4 The 4 interaction layers of a module obtained after partitioning the multiplex biological networks with the multiplex-modularity ap-
proach. From left to right: pathways, Co-expression, PPIs and Complexes networks. Proteins involved in the Coffin-Siris syndrome are highlighted
in yellow, and protein related to other syndrome with shared clinical features are highlighted in blue.

The module is enriched in proteins involved in transcription regulation, and participat-
ing in different cellular processes such as chromatin remodeling, transcription from RNA-
polII promoter and DNA repair. The 6 Coffin-Siris syndrome proteins are components
of the SWI/SNF chromatin remodeling complex (Tsurusaki et al., 2012). Interestingly,
the module also contains other gene products implicated in other syndromes, which
clinical features overlap with the Coffin-Siris syndrome. MCPH1 is involved in primary
autosomal recessive microcephaly (Venkatesh & Suresh, 2014), BAZ1B is involved in
the William-Beuren syndrome that also presents neuropsychological deficits (Fusco
et al., 2014; Xiao et al., 2009) and ACTG1 mutations are involved in the Baraitser-
Winter syndrome, another developmental disorder associated to intellectual disability
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(Rivière et al., 2012). It is to note that all these syndrome-related proteins are clustered
only when the multiplex-approach is used. Indeed, when the different network layers
are aggregated, only 4 out of the 6 Coffin-Siris syndrome proteins belong to the same
module.

DISCUSSION
Interactions between genes and proteins can be of various nature and are identified by
diverse experimental approaches. We focused here on different facets of protein cellular
functions by taking into account (i) physical interactions between proteins, extracted
from experiments such as yeast 2-hybrid screens, (ii) interactions derived from the
belonging of proteins to complexes, (iii) functional interactions extracted from pathway
databases and (iv) co-expression correlations derived from mRNA expression in different
cellular contexts. However, other types of functional relationships between genes or pro-
teins, such as their implication in the same disease (Goh et al., 2007) or their targeting by
the same drug (Yildirim et al., 2007) could be considered. Consequently, many networks
can depict gene/protein functional relationships. Each of them represents a different layer
of a multiplex biological network, and each layer has its own meaning, size, relevance
and bias. For instance, the network of pathways is derived from information provided
by several pathway databases containing heavily curated expert knowledge rather than
large-scale datasets prone to noise. Conversely, the network of correlations computed
from RNA-seq expression data contains a lot of links, some of which are undoubtedly
noise. Furthermore, the different experimental approaches sourcing the interaction data
capture different parts of the interaction space, therefore leading to incomplete networks.
It is estimated for instance, that only 20% of the human protein–protein interaction space
has been currently deciphered (Menche et al., 2015). Similarly, curated interactions in
pathway databases are limited to the proteins for which such information exists, letting
aside a potential wealth of data yet to be deciphered. In this context, taking into account
diverse network sources when deriving functional modules is expected to cover a more
comprehensive picture of protein cellular functioning. The underlying reason is to
combine informative-but-sparse and plenty-but-noisy information to strengthen each
other, and improve the clustering performance (Papalexakis, Akoglu & Ience, 2013).

We explored here different approaches based on modularity to identify communities
from a set of networks. These approaches are all based on the assumption that the layers
of a multiplex network have the same community structure. For biological networks,
this means that the different categories of gene/protein functional relationships are
considered as instances or realizations of the real underlying functional modules. In our
work, this assumption is also fulfilled by the simulated random multiplex networks, as
they are generated from the same reference community structure. The aggregation of the
network layers into a monoplex network, or the consensus of communities are classically
applied to biological networks. The use of a natural extension of the modularity metric to
multiplex networks is newer (Bennett et al., 2015, this work).

While performing these analyses, Bennett et al. (2015) published an extension of the
modularity to multiplex networks equivalent to our multiplex-modularity. The originality
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of our work lies in the extensive comparisons we performed with the aggregation and
consensus approaches. In particular, we used random simulated networks to precisely
study the effects of different network topological features. This is particularly important
for the identification of communities from multiplex biological networks, as their density
and incompleteness can vary. Overall, when simulating networks with heterogeneous den-
sities and missing data, the multiplex-modularity approach outperforms all its aggregated
counterparts. This better performance is also observed in a real-case multiplex biological
network, for which the multiplex-modularity approach identifies more balanced and
annotated communities.

Other clustering approaches on multiplex networks were not considered because they
cannot readily be applied to detect communities from large-scale multiplex biological net-
works with missing data (Shiga & Mamitsuka, 2012; Papalexakis, Akoglu & Ience, 2013).
The GenLouvain approach (Mucha et al., 2010), a generalization of the modularity to any
kind of multi-slice networks, requires parameters difficult to set for biological networks,
such as inter-layer coupling (Mucha et al., 2010). Hence, we applied GenLouvain only to
the simulated multiplex networks (Fig. S1).

The large-scale interaction networks available nowadays constitute both a fantastic
source of information to study proteins functioning in their cellular context, and a huge
challenge calling for the development of methods to mine knowledge from such complex
data. We established here that the multiplex framework is suited to combine interaction
networks of different nature and allows recovering relevant functional modules.
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