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Abstract

We show how we can linearize individual probabilistic
linear constraints with binary variables when all coeffi-
cients are independently distributed according to either
N (µi, λµi), for some λ > 0 and µi > 0, or Γ(ki, θ) for
some θ > 0 and ki > 0. The constraint can also be lin-
earized when the coefficients are independent and iden-
tically distributed and either positive or strictly stable
random variables.

Keywords: Stochastic programming, combinatorial op-
timization, probabilistic constraint.

1 Introduction

Many combinatorial optimization models address prob-
lems with parameters which are impossible to predict
exactly. Therefore, it is often more accurate to model
these parameters with random variables. This modifies
the structure of the optimization problems, depending
on the times at which decisions are taken and param-
eters are revealed. In this note we study probabilistic
constraints: all decisions must be taken here and now,
such that the constraints of the model shall be satisfied
with a certain probability. In other words, we aim at
maximizing some objective for a given feasibility toler-
ance.

Stochastic programs with linear probabilistic con-
straints are in general non convex non linear optimiza-
tion problems, see [18] among others. If furthermore
some variables are integer, they become non convex
Mixed Integer Non Linear Problems [15]. Although
probabilistic constraints have been widely studied for
many years, see [17, 34, 37] and the references therein,
papers on problems with integer variables are not very
numerous. Among them, problems featuring joint prob-
abilistic constraints with random right hand side have
been studied by [7, 8, 9] who propose exact and heuris-
tic branch-and-bound algorithms, [13] who study for-
mulations and bounding procedures, [23] who develop
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a column-generation based algorithm for a supply chain
management problem, and [35] who introduce the con-
cepts of p-inefficiency and provide extensive computa-
tional results for the probabilistic set-covering problem
studied in [8]. All these works handle probabilistic con-
straints through the concept of p-efficient points intro-
duced by [32], apart from [35] which uses p-inefficient
points instead.

Herein, we consider problems where uncertainty af-
fects both sides of the constraints. A branch-and-bound
algorithm and heuristics for such problems have been
proposed in [5, 6], and [21] studies valid inequalities
for the problem with individual probabilistic constraints
with uncertainty in both sides.

In what follows, we are particularly interested by the
case of individual probabilistic constraints while the ran-
dom variables follow particular continuous distributions,
among which Gaussian distributions. Previous results in
this direction assume that all random variables are nor-
mally distributed. In that case, the probabilistic con-
straints can be rewritten as quadratic constraints (see
[19, 33, 39]), convex under some assumption on the con-
fidence level [29]. If all variables are binary, the con-
straints can be further linearized using classical tech-
niques [16]. Further work extends the classical gaussian
framework to the more general class of radial distribu-
tions [12]. The authors show how a probabilistic con-
straint can be written as a second-order cone convex
constraint. The latter constraint can be linearized as
well when working with binary variables.

In this note, we always assume that coefficients are in-
dependent continuous random variables. We show that
an individual linear probabilistic constraint with binary
variables is equivalent to a linear constraint when all co-
efficients are distributed according to either N (µi, λµi),
for some λ > 0 and µi > 0, or Γ(ki, θ) for some θ > 0 and
ki > 0. The constraint can also be linearized when the
coefficients are independent and identically distributed,
and either positive or strictly stable random variables.

The next section describes precisely the constraints
studied herein. Then, in Section 3 we study the case
of identically distributed random variables, while in Sec-
tion 4 we study gaussian and gamma random variables.
Finally, Section 5 illustrates our results on a multi-
commodity flow problem arising in telecommunications
networks, and we conclude in Section 6.
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2 Studied constraints

In the following we study mainly the following type of
probabilistic constraints,

C1(x) = P

(
n∑
i=1

aixi ≤ b

)
≥ p, (1)

though our results extend easily to

C2(x) = P

(
n∑
i=1

aixi ≤ c1y1 + b

)
≥ p, (2)

and

C3(x) = P

 n∑
i=1

aixi ≤
m∑
j=1

cjyj + b

 ≥ p

m∑
j=1

yj ≤ 1,

(3)

where p ∈ (0, 1), ai are independent random variables, ci
and b are fixed coefficients. In addition, we always con-
sider that xi, yj ∈ {0, 1}, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The first constraint (1) is the so-called knapsack con-
straint, which plays an important role in capacitated
problems such as unsplittable multi-commodity flow and
generalized assignment problems. The second constraint
(2) appears when the choice of the capacitated facilities
to be built is part of the decision: b denotes the initial
capacity and c1 the capacity provided by the facility.
Typical examples are network design and facility loca-
tion problems. Finally, in many technical problems we
must choose at most one out of a set of different facilities,
for instance, different capacities for a new link to install
in a telecommunication network. This is represented by
(3).

In what follows, we say that two constraints C1(x) ≥ 0
and C2(x) ≥ 0 are equivalent, denoted by C1(x) ≥ 0 ⇔
C2(x) ≥ 0, if the sets {x ∈ {0, 1}n s.t. C1(x) ≥ 0} and
{x ∈ {0, 1}n s.t. C2(x) ≥ 0} are equal.

3 Identically distributed vari-
ables

We first consider (1) for the simple example where ai are
positive random variables identically distributed. Since
ai are positive, we see that

P

(
m∑
i=1

ai ≤ b

)
≤ P

(
m−1∑
i=1

ai ≤ b

)
. (4)

Thus, the number of xi that can be equal to 1 can cer-
tainly not exceed

N(b) = max
1≤l≤n

{
l s.t. P

(
l∑
i=1

ai ≤ b

)
≥ p

}
. (5)

Conversely, if some binary vector x satisfies
∑n
i=1 xi ≤

N(b), then certainly x satisfies (1) because ai are iden-
tically distributed. Then, considering (2), the previous
reasoning holds with N(b) for y1 = 0, and with N(b+c1)
for y1 = 1. Finally, this reasoning extends to the pair of
constraints (3), since at most one of the yj can be equal
to 1. We just proved the following:

Proposition 1. Consider n independent identically dis-
tributed positive random variables ai, 1 ≤ i ≤ n. Then,
for xi, yj ∈ {0, 1}, 1 ≤ i ≤ n and 1 ≤ j ≤ m, the
following constraints are equivalent:

1. C1(x) ≥ p⇔
n∑
i=1

xi ≤ N(b)

2. C2(x) ≥ p⇔
n∑
i=1

xi ≤ (N(b+ c1)−N(b))y1 +N(b)

3. If furthermore,
∑m
j=1 yj ≤ 1, then C3(x) ≥ p ⇔

n∑
i=1

xi ≤
m∑
j=1

(N(b+ cj)−N(b))yj +N(b)

with N(r) defined in (5) for any real r.

In the following, we focus on results of type 1. since 2.
and 3. can be deduced from 1. by the above arguments.

Remark that computing the value of N(b) requires,
in general, the solution of a multivariate integral that
must be solved using efficient packages for numerical in-
tegration, see [33]. For some distributions, this compu-
tational burden can be avoided. For instance, if all ai
are uniformly distributed between 0 and 1, their sum is
distributed according to (see for instance [14])

f(z) =
1

n!

n+1∑
k=0

(−1)k
(
n+ 1
k

)
[(z − k)+]

n
.

The uniform distributions are not the only distributions
which sum up nicely. Stable distributions satisfy inter-
esting summation properties too. Recall that if ai are n
independent copies of a stable random variable a, then
for any constants xi the random variable

∑n
i=1 xiai has

the same distribution as vn a+ wn with some constants
vn = n1/α for some α ∈ (0, 2], and wn. Moreover, a
is said strictly stable if wn = 0 in the relation above.
For instance, the Levy distribution, with density func-

tion equal to f(z; c) =
√

c
2π

e−c/2x

x3/2 for z ≥ 0, is positive
(satisfying the hypothesis of Proposition 1) and stable
so that sums of such distributions are easy to compute.
We refer to [27] for a good introduction to stable distri-
butions.

In general, the support of stable distributions inter-
sects negative reals. For instance Gaussian and Cauchy
distributions always have negative tails. We show next
that property (4) still holds for strictly stable distribu-
tions. By definition

n∑
i=1

ai ∼ n1/αa1 α ∈ (0, 2],
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so that

P

(
n∑
i=1

ai ≤ b

)
= P (n1/αa1 ≤ b) = P (a1 ≤ bn−1/α).

If b ≥ 0, the function n 7→ bn−1/α is non increasing,
implying (4). We obtain the following:

Proposition 2. Consider n independent identically dis-
tributed strictly stable random variables ai, 1 ≤ i ≤ n,
and b ≥ 0. Then, if xi ∈ {0, 1} for each 1 ≤ i ≤ n, the
following constraints are equivalent:

C1(x) ≥ p⇔
n∑
i=1

xi ≤ N(b),

with N(b) defined in (5).

An example of strictly stable distribution with α =
1 is the Cauchy distribution, with density function

f(z; z0, γ) = 1
π

(
γ

(z−z0)2+γ2

)
for some location param-

eter z0 ∈ R and scale parameter γ > 0.

4 Non identically distributed
variables

A well known stable distribution is the Gaussian dis-
tribution. In fact, for Gaussian and gamma random
variables we are able to derive stronger results, allowing
for the random variables to be distributed differently, as
long as some regularity condition holds. Consider in-
dependent Gaussian random variables, ai ∼ N (µi, σ

2
i ),

1 ≤ i ≤ n. Then, C1(x) ≥ p can be rewritten (see for
instance [33])

n∑
i=1

µixi + Φ−1(p)

√√√√ n∑
i=1

σ2
i x

2
i ≤ b, (6)

where Φ is the cumulative distribution of the standard
Gaussian distribution N (0, 1). When x ∈ {0, 1}n, (6)
can be linearized introducing additional continuous vari-
ables, see [16]. However, these linearizations contain
significantly more variables than the direct linearization
from Proposition (3) below.

Proposition 3. Consider n independent random vari-
ables ai ∼ N (µi, λµi), 1 ≤ i ≤ n, for λ > 0 and µi > 0.
Then, if xi ∈ {0, 1} for each 1 ≤ i ≤ n, the following
constraints are equivalent:

C1(x) ≥ p⇔
n∑
i=1

µixi ≤ µ∗, (7)

where µ∗ is the unique root of the equation b − µ =
Φ−1(p)

√
λµ.

Proof. Recall that if a1, . . . , an are independent Gaus-
sian with mean µi and variance σ2

i , and xi are real
numbers, then a :=

∑n
i=1 xiai ∼ N (µ(x), σ2(x)), with

µ(x) =
∑n
i=1 xiµi and σ2(x) =

∑n
i=1 x

2
iσ

2
i . Thus, be-

cause xi ∈ {0, 1} and σ2
i = λµi for each 1 ≤ i ≤ n, we

have σ2(x) = λµ(x). Then,

P

(
n∑
i=1

aixi ≤ b

)
= P

(
N (0, 1) ≤ b− µ(x)√

λµ(x)

)
,

so that C1(x) ≥ p is equivalent to

b− µ(x)√
λµ(x)

≥ Φ−1(p). (8)

The left hand side of (8) is decreasing in µ(x), and thus
C1(x) ≥ p is equivalent to µ(x) ≤ µ∗, where µ∗ is the
unique root of the equation b− µ = Φ−1(p)

√
λµ.

We provide in Section 5 an application of Proposi-
tion 3 to a routing problem arising in telecommunica-
tions. Similar examples can be devised for the general-
ized assignment problem, see for instance the Propor-
tional Mean-Variance Model from [38] which assumes
that random variables are those from Proposition 3.

The next proposition considers the case of independent
gamma random variables used, for instance, to model
waiting and processing times in servers locations prob-
lems [10].

Proposition 4. Consider n independent random vari-
ables ai ∼ Γ(ki, θ), 1 ≤ i ≤ n, for some θ > 0 and
ki > 0, and assume that b > 0. Then, if xi ∈ {0, 1} for
each 1 ≤ i ≤ n, the following constraints are equivalent:

C1(x) ≥ p⇔
n∑
i=1

kixi ≤ k∗,

where k∗ is the unique solution of
∫ b
0
zk−1e

−z
θ dz

Γ(k)θk
= p and

the gamma function is defined by Γ(k) =
∫∞
0
zk−1e

−z
θ dz

θk
.

Proof. Gamma distributions satisfy also some kind of
summation property, although weaker than the prop-
erty satisfied by Gaussian distributions. Recall that
if a1, . . . , an are independent Gamma with shape ki
and a common scale θ, then a :=

∑n
i=1 ai ∼ Γ(k, θ),

with k =
∑n
i=1 ki. Thus, if xi are binary numbers,

we have also that a :=
∑n
i=1 xiai ∼ Γ(k(x), θ), with

k(x) =
∑n
i=1 kixi. Thus, for binary xi, C1(x) is equiva-

lent to P (Γ(k(x), θ) ≤ b) defined by∫ b
0
zk(x)−1e

−z
θ dz

Γ(k(x))θk(x)
,

which we note K(k(x)) in the following. Assuming
that K(k) is a strictly decreasing function of k, the
constraint K(k(x)) ≥ p is equivalent to the constraint
k(x) ≤ k∗, with k∗ = K−1(p) which proves C1(x) ≥ p⇔∑n
i=1 kixi ≤ k∗. Note that K−1 is well defined for any

p ∈ (0, 1) because K is continuous, strictly decreasing,
limk→0+ K(k) = 1 and limk→+∞K(k) = 0.
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We are left to prove that K(k) is a strictly decreasing
function of k > 0:

dK
dk

(k) = θ
d

dk

∫ b
0
zk−1e−zdz∫∞

0
vk−1e−vdv

=
θ

Γ2(k)

(∫ b

0

ln(z)zk−1e−zdz

∫ ∞
0

vk−1e−vdv

−
∫ b

0

zk−1e−zdz

∫ ∞
0

ln(v)vk−1e−vdv

)

=
θ

Γ2(k)

∫ b

0

dz

∫ ∞
b

dv
(
zk−1vk−1e−z−v ln

z

v

)
,

which is strictly negative because ln z
v < 0 for (z, v) ∈

[0, b]× (b,∞).

When b ≤ 0, K(k(x)) = 0 so that the probabilistic
constraint is equivalent to

∑n
i=1 xi ≤ 0.

5 Application to the bandwidth
packing problem

In what follows, we apply Proposition 3 to a multi-
commodity flow problem occurring in telecommunica-
tions networks. We discuss different approaches to tackle
the probabilistic constraints. Notice that our example is
easily extended to the problem of designing a telecom-
munications network, replacing the fixed capacity C by
a set of facilities with capacity Cj , j = 1, . . . ,m as in
(3).

5.1 Problem description

Given a directed graph G = (V,A) with a capacity vector
C, and a set of commodities K of size dk and revenue
ck from s(k) to t(k) for each k ∈ K, the bandwidth
packing problem (BWP ) aims at routing commodities
on the network in order to maximize the total revenue.
For technical reasons based on routing protocols, each
commodity must be sent along a unique path from s(k)
to t(k), see [4, 30]. Introducing the binary variable xka
stating whether commodity k is routed through arc a,
the problem can be formulated as

max
∑
k∈K

∑
a∈A−(t(k))

ckxka

s.t.
∑

a∈A−(v)

xka −
∑

a∈A+(v)

xka =

 1 v = t(k)
−1 v = s(k)
0 else

k ∈ K, v ∈ V∑
k∈K

dkxka ≤ Ca a ∈ A

(9)

xka ∈ {0, 1} k ∈ K, a ∈ A,

where A+(v) and A−(v) denote the set of outgoing arcs
and incoming arcs at node v, respectively. In practice,

although the traffic size dk varies along time, it is not
convenient to change the routing according tho these
variations; x must be set once for a given time period.
Different frameworks allow to model such uncertainties.
Some works consider that d belongs to a polyhedron D
and that (9) must be feasible for any d ∈ D, see [22] and
the closely related [2], among others. Others [31] model
dk, k ∈ K, by random variables and replace (9) by

P

(∑
k∈K

dkxka ≤ Ca

)
≥ p a ∈ A. (10)

In what follows, we assume that dk, k ∈ K, are inde-
pendent Gaussian distributed according to N (µk, λµk).
The Gaussian assumption has been studied in [1, 20] and
used in [3], among others. Moreover, [36] (followed by
[24] and [3]) assume that dk and dh are independently
distributed for k 6= h. Finally, some authors [26] suggest
that means and variances are linearly correlated as traf-
fic size increases, that is, σ = λµ for some λ > 0, so that
we can apply Proposition 3 to (10).

5.2 Solution methods

We review different approaches to tackle the chance-
constrained version of (BWP ). Besides Proposition 3,
there are two groups of methods to handle (10). Keep-
ing the random vector continuous, we can tackle (10) by
MINLP methods. Alternatively, we can sample the ran-
dom variables to obtain a scenario set S and solve the
deterministic equivalent.

Direct linearization We apply Proposition 3 to (10),
obtaining again problem (BWP ) with dk and Ca re-
placed by µk and the unique root µ∗a of Ca − µ =
Φ−1(p)

√
λµ, respectively. Computing µ∗a is easy since

function Ca−µ√
λµ

is convex and differentiable. Therefore,

we can solve the problem with efficient algorithms used
in the deterministic case, such as the branch-and-cut-
and-price algorithm from [4].

MINLP methods When p ≥ 0.5 and each dk is Gaus-
sian, (10) is convex and thus, well suited for non linear
algorithms [11]. However, it is clearly easier to use the di-
rect linearization of (10) through Proposition 3, because
non-linear constraints are harder to handle than linear
ones and both formulations provide the same bound. For
instance, outer approximation-based algorithms replace
(10) by a set of tangent cutting planes. The latter con-
tains more inequalities, with possibly highly fractional
coefficients, than the unique inequality resulting from
(10).

Alternatively, (10) with Gaussian random variables
can be reformulated as (6). We can then rewrite (6)
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as∑
k∈K

µkxka ≤ Ca (11)∑
k∈K

[
(Φ−1(p)σk)2 + µk(2Ca − µk)

]
xka

+
∑

k,h∈K:k 6=h

[
((Φ−1(p))2σkσh − 2µkµh)

]
xkax

h
a ≤ C2

a ,

(12)

for each a ∈ A. When p > 0.5, which is the case in real
situations, µ∗a < Ca and thus, (11) is less tight than (7).
Hence, Proposition (10) allows to strengthen the above
formulation by substituting (11) with (7). Then, (12) is
not needed anymore to define a valid formulation. How-
ever, since it takes into account the binary restriction on
x (by using (xka)2 = xka), it may be used together with
(7) to provide a stronger continuous relaxation. Note
finally that linearizing (12) requires at least |K| addi-
tional variables and 2|K| additional constraints for each
a ∈ A [16].

Discretization and deterministic equivalent
Sampling a scenario set S that approximates the con-
tinuous distribution d in an acceptable way, see [25, 28],
among others, we can write a deterministic equivalent
for (10):∑

k∈K

dksxka ≤ Ca +Ms
ay

s
a a ∈ A, s ∈ S (13)∑

s∈S
psysa ≥ p a ∈ A, (14)

where components of vector M are numbers large
enough. However, (13) and (14) yield a very difficult
problem because (13) contains a large number of con-
straints and features “big-M” coefficients. Therefore,
[5, 6] show how to replace (13) and (14) by a relevant
set L of scenario sets through a branch-and-bound algo-
rithm. Each l ∈ L yields a problem similar to (BWP ),
but with multiple capacity constraints (9) for each arc
a ∈ A (one for each scenario in l). Then, using bounding
mechanisms, they avoid solving all problems associated
to elements of L. Eventually, the exact approaches from
[5, 6] will have solved several binary multi-commodity
flow problems with multiple capacity constraints, each
of them being more more complex than (BWP ). Al-
though applicable to a broader class of problems, this
approach will in general be slower than the direct lin-
earization from Proposition 3 that requires only to solve
one problem similar to (BWP ) plus the computation of
the root vector µ∗.

6 Conclusion

In this note we show how to linearize individual proba-
bilistic constraints with binary variables under very spe-
cific assumptions. Then, we propose a model for the

bandwidth packing problem with probabilistic capacity
constraints under demand uncertainty that satisfies our
assumptions, and discuss different approaches to tackle
the problem. We show that our linearization method
simplifies considerably the stochastic problem because
the latter becomes as easy to solve as its deterministic
version. We can thus apply efficient algorithms taking
the combinatorial structure of the problem into account.

In opposition, recent solution methods to integer pro-
grams featuring probabilistic constraints with uncer-
tainty in both sides, such as [5, 6], are far more gen-
eral and only assume that the uncertain parameters are
described by a finite scenario set. Nevertheless, these ap-
proaches require to solve integer programs significantly
harder than the deterministic versions.

Acknowledgements

This research is supported by an “Actions de Recherche
Concertées” (ARC) projet of the “Communautée
française de Belgique”. Michael Poss is a research fellow
of the “Fonds pour la Formation à la Recherche dans
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[13] D. Dentcheva, A. Prékopa, and A. Ruszczynski, Bounds for prob-
abilistic integer programming problems, Discrete Applied Math-
ematics 124 (2002), no. 1-3, 55 – 65.

[14] C. Grinstead and J. Snell, Introduction to probability, 2nd edn,
American Math. Society, Providence, 1997.

[15] I. E. Grossmann, Review of nonlinear mixed-integer and dis-
junctive programming techniques, Optimization and Engineering
3 (2002), 227–252(26).

[16] P. Hansen and C. Meyer, Improved compact linearizations for
the unconstrained quadratic 0–1 minimization problem, Discrete
Applied Mathematics 157 (2009), 1267–1290.

[17] R. Henrion, Introduction to chance-constrained programming,
Tutorial paper for the Stochastic Programming Community Home
Page, 2004.

[18] R. Henrion and C. Strugarek, Convexity of chance constraints
with independent random variables, Comput. Optim. Appl. 41
(2008), 263–276.

[19] S. Kataoka, A stochastic programming model, Econometrica 31
(1963), no. 1/2, 181–196.

[20] J. Kilpi and I. Norros, Testing the gaussian approximation
of aggregate traffic, IMW ’02: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment (New York, NY,
USA), ACM, 2002, pp. 49–61.

[21] O. Klopfenstein, Solving chance-constrained combinatorial prob-
lems to optimality, Computational Optimization and Applica-
tions 45 (2010), no. 3, 607–638.

[22] O. Klopfenstein and D. Nace, Valid inequalities for a robust
knapsack polyhedron - application to the robust bandwidth pack-
ing problem, Networks (2010), to appear.

[23] M. A. Lejeune and A. Ruszczynski, An efficient trajectory
method for probabilistic production-inventory-distribution prob-
lems, Operations Research 55 (2007), no. 2, 378–394.

[24] A. Lisser, A. Ouorou, J.-P. Vial, and J. Gondzio, Capacity plan-
ning under uncertain demand in telecommunication networks,
Tech. report, 1999.

[25] J. Luedtke and S. Ahmed, A sample approximation approach
for optimization with probabilistic constraints, SIAM Journal on
Optimization 19 (2008), no. 2, 674–699.

[26] R. Morris and D. Lin, Variance of aggregated web traffic, Pro-
ceedings of INFOCOM, 2000, pp. 360–366.

[27] J. P. Nolan, Stable distributions - models for heavy tailed
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