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Given a graph with nonnegative edge weights and node pairs Q, we study the problem
of constructing a minimum weight set of edges so that the induced subgraph contains at
least K edge-disjoint paths containing at most L edges between each pair in Q. Using
the layered representation introduced by Gouveia (1998), we present a formulation for the
problem valid for any K,L ≥ 1. We use a Benders decomposition method to efficiently
handle the big number of variables and constraints. We show that our Benders cuts contain
the constraints used by Huygens et al. to formulate the problem for L = 2, 3, 4, as well as
new inequalities when L ≥ 5. While some recent works on Benders decomposition study the
impact of the normalization constraint in the dual subproblem, we focus here on when to
generate the Benders cuts. We present a thorough computational study of various branch-
and-cut algorithms on a large set of instances including the real based instances from SNDlib.
Our best branch-and-cut algorithm combined with an efficient heuristic is able to solve the
instances significantly faster than CPLEX 12 on the extended formulation.

Key words: survivable network; edge-disjoint paths; hop-constrained paths; Benders decom-
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1. Introduction

1.1 Problem motivation

Our worldwide society is largely dependent on the performance of huge information systems

which are often organized in large-scale, complex and costly networks. With time, the

equipment (routers, fiber optic cables, ...) deteriorates and the risk of failure must be

controlled as well as possible by the network managers in order to guarantee the best service

to users. As a consequence, the development of survivable networks became a crucial field

1



of research and investigation. In this paper, we define a survivable network as a network

in which the various demands can be routed without loss of service quality even in case of

network failure (link or node failure).

For each demand, we impose that at least K different paths exist for each origin-

destination pair. These K paths can, for instance, be “edge-disjoint”, i.e. if a particular

edge belongs to one path, this particular edge cannot be used by the other K − 1 paths.

This guarantees that if K − 1 edges break down, it is always possible to reroute all the de-

mands by the K-th path which does not use the broken arcs. Another form of survivability

considers the node-disjoint case. More formally consider an undirected graph G = (V,E),

where V represents the vertex set, and E the set of edges. We also associate an installation

cost cij to each edge ij and introduce an auxiliary arc set A which is obtained from each

edge ij of E by creating two arcs (i, j) and (j, i) with the same cost as the original edge.

In order to incorporate the survivability considerations into the problem definition, we need

to introduce the following graph theoretical concepts with elements from the sets V and A.

Given two distinct nodes o (the origin vertex of demand) and d (the destination vertex of

demand) of V , an od-path is a sequence of node-arcs P = (v0, (v0, v1), v1, ..., (vl−1, vl), vl),

where l ≥ 1, v0, v1, ..., vl are distinct vertices, v0 = o, vl = d, and (vi−1, vi) is an arc connect-

ing vi−1 and vi (for i = 1, ..., l). A collection P1, P2, ..., Pk of od-paths is called edge-disjoint

if any arc (i, j) and its symmetric arc (j, i) appears in at most one path. It is called node-

disjoint if any node except for o and d appears in at most one path. A subgraph H of G

is called K-edge-survivable (respectively, K-node-survivable) if for any o, d ∈ V , H contains

at least a specified number K of edge-disjoint (respectively, node-disjoint) od-paths. Then,

the K-edge-survivable network design problem, denoted by ESNDP , consists of finding an

K-edge-survivable subgraph of G with minimum total cost, where the cost of a subgraph

is the sum of the costs of its edges. Similarly, the node-survivable network-design problem,

denoted by NSNDP , consists of finding a minimum-cost node-survivable subgraph of G.

A polyhedral study of the problem for the K-ESNDP with K = 2 can be found in Stoer

(1993) while the node variant is, among others, addressed in Grötschel et al. (1992) and

reviewed in Fortz (2000). The reader is also referred to Raghavan (1995) for a discussion

on flow-based models and projection from flow based models to original arc variables and to

Magnanti and Raghavan (2005) for enhancements on standard flow based models.

In general, the survivability constraints alone may not be sufficient to guarantee a cost

effective routing with a good quality of service. The reason for this is that the routing paths
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may be too “long”, leading to unacceptable delays. Since in most of the routing technologies,

delay is caused at the nodes, it is usual to measure the delay in a path in terms of its number

of intermediate nodes, or equivalently, its number of arcs (or hops). Thus, to guarantee

the required quality of service, we impose a limit on the number of arcs of the routing

paths. Hop-constraints were considered by Balakrishnan and Altinkemer (1992) as a means

of generating alternative base solutions for a network design problem. Later on, Gouveia

(1998) presented a layered network flow reformulation whose linear programming bound

proved to be quite tight. This reformulation has, then, been used in several network design

problems with hop-constraints (e.g, Pirkul and Soni (2003), Gouveia and Magnanti (2003)

and Gouveia et al. (2003)) and even some hop-constrained problems involving survivability

considerations (more on this below). It is also interesting to point out that the apparently

simple general network design problem with L = 2 already contains a complex structure (see

Dahl and Johannessen (2004) who also conduct a computational study of this variation of

the problem).

In this paper, we study a problem which incorporates the two requirements, survivability

and quality of service. More precisely, given a graph G and two parameters K and L, we

consider an extension of the ESNDP where each path is constrained to have at most L

arcs. We note that this is not the first time that the two types of constraints are considered

together. As far as we know, the earliest work that combined hop-constraints with the

constraint that the required paths must be node-disjoint is the bounded ring network design

problem studied by Fortz and Labbé (2002, 2004); Fortz et al. (2006), among others. The

problem we study was first studied by Huygens et al. (2007) who only consider L ≤ 4 and

K = 2. The node-disjoint variant was studied by Gouveia et al. (2006) and later in Gouveia

et al. (2008) who consider a more complicated version. The reader is referred to the survey

by Kerivin and Mahjoub (2005) who consider the disjoint path case alone, network design

problems only with hop constraints and the case where the two requirements are considered

together.

1.2 Model and method motivation

Relevant for obtaining the good computational results for the K-ESNDP is the fact that

most of the best methods rely on so-called natural models, that is, models that use only one

variable for each edge of the graph and an exponential sized set of constraints. However,

for many of these inequalities the associated separation problem is well solved and thus,
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they can be efficiently separated leading to quite good cutting plane algorithms as shown for

instance in Dahl and Stoer (1998). Unfortunately, finding a similar approach for the same

type of problem with hop-constraints is much more complicated. The reason is that it is

not straightforward to obtain a valid natural formulation for the particular case of finding

a set of edges containing K edge-disjoint L-paths between the two given nodes. Itáı et al.

(1982) and later Bley (1997) study the complexity of this problem for the node-disjoint and

the edge-disjoint cases. Recently, Bley and Neto (2010) also studied the approximability of

the problem for L = 3 and L = 4.

For K = 1, Dahl (1999) has provided such a formulation and shown that it describes the

corresponding convex hull for L ≤ 3. Later on, Dahl et al. (2004) have shown that finding

such a description for L ≥ 4 would be much more complicated. For K ≥ 2 the results are

even worse. Huygens et al. (2004) have extended Dahl’s result for K = 2 and L ≤ 3. For

L ≥ 4, the only interesting result for the moment is the one given in Huygens and Mahjoub

(2007) for L = 4 and K = 2 where a valid formulation has been given. However, in terms

of valid inequalities and with exception to the well known L-path cut inequalities, nothing

is known for larger values of L. This may also explain why the only cutting plane method

for the more general problem with several sources and several destinations by Huygens et al.

(2007) only considers L ≤ 3.

Based on this history, it makes sense to look for alternative ways of formulating the

problem. The layered approach described previously appears to be a good candidate for

formulating the problem since it is easily generalized for the case with K disjoint paths.

Furthermore, a similar approach has already been used for the version of the problem with

node disjoint paths (see Gouveia et al. (2006) and Gouveia et al. (2008) for a more com-

plicated version) and the results in these papers (although for a slightly more complicated

variant) give a sort of motivation for the method developed and tested in this paper:

(i) the linear programming bound given by the model (if it can be solved) is often very

good;

(ii) however, the model is difficult to use in a straightforward way with CPLEX because it

has too many variables.

Thus, (i) and (ii) motivate the approach of using this kind of model within a decomposition

algorithm, such as Benders decomposition. Finally, another outcome of this research is that
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the Benders cuts might give some relevant information for finding valid inequalities for the

cases with L ≥ 5.

Based on these observations, we formulate the problem as an integer program based on the

layered representation from Gouveia (1998). To our knowledge, this is the first formulation

for the problem that is valid for L ≥ 5 and any K > 1.

As previously mentioned the model is too large to be used directly with CPLEX (or for

that matter any other solver). Hence, we use a Benders decomposition method to efficiently

handle the large number of variables and constraints. Although Benders decomposition has

been widely used for hard mixed-integer problems — including fixed-charge network design

problems (Costa, 2005) — not much is said about the algorithmic aspects, most authors

using “textbook implementations”. Some recent works (Fischetti et al., 2010; Ljubic et al.,

2009) have highlighted the importance of the normalization constraint in the separation

problem. Herein, we investigate another aspect of the algorithm, namely, when to generate

cuts throughout a branch-and-cut algorithm. We present a thorough computational study of

branch-and-cut algorithms on a large set of instances including the real-world based instances

from SNDlib (Orlowski et al., 2010). Some computational experiments (not reported here)

also confirm previous results obtained by Fortz and Poss (2009) showing that branch-and-cut

algorithms outperform cutting plane algorithms.

Another outcome of our research is that the Benders cuts may give some relevant infor-

mation for finding valid inequalities for the cases with L ≥ 5. We show that the Benders

cuts contain the constraints used by Huygens et al. (2004) and Huygens and Mahjoub (2007)

to formulate the problem for L = 2, 3, 4 and K = 2 in the space of natural design variables,

as well as new valid inequalities when L ≥ 5. Hence, for L = 2, 3 our branch-and-cut algo-

rithms (polynomially) separate “cut inequalities” and “L-paths inequalities” while Huygens

et al. (2007) need to separate both inequality types independently. Finally, we present a fast

and efficient LP-based heuristic that provides the optimal solution for more than half of the

instances.

In the next section we introduce the layered representation and describe our integer

programming formulation. In Section 3, we reformulate the problem through Benders de-

composition and discuss different algorithmic approaches. Section 4 compares the Benders

cuts with previous known cuts for the problem, while computational results are presented in

Section 5.
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(a) (b)

Figure 1: Original network (a) and its alternative (or associated) layered representation (b)
when L = 4

2. Problem description

The main idea of Gouveia (1998) is to model the subproblem associated with each commodity

with a directed graph composed of L+ 1 layers as illustrated in Figure 1. Namely, from the

original non-directed graph G = (V,E), we create a directed layered graph Gq = (V q, Aq)

for each commodity, where V q = V q
1 ∪ . . . ∪ V

q
L+1 with V q

1 = {o(q)}, V q
L+1 = {d(q)} and

V q
l = V \{o(q)}, l = 2, . . . , L. Let vql be the copy of v ∈ V in the l-th layer of graph

Gq. Then, the arcs sets are defined by Aq = {(iql , j
q
l+1) | ij ∈ E, iql ∈ V q

l , j
q
l+1 ∈ V q

l+1, l ∈
{1, . . . , L}} ∪ {d(q)l, d(q)l+1, l ∈ {2, . . . , L}}, see Figure 1. In the sequel, an (undirected)

edge in E with endpoints i and j is denoted ij while a (directed) arc between iql ∈ V
q
l and

jql+1 ∈ V
q
l+1 is denoted by (i, j, l) (the commodity q is omitted in the notation as it is often

clear from the context).

Note that each path between o(q) and d(q) in the layered graph Gq is composed of exactly

L arcs (hops), which corresponds to a maximum of L edges (hops) in the original one. In fact

this is the main idea of this transformation, since in the layered graph any path is feasible

with respect to the hop-constraints. The usual network flow equations defined in this layered

graph yield the following model:
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min
∑
ij∈E

cijZij

s.t.
∑

j:(j,i,l−1)∈Aq

U l−1 q
ji −

∑
j:(i,j,l)∈Aq

U lq
ij =

 −K if (i = o(q))
K if (i = d(q)) and (l = L + 1)
0 else

,

(P) i ∈ V q, l ∈ {2, . . . , L + 1}, q ∈ Q, (1)∑
l∈{1,...,L}

(
U lq
ij + U lq

ji

)
≤ Zij , ij ∈ E, q ∈ Q, (2)

Zij ∈ {0, 1}, ij ∈ E, (3)

U lq
ij integer, (i, j, l) ∈ Aq, q ∈ Q. (4)

Each variable Zij states whether edge ij ∈ E is built and each variable U lq
ij describes the

amount of flow through arc (i, j, l) for commodity q in layered graph Gq. Constraints (1) are

the flow conservation constraints at every node of the layered graph which guarantee that

K units of flow go from o(q) to d(q), while constraints (2) guarantee edge-disjointness of the

paths. Note that (2) together with (3) imply that U lq
ij ≤ 1 for i 6= j, while (1) implies that

U lq
ii ≤ K.

In the sequel, we assume the reader familiar with standard notions of polyhedral theory,

see for instance Nemhauser and Wolsey (1988).

3. Benders decomposition

3.1 Reformulation

When facing a complex mixed-integer optimization problem, the Benders decomposition

method (Benders, 1962) can be used to project out complicating real variables. This pro-

jection results in the addition of many constraints to the problem. Benders decomposition

has been widely studied for fixed charge network design problems (Costa, 2005). In these

problems, multi-commodity flows are routed in some network to be designed. Therefore,

the associated formulations contain many constraints and variables bound together by the

capacity constraints. The Benders decomposition of these problems considers a master prob-

lem, with capacity variables only, and subproblems with flow variables for one commodity

only. Hence, the subproblems are independent linear programs for each commodity (see,

for instance, SP(q, Z) below), thus reducing significantly the size of the linear programs to

solve. However, the classical framework does not apply to our model (P) because all of
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its variables are integer; classical duality theory does not allow us to project out variables

with integer restrictions. It is well known indeed in the field of stochastic programming that

integer recourse cannot be tackled through classical Benders decomposition, called L-shaped

in stochastic programming (Birge and Louveaux, 2008). Although Carøe and Tind (1998)

generalize the L-shape to integer recourse using general duality theory, their framework stays

mainly theoretical.

To avoid this difficulty, we introduce a new formulation for the problem, (P’), where we

relax the integrality restrictions on U variables in (P), replacing (4) by

U lq
ij ≥ 0, (i, j, l) ∈ Aq, q ∈ Q. (5)

We discuss below and in Section 4 whether (P’) provides the same optimal design Z as

(P). Then, we can use the classical framework (described by Costa (2005) among others) to

project out U variables from (P’). Given commodity q ∈ Q, let us introduce a dual variable

πli, associated with node i ∈ V and layer l, for each constraint (1) and a dual variable σij

for each constraint (2). Defining o := o(q) and d := d(q), and adding the constraints π1
o = 0

and πL+1
d ≤ 1 to normalize the dual cone (see Fischetti et al. (2010); Ljubic et al. (2009) for

alternative choices of normalization constraints), we get our dual subproblem SP(q, Z).

Note that for each commodity q ∈ Q, one of the constraints in (1) is redundant, so we

set π1
o = 0 to avoid some extreme rays in the dual subproblem.

max K
(
πL+1
d − π1

o

)
−
∑
ij∈E

Zijσij (6)

s.t. π2
i − π1

o − σoi ≤ 0, oi ∈ E,

πl+1
i − πlj − σij ≤ 0, ij ∈ E, i, j /∈ {o, d}, l ∈ {2, . . . , (L− 1)},

SP(q, Z) πl+1
j − πli − σij ≤ 0, ij ∈ E, i, j /∈ {o, d}, l ∈ {2, . . . , (L− 1)},

πl+1
d − πli − σid ≤ 0, id ∈ E, l ∈ {2, . . . , L},

πl+1
d − πld ≤ 0, l ∈ {2, . . . , L},

π1
o = 0,

πL+1
d ≤ 1,

σij ≥ 0, ij ∈ E.
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The Benders reformulation for (P’) follows:

(BR)

min
∑
ij∈E

cijZij

s.t. KπL+1
d(q) −

∑
ij∈E

Zijσij ≤ 0, (π, σ) ∈
⋃
q∈Q

Rq,

Zij ∈ {0, 1}, ij ∈ E,

where Rq contains vertices of the feasibility polyhedron for the dual subproblem SP(q, Z)

(notice that the feasibility polyhedron of SP(q, Z) depends only on q, not on Z).

Next, we discuss how to extend this procedure to (P). We need to first introduce some

notation. Given Z ∈ {0, 1}|E|, let Ui(Z) be the set of binary vectors defined by (1),(2) and

(4) and Uc(Z) the polyhedron defined by (1),(2) and (5). Then, define Zi (respectively Zc)
as the set of vectors Z ∈ {0, 1}|E| such that Ui(Z) (respectively Uc(Z)) is nonempty, and let

conv(Zi) (respectively conv(Zc)) be its convex hull. Since Ui(Z) ⊆ Uc(Z) for every binary

Z, we have that Zi ⊆ Zc so that any valid inequality for conv(Zc) is valid for conv(Zi). In

particular, the Benders cut

KπL+1
d(q) −

∑
ij∈E

Zijσij ≤ 0, (7)

with (π, σ) ∈ Rq for some commodity q ∈ Q, is valid for conv(Zi).
These definitions raise the following question. Are cuts (7) together with integrality

restrictions (3) enough to characterize Zi ? Namely, given a binary vector Z, is it true that

Z belongs to Zi if and only if Z does not violate any cut (7)? It is easy to see that this is

true when K = 1, and we prove in Section 4 that this is also the case for L = 2, 3 with any

K ≥ 2, and for L = 4 with K = 2. For L ≥ 5 and K ≥ 2, sets Zi and Zc may be different

(unless P = NP ), so that we must in general check the existence of an integer flow in the

graph described by Z. We do so by solving the following problem for each commodity:

min
∑
ij∈E

eqij

s.t.
∑

j:(j,i,l−1)∈Aq

U l−1q
ji −

∑
j:(i,j,l)∈Aq

U lq
ij =

 −K if (i = o(q))
K if (i = d(q)) and (l = L + 1)
0 else

,

FP(q, Z) i ∈ V q, l ∈ {2, . . . , L + 1},∑
l∈{1,...,L}

(
U lq
ij + U lq

ji

)
≤ Zij + eqij(1− Zij), ij ∈ E,

U lq
ij integer, (i, j, l) ∈ Aq,

eqij ∈ {0, 1} ij ∈ E,
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which is one among many ways to turn the decision problem into an optimization problem.

Let eq denote the optimal value of eq, and eZ = maxq∈Q{
∑

ij∈E e
q
ij}. If eZ = 0, Z ∈ Zi.

Otherwise, we can add the inequality ∑
ij∈E0(Z)

Zij ≥ eZ , (8)

with E0(Z) = {ij ∈ E s.t. Zij = 0}, to move away from the current solution, as explained

in the next subsection. Since FP(q, Z) looks for the minimal number of additional edges

required by commodity q, it is easy to see that (8) is valid for (P). Notice that (8) can be

seen as a reinforced feasibility cut typically used in logic-based Benders decomposition, see

Hooker (2000) and Codato and Fischetti (2006) among others. It is interesting to point out

that in our computational experiments (see Section 5), we never needed to add such a cut

because we did not find a vector Z ∈ Zc\Zi.

3.2 Algorithmic approach

(BR) contains exponentially many constraints (this is a direct consequence of Lemma 1 in

Section 4) while only a few of them are active at the optimum. Therefore, we can dynamically

generate the required constraints throughout the solution method. Early papers on Benders

decomposition for mixed-integer problems use cutting plane algorithms, cycling many times

between master integer problems and continuous subproblems. However, modern develop-

ments in branch-and-cut frameworks such as the commercial CPLEX (IBM-ILOG, 2009)

or the noncommercial SCIP (Achterberg, 2009), among others, have eased the development

of a branch-and-cut algorithm to solve the master problem, incorporating the Benders cut

separation in the cutting plane callback. Recent works by Fortz and Poss (2009) and Bai

and Rubin (2009) present examples for which there is an important time reduction when

using a branch-and-cut algorithm instead of a cutting plane algorithm. Moreover, our exper-

iments for the problem studied herein confirm that branch-and-cut algorithms are an order

of magnitude faster than cutting plane algorithms. We describe next our algorithms.

Given a subset Rq of Rq for each q ∈ Q, and binary vectors Z
s
, s = 1, . . . , r, let us define

10



the master problem

(MP)

min
∑
ij∈E

cijZij

s.t. KπL+1
d(q) −

∑
ij∈E

Zijσij ≤ 0, (π, σ) ∈
⋃
q∈Q

Rq,∑
ij∈E0(Z

s
)

Zij ≥ eZs , s = 1, . . . , r,

Zij ∈ {0, 1}, ∀ij ∈ E.

Our branch-and-cut strategy solves (MP) only once. We aim at embedding the generation

of violated feasibility cuts (7) (and (8) if needed) into the branch-and-cut framework solving

(MP).

It is important to add many cuts early in the tree to avoid exploration of too many

infeasible nodes. However, adding too many unnecessary cuts would slow down the linear

programming relaxation at each node. Our first branch-and-cut algorithm, bc-all, checks

for violated Benders cuts (7) at every node of the tree, while it tests for violated inequality

(8) only at integer nodes. As noted by Fortz and Poss (2009), this algorithm is relatively

slow, because too many cuts are added and too much time is spent in the solution of SP(q, Z).

In bc-int, we add as many cuts (7) and (8) as we can find at the root node. Then we start

branching and check for further violated cuts at integer nodes only. Finally, we developed

a hybrid algorithm bc-n, described in Algorithm 1, checking for violated inequality (8) at

integer nodes and for violated inequality (7) at integer nodes and nodes with a depth less

than or equal to n. Note that bc-n generalizes both frameworks since bc-int is the same

as bc-0, and bc-all is the same as bc-|E|.
In Algorithm 1, solving a node o′ ∈ N means solving the linear programming relaxation

of (MP), augmented with branching constraints of o′, while depth(o′) counts the number of

branching constraints of o′.

3.3 Heuristic

An intrinsic drawback of decomposition methods is that the solver does never see the com-

plete model as a whole but only a part at the time, making difficult for the solver to detect

and exploit the model structure. It is well known that special structures can help the solution

of hard integer programs. For instance, detecting a flow structure within a more complicated

problem can be used to add strong cut inequalities (Achterberg and Raack, 2010). For the

same reason, it is hard for our MIP solver (CPLEX 12) to find good upper bounds. We
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Algorithm 1: Hybrid branch-and-cut algorithm: bc-n

begin /* Initialization */

N = {o} where o has no branching constraints;
UB = +∞;

while N is nonempty do
select a node o′ ∈ N ;
N ← N\{o′}; /* withdraw node o′ from the tree */

solve o′;

let Z be an optimal solution;
let w be the optimal cost;
if w < UB then

if Z ∈ {0, 1}|E| or depth(o′) ≤ n then
foreach q ∈ Q do compute sq = SP (q, Z);
if sq > 0 then add (7) to (MP);

if Z ∈ {0, 1}|E| and sq ≤ 0 for each q ∈ Q then
foreach q ∈ Q do compute fq = FP (q, Z);
if fq > 0 for some q ∈ Q then add (8) to (MP);
else

UB ← w; /* define a new upper bound */

Z∗ ← Z; /* save current incumbent */

if sq > 0 or fq > 0 for some q ∈ Q then
N ← N ∪ {o′}; /* put node o′ back in the tree */

else if Z /∈ {0, 1}|E| then
branch, resulting in nodes o∗ and o∗∗;
N ← N ∪ {o∗, o∗∗}; /* add children to the tree */

return Z∗

present next a simple, yet efficient, heuristic. First, we solve the linear programming relax-

ation of (P’) by a Benders decomposition algorithm, resulting in a fractional Z. Then, for

each Zij = 0 we add the constraint Zij = 0 to (MP), and we solve the resulting problem

with bc-n. This allows us to reduce significantly the number of variables of the problem,

yielding a very good solution in a limited amount of time. The issue of whether or not the

heuristic finds a feasible solution is discussed in Section 4.

We present in Section 5 the heuristic quality and the solution time of a new branch-and-

cut algorithm, bc-n-heur, starting with the upper bound from the heuristic.
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Figure 2: Graph obtained from Z

4. Feasibility problem

Note that the feasibility problems SP(q, Z) and FP(q, Z) and the Benders cuts (7) are in-

dependent for each commodity q ∈ Q, so that without loss of generality, we assume in this

section that we have a unique commodity q going from o to d. Let us come back to the

problem of knowing whether Benders cuts (7) together with integrality restrictions on Z are

sufficient to describe Zi, or in other words, whether Zi = Zc. This is equivalent to knowing

whether Ui(Z) = ∅ implies that Uc(Z) = ∅, for any binary vector Z. Note that the inclusion

conv(Ui(Z)) ⊆ Uc(Z) may be strict. Consider the example with the binary Z described in

Figure 2, where each edge ij ∈ E has a routing cost c̃ij, which refers to an example with

L = 4 and K = 2. There are 5 different 4-paths from o to d: the ones shown on Figure

3 and the path o − b − c − d. There are only two pairs of disjoint paths, {P3, P4} from

Figure 3 and {P4, o− b− c− d}, both with a cost equal to 20. Then, the fractional optimal

solution routes 0.5 unit on each path from Figure 3 yielding a total routing cost equal to

10. Thus, the cheapest fractional routing is less than the cheapest integer routing, implying

conv(Ui(Z)) ⊂ Uc(Z).

Let us recall some well-known families of cuts used by Huygens et al. (2004) and Huygens

and Mahjoub (2007) to describe a formulation for (P) using only design variables. In what

follows, we show that cuts (7) imply these families of cuts. Therefore, using results from

Dahl et al. (2006); Diarrassouba (2009) and the Lemmas below, we obtain that Benders cuts

together with binary constraints completely describe Zi for L = 2, 3 and any K ≥ 1. Then,

we give an example (see Figure 4) showing that cuts (7) may be interesting when L ≥ 5.

We first introduce some notation. If W ⊂ V is a node subset, then the set of edges
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Figure 3: Fractional and integer minimum cost routing when L = 4 and K = 2.

that have one node in W and one node in V \W is called a cut and denoted by δ(W ), and

Z(δ(W )) :=
∑

ij∈δ(W )

Zij. For o, d ∈ V , a cut δ(W ) such that o ∈ W and d ∈ V \W is called a

od-cut. Then, let V0, V1, . . . , VL+1 be a partition of V such that o ∈ V0, d ∈ VL+1 and Vi 6= ∅
for i = 1, . . . , L. A set of edges T ⊂ E is called a L-path-cut if for each ij ∈ T , i ∈ Vv,

j ∈ Vw such that |v − w| > 1. Then, consider the cut inequalities

Z(δ(W )) ≥ K, for all od− cuts δ(W ), (9)

and the L-path-cut inequalities

Z(T ) ≥ K, for all L-path-cuts T. (10)

Dahl (1999) uses these inequalities for the special case K = 1 (for any L ≥ 1). He proves that

a binary vector Z belongs to Zi if it satisfies (9) and (10). Huygens et al. (2004) extend (9)

and (10) to L = 2, 3 and K = 2, which together with binary restrictions on Z, provide a valid

formulation for the problem. In further work, Dahl et al. (2006) and Diarrassouba (2009)

prove the formulation to be valid for any K ≥ 2. Consider now a partition V0, V1, . . . , VL+r

of V such that o ∈ V0, d ∈ VL+r and Vi 6= ∅ for i = 1, . . . L+ r − 1. Generalizing (10), Dahl

and Gouveia (2004) introduce the generalized jump inequality∑
i∈Vv ,j∈Vw,v 6=w

min(|v − w| − 1, r)Zij ≥ Kr. (11)

Finally, Huygens and Mahjoub (2007) introduce in the two-layered 4-path-cut specifically

for the case L = 4 and K = 2. Let V0, V1, . . . , V6,W1, . . . ,W4 be a partition of V such that

o ∈ V0, d ∈ V6 and Vi 6= ∅ for i = 1, . . . 5. They define the inequality

ax ≥ 4, (12)
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with

aij = min(|v − w| − 1, 2), i ∈ Vv, j ∈ Vw, i 6= j,
aij = 2, i ∈ Wv, j ∈ Ww, |v − w| ≥ 2,
aij = 2, i ∈ Vv, j ∈ Ww, w − v ≥ 2 or v − w ≥ 3,
aij = 1, i ∈ Vv, j ∈ Ww, (v, w) = (2, 3), (3, 1), (3, 4), (4, 2),
aij = 0, otherwise.

(13)

They have shown that inequalities (12), besides (9) and (10), are needed to obtain a valid

formulation for L = 4 and K = 2.

Next, we prove that cuts (7) imply cuts (9), (11) and (12) (thus (10) because it is a special

case of (11)) by showing that all of their coefficients belong to the feasibility polyhedron of

one of the subproblems SP(q, Z).

Lemma 1. Consider some od− cut δ(W ). There exists a vector (π, σ) feasible for SP(q, Z)

so that (7) written for (π, σ) is the same as inequality (9) for δ(W ). Moreover, (π, σ) is an

extreme point of the polyhedron of feasible solutions of SP(q, Z).

Proof. Setting πL+1
d = 1, σij = 1 for ij ∈ δ(W ) and 0 otherwise, (7) becomes∑

ij∈δ(W )

Zij ≥ K.

Next, we set up πli for l < L+ 1 so that (π, σ) is feasible for SP(q, Z). It is easy to see that

πli = 0 for i ∈ W , and πli = 1 for i ∈ V \W , satisfies this requirement.

It remains to show that (π, σ) is an extreme point of the polyhedron of feasible solutions

of SP(q, Z). Let us assume that

(π, σ) =
1

2
((π′, σ′) + (π′′, σ′′))

for some (π′, σ′) and (π′′, σ′′) feasible for SP(q, Z). We show next that we must have (π′, σ′) =

(π′′, σ′′) = (π, σ), and hence (π, σ) is an extreme point of the polyhedron of feasible solutions

of SP(q, Z).

First note that if σij = 0, then, since σ′ij ≥ 0 and σ′′ij ≥ 0, we have σ′ij = σ′′ij = 0.

Using similar arguments, π
′L+1
d ≤ 1 and π

′′L+1
d ≤ 1, together with πL+1

d = 1 imply that

π
′L+1
d = π

′′L+1
d = 1. Moreover, for all l ≤ L, π

′l+1
d − π′ld ≤ 0 implies that π

′l
d ≥ 1. Similarly,

π
′′l
d ≥ 1, and since πld = 1, we must have π

′l
d = π

′′l
d = 1.

Consider now a node i /∈ W , i.e. such that πli = 1. Then, id /∈ δ(W ) and σid = 0.

Therefore, σ′id = 0 and π
′l+1
d − π′li − σ′id ≤ 0 becomes π

′l
i ≥ 1. Similarly, π

′′l
i ≥ 1, and since

πli = 1, we must have π
′l
i = π

′′l
i = 1.
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Table 1: Values of π for the generalized jump
inequality for L = 4 and r = 2.

l 1 2 3 4 5
V0 –/0 0 0 0 –
V1 – 0 0 0 –
V2 – 0.5 0 0 –
V3 – 1 0.5 0 –
V4 – 1 1 0.5 –
V5 – 1 1 1 –
V6 – 1 1 1 –/1

Table 2: Values of π for nodes in W for the
two-layered 4-path-cut inequality.
l 1 2 3 4 5
W1 – 0 0 0 –
W2 – 1 0 0 –
W3 – 1 1 0 –
W4 – 1 1 1 –

A similar proof, starting with π1
o = 0 leads to π

′l
i = π

′′l
i = 0 for all i ∈ W .

Let’s turn to an edge ij ∈ δ(W ), i.e. σij = πl+1
j = 1 and πli = 0 for all l ≤ L − 1. We

already know that π
′l+1
j = 1 and π

′l
i = 0, so from π

′l+1
i − π

′l
j − σ′ij ≤ 0 we have σ′ij ≥ 1.

Similarly, σ′′ij ≥ 1, and since σij = 1, we must have σ′ij = σ′′ij = 1.

We thus proved that (π′, σ′) = (π′′, σ′′) = (π, σ).

Since (π, σ) are extreme points of SP(q, Z), od-cut constraints are Benders cuts, which

implies that the number of Benders cuts is exponential in the size of the network.

Lemma 2. Let (V0, V1, . . . , VL+r) be some partition of V such that o ∈ V0, d ∈ VL+r and

Vi 6= ∅ for i = 1, . . . L + r − 1. There exists a vector (π, σ) feasible for SP(q, Z) so that (7)

written for (π, σ) is the same as inequality (11) for that partition.

Proof. First, we must set πL+1
d = 1, σij = r−1 min(|v − w| − 1, r) for i ∈ Vv, j ∈ Vw, so that

(7) becomes

r−1
∑

i∈Vv ,j∈Vw,v 6=w

min(|v − w| − 1, r)Zij ≥ K,

equal to (11) by multiplying both sides by r. We are left to set up πli for l < L + 1 so

that (π, σ) is feasible for SP(q, Z). First, set π1
o = 0 and πld = 1 for l = 2, . . . , L. For each

0 ≤ k ≤ L + r, let i ∈ Vv and set πli = r−1 min(v + 1 − l, r) for l = 1, . . . , v, πli = 0 for

l = v + 1, . . . , L + r − 1, see Table 1 for r = 2 and L = 4. We must check that for any

i ∈ Vv, j ∈ Vw, and 1 ≤ l ≤ L, the arc (i, j, l) satisfies σij ≥ πl+1
j − πli. By definition of π,

πl+1
j − πli = y

r
for some 1 ≤ y ≤ r implies that w > v + y + 1 so that σij ≥ y

r
. Thus, (π, σ)

satisfies all equations of SP(q, Z).
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Lemma 3. Let V0, V1, . . . , V6,W1, . . . ,W4 be a partition of V such that o ∈ V0, d ∈ V6 and

Vi 6= ∅ for i = 1, . . . 5. There exists a vector (π, σ) feasible for SP(q, Z) so that (7) written

for (π, σ) is the same as inequality (12) for that partition.

Proof. We set πL+1
d = 1 and σij = 1

2
aij, with a defined in (13), and π as in Tables 1 and 2.

The rest of the proof of is similar to the proof of Lemma 2.

As a result of Lemmas 1, 2 and 3, Dahl (1999), Theorem 2.2 from Huygens et al. (2004)

(and its generalization to any K in Dahl et al. (2006) and Diarrassouba (2009)) and Theorem

3 from Huygens and Mahjoub (2007) we obtain:

Proposition 1. The sets Zc and Zi are equal for L = 2, 3 with any K ≥ 2, and L = 4 with

K = 2.

In particular, we obtain that heuristic described in subsection 3.3 shall find a feasible

solution in this context:

Corollary 1. For K = 1 with any L ≥ 1, L = 2, 3 with any K ≥ 2, and L = 4 with K = 2,

the algorithm heuristic will always find a feasible design for (P).

Proof. Let (Z,U) be an optimal solution to the linear programming relaxation of (P). Thus,

Z satisfies all Benders cuts (7). Then, since each component of σ is positive or zero, dZe
satisfies all (7) as well, so that dZe ∈ Zc. Therefore, Proposition 1 implies that dZe ∈ Zi.

It is natural to wonder whether the equality Zc = Zi holds for L = 4 and K ≥ 3, and

L ≥ 5 and K ≥ 2. Although, we do not know the complete answer, Theorem 3.3 from Itáı

et al. (1982) leads to the following partial answer.

Proposition 2. For each L ≥ 4, there exists a K ≥ 2 for which the inclusion Zi ⊂ Zc holds

strictly, unless P = NP.

Proof. We prove this result by contradiction. Consider some L ≥ 5 and assume that Zi = Zc
for each K ≥ 2. Consider some Z ∈ Zi and let G = (V,E) be the graph described by Z, i.e.,

ij ∈ E if and only if Zij = 1. For each K ≥ 2, we can check whether there exists K edge-

disjoint L-paths between o and d by solving SP(q, Z), because Zi = Zc. Thus, this existence

question can be answered in polynomial time for any K. Since the maximum number of

such paths is bounded by the number of vertices of V , the problem of finding the maximum

number of edge-disjoint L-paths between o and d is polynomial, which contradicts Theorem
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(a) (b)

Figure 4: New inequality for L = 5.

3.3 from Itáı et al. (1982) when L ≥ 5 and Corollary 4 from Bley and Neto (2010) when

L = 4, unless P = NP .

Finally, let us show that cuts (7) contain new valid inequalities for the problem for

L ≥ 5. First, note that Huygens and Mahjoub (2007) introduce the two-layered L-path-cut

inequalities, extending the two-layered 4-path-cut inequalities to general L. It can be easily

seen that Lemma 3 can be extended to incorporate these generalized inequalities. More

important is the fact that they show on three examples that these new inequalities, together

with (9), (11) and binary restrictions on Z, are not sufficient to formulate the problem for

L ≥ 5. For instance, let G′ be the graph shown in Figure 4(a), taken from Huygens and

Mahjoub (2007). We see that it is impossible to find two edge-disjoint paths from o to d

with length smaller than or equal to 5. Moreover, it is impossible to find a fractional flow

satisfying (1),(2) and (5) in the layered graph constructed from G′, so that there must exist

a Benders cut that cuts off G′. However, Huygens and Mahjoub were not able to provide an

inequality that cuts off G′.

We describe next a Benders cut that cuts off the solution depicted in Figure 4(a). Con-

sider the complete graph G = (V,E) with 8 nodes o, a, b, d, e, f, g, d and q a commodity in

G from o to d. Define the following dual variables: σog = σcg = σgd = 0.5, σij = 0 for

ij ∈ E\{og, cg, gd}, and π is described in Table 3. One can check that (π, σ) belongs to

SP(q, Z) for G. Moreover, they yield the Benders cut

ax ≥ 2, (14)

with aij = 1 for plain edges from Figure 4(b) and aij = 0.5 for dashed edges from Figure

4(b). Applying (14) to G′ from Figure 4(a), we obtain 1.5 < 2. This cut can be extended for
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Table 3: Values of π for cut (14).

l 1 2 3 4 5 6
o 0 0 0 0 0 –
a – 0 1 0 1 –
b – 1 0 1 0 –
c – 1 1 0 1 –
e – 1 1 1 0 –
f – 1 1 1 1 –
g – 0.5 0.5 0.5 0.5 –
d – 1 1 1 1 1

more general graphs, partitioning the nodes into 8 subsets as in Figure 4(b) and setting (π, σ)

accordingly. Similar cuts can be obtained in this way for the other examples in Huygens and

Mahjoub (2007).

5. Computational results

In this section we compare the solution times of formulations (P) and (P’), which we denote

layered and layered-r, respectively, and branch-and-cut approaches bc-all, bc-int, bc-5

and bc-5-heur. Then, for the branch-and-cut approaches we compare the number of cuts

generated and the number of nodes visited in the branch-and-cut tree. Finally, we evaluate

the quality of the upper bound given by heuristic.

We have discussed in Section 4 whether we can relax the integrality restrictions (4).

We have answered affirmatively for some values of L and K, see Proposition 1. Moreover,

we have never encountered an instance for which a feasibility cut (8) was needed. Thus,

Benders cuts were enough to describe the problem for all the instances in our computational

experiments, so that models layered and layered-r coincide for these instances. Therefore,

we also present the computational time required by layered-r. Note that we tested branch-

and-cut algorithms without the feasibility part as well, but the speed-up was insignificant,

so that we do not report them in the remainder.

5.1 Implementation details

All models have been coded in JAVA using CPLEX 12 MIP solver and run on a DELL

Latitude D820 with a processor Intel Core Duo 2 T7200 of 2GHz and 2.5 GB of RAM.
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We allow CPLEX to store the branch-and-bound tree in a file, setting parameter Int-

Param.NodeFileInd to 2, to avoid from running out of memory. Moreover, for each algorithm

we configure CPLEX as follows :

layered and layered-r: All parameters have been kept to their default values, CPLEX

chooses to explore the branch-and-cut tree with the dynamic search.

bc-all, bc-int, and bc-n: Since the model does not contain explicitly all constraints,

we must deactivate the dual presolve, setting BooleanParam.PreLinear to false and

IntParam.Reduce to 1. Then, we implemented our (global) cuts generation with a

LazyConstraintCallback, preventing CPLEX from using dynamic search.

heuristic: We first solve the linear programming relaxation by a cutting plane al-

gorithm (in fact, we use a branch-and-cut algorithm with a limit of 0 nodes, setting

IntParam.NodeLim to 0). Then, we fix some of the variables to 0, and re-solve the

resulting problem with bc-n.

bc-n-heur: We use the algorithm bc-n, providing CPLEX with the upper bound found

by heuristic. The CPU times reported do not consider the time spent in heuristic.

5.2 Instance details

We used three different test sets. The sets TC and TE were taken from a class of complete

graphs G = (V,E), reported in Gouveia (1996). They share the following features: |V | = 21,

|Q| ∈ {5, 10}, and all point-to-point demands share one of their extremities (which we call

rooted demands in Table 4). The cost matrix for each instance considers the integer part

of the Euclidean distance between the coordinates of the 21 nodes, randomly placed among

the integer points of a grid 100×100. The TC class contains 5 instances with 5 commodities

and 5 instances with 10 commodities with the root located in the center of the grid and the

TE class contains 5 instances with 5 commodities and 5 instances with 10 commodities with

the root located on a corner of the grid. We see in the next section that instances TE are

much harder to solve than instances TC. Then, two instances are based on sparse networks

from SNDlib (Orlowski et al., 2010): pdh and di-yuan. Table 4 summarizes the size of the

instances. We solved the problem for L in {3, 4, 5, 7, 10} and K from 1 to 3. We set a time

limit of 3600 seconds for all instances and algorithms.
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Table 4: Instances description.

Name |N | |E| |Q| # of instances Rooted demands?
TC-5 21 210 5 5 true
TC-10 21 210 10 5 true
TE-5 21 210 5 5 true
TE-10 21 210 10 5 true
pdh 11 34 24 1 false

di-yuan 11 42 22 1 false

We also tested the performance of our best branch-and-cut algorithm bc-5-heur on a

set of larger instances described below. Those instances (see Table 5) are made of complete

graphs composed of 41 vertices with a single source and many (5,10 or 20) destinations. The

distinction between TC and TE instances is the same as before. This time, we test only

the methods layered, layered-r and bc-5-heur, and fix a maximum CPU time limit of 3

hours. Because the whole execution of heuristic was taking too much time, we only run

the heuristic for 5 minutes. Then, we start the branch-and-cut algorithm bc-5-heur with

the best bound provided by heuristic during the 5 minutes.

Table 5: Large instances description.

Name |N | |E| |Q| # of instances Rooted demands?
TCh-5 41 820 5 1 true
TCh-10 41 820 10 1 true
TCh-20 41 820 20 1 true
TEh-5 41 820 5 1 true
TEh-10 41 820 10 1 true
TEh-20 41 820 20 1 true

5.3 Results for medium size instances

First, we look at the quality of the linear programming relaxation of our model (P). Let IP ∗

and LP ∗ be the optimal value of (P) and its linear programming relaxation, respectively.

Table 6 shows that the linear programming bound of the model improves when the value

of K increases and that it is quite bad for K = 1. Apparently these results are not in

agreement with the results provided in other papers (eg., Gouveia (1998)) which in a certain
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Table 6: Arithmetic average of gap
(
IP ∗−LR∗

IP ∗
∗ 100

)
for TC and TE instances.

K
|Q| L 1 2 3 Average

5

3 18.07 4.79 1.98 8.28
4 20.78 5.87 4.87 10.50
5 22.58 0.00 5.28 9.29
7 22.60 0.00 5.51 9.37
10 22.60 0.00 5.51 9.37

Average |Q|=5 21.33 2.13 4.63 9.36

10

3 25.58 14.67 8.02 16.09
4 27.58 11.65 6.62 15.28
5 28.82 9.65 5.49 14.66
7 30.33 5.24 6.15 13.91
10 32.32 0.00 6.59 12.97

Average |Q|=10 28.93 8.24 6.57 14.58
Average Total 25.13 5.19 5.60 11.97

way have motivated the choice of model for this work. The reason is that the problem

studied in Gouveia is a Steiner tree problem, which permitted a different enhancement

technique, namely the use of the technique “of directing the formulation”. This leads to

much stronger linking constraints between flow variables and design variables. We note that

without explicitly stating that our problem is a tree problem for K = 1, it is not difficult

to see that the optimal solutions are Steiner trees spanning the root node and the nodes

in Q and thus we could have used the “directing the formulation” technique. However, the

focus of our paper is on the disjoint case and thus, we have not considered this enhancement

technique for K = 1.

Before comparing the different algorithms, we need to determine the “best” value for

the depth parameter of branch-and-cut algorithm bc-n. We select a group of complicated

instances (instances that layered cannot solve to optimality within 3600 seconds) and we

test different values of the depth parameter n. On Figure 5, we plot the result of this tuning

stage. For both curves, the minimum is reached when n = 5. Therefore, in the sequel we

always consider bc-5 for the hybrid branch-and-cut algorithm.

We compare the performance in terms of resolution time for the different methods by

plotting the performance profile (Dolan and More, 2002) on Figure 6. Clearly, algorithms

bc-5, bc-int and bc-5-heur are the fastest algorithms.
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Figure 5: bc-n depth parameter tuning by average CPU time (sec.)

Out of the 330 instances which compose the entire test set, layered, layered-r, bc-all,

and bc-int could respectively not solve 21, 20, 39, and 2 of them within 3600 seconds. In

contrast, bc-5 and bc-5-heur could solve them all. Among the 21 instances that layered

and 20 instances that layered-r cannot solve to optimality, only 2 cannot be solved by

bc-int. bc-5 and bc-5-heur can solve all instances to optimality. The geometric averages

of CPU times in seconds are > 31.62, > 25.97, > 36.80, > 9.46, 9.61, 7.58, and 2.45,

for, respectively, layered, layered-r, bc-all, bc-int, bc-5, bc-5-heur, and heuristic

respectively (> indicates that one or more instances could not be solved to optimality).

Table 7 indicates the arithmetic average values of the LP relaxation and heuristic gaps,

given by IP ∗−LP ∗
IP ∗

and heuristic∗−IP ∗
IP ∗

, respectively, as well as heuristic CPU time in seconds

and the number of instances for which the solution of heuristic is optimal. It can be

seen that heuristic always provides a very good solution to the problem. Furthermore,

heuristic is also pretty fast, taking around 3 seconds whereas layered and bc-5-heur

take respectively on average 31.62 and 7.58 seconds. In 174 cases out of 330 (around 53%),

the solution given by the heuristic is the optimal one. Finally, Tables 8 and 9 respectively

present geometric averages of the number of Benders cuts generated by the branch-and-cut

algorithms, and number of nodes explored by branch-and-cut and extended formulations,

and Table 10 provides means of CPU time and the corresponding percentage of total time

spent for solving Benders subproblems (means have been taken over all instances).
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Figure 6: Performance profile comparing methods on the entire test set.

Table 7: Linear relaxation gap and heuristic performance for the entire test set.

Instances
LP Relaxation heuristic

Gap(%) Gap(%) Optimal
TC-5 8.07 2.45 38/75
TC-10 12.67 1.85 42/75
TE-5 10.64 3.28 33/75
TE-10 16.48 1.23 38/75
pdh 18.82 0.62 10/15

di-yuan 14.46 0.86 13/15
Arithmetic mean 12.39 2.07 -

5.4 Results for large instances

Out of the 54 instances that belong to the test sets of larger instances, 25, 25, and 22

instances could not be solved to optimality within the time limit by layered, layered-r,

and bc-5-heur, respectively. The difference in performance between the methods is less

striking than with the medium-size instances. Indeed layered and layered-r do not reach

optimality for 25 instances which is close to the 22 instances that bc-5-heur cannot solve

optimality.

Table 11 shows the number of large instances that could be solved to optimality by all

three methods, depending on |Q|, L and K. Out of the 54 instances tested, only 27 instances
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Table 8: Number of cuts generated for the entire test set.

Instances
Number of cuts generated

bc-all bc-int bc-5 bc-5-heur

TC-5 133.45 85.51 89.35 67.63
TC-10 1950.49 391.05 470.82 229.19
TE-5 277.87 146.59 148.22 114.42
TE-10 5420.83 809.77 943.42 516.66
pdh 1328.24 491.61 501.22 458.86

di-yuan 358.36 203.88 195.24 185.26
Geometric mean 781.49 256.36 280.03 182.34

Table 9: Number of nodes visited for the entire test set.

Instances
Number of nodes visited

bc-all bc-int bc-5 bc-5-heur layered

TC-5 25.27 50.23 32.84 16.22 16.98
TC-10 354.39 1863.52 967.46 600.49 471.27
TE-5 47.81 147.42 81.59 103.11 60.25
TE-10 675.94 8832.68 3690.13 3900.22 1278.58
pdh 764.30 1621.85 1325.91 559.40 1299.96

di-yuan 64.43 140.82 114.56 31.33 107.15
Geometric mean 136.89 579.57 319.05 236.12 170.43

Table 10: CPU time spent for solving Benders subproblems.

bc-all bc-int bc-5 bc-5-heur heuristic

CPU time 19.09 4.01 4.73 0.16 0.07
(Geometric mean)

Percentage of total time 65.54 % 62.68 % 64.83 % 23.17 % 21.42 %
(Arithmetic mean)

could be solved to optimality by the three methods. The geometric average of their solution

times (in seconds) are 69.72, 62.19, 140.84, and 15.09, for layered, layered-r, bc-5-heur,

and heuristic respectively. Clearly for those instances, the two layered models layered-r

and layered are faster than our branch-and-cut algorithm bc-5-heur. As we did before,

for the same 27 instances we evaluate the quality of the linear programming relaxation of

our model (P) by computing the gap at the root. Table 12 shows the evolution of this gap
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Table 11: Number of large instances solved to optimality by all methods in the 10800 seconds
time windows.

K
|Q| L 1 2 3

5
3 2/2 2/2 2/2
4 2/2 2/2 2/2
5 2/2 2/2 1/2

10
3 2/2 2/2 2/2
4 1/2 1/2 2/2
5 0/2 0/2 0/2

20
3 0/2 0/2 0/2
4 0/2 0/2 0/2
5 0/2 0/2 0/2

Total 9/18 9/18 9/18

Table 12: Arithmetic average of gap (%)
(
IP ∗−LR∗

IP ∗
∗ 100

)
for the 27 large instances TC and

TE solved to optimality.

K
|Q| L 1 2 3 Average

5
3 17.31 9.82 4.13 10.42
4 18.13 5.31 4.74 9.39
5 18.24 0.00 3.55 8.00

Average |Q|=5 17.89 5.04 4.26 9.35

10
3 25.94 13.06 8.32 15.77
4 25.62 8.05 4.79 10.81

Average |Q|=10 25.84 11.39 6.55 13.79
Average Total 20.54 7.16 5.28 10.99

depending on |Q|, K and L. The conclusion is similar to the one we reached before since

the gap is relatively large for K = 1 and becomes smaller for K = 2, 3. The time spent by

heuristic to find a good upper bound is again relatively low (on average 15.09 seconds).

Moreover the quality of this upper bound is good since for 13 out of 27 instances (around

48% of the cases), the solution given by the heuristic is the optimal solution and on average

the gap between the heuristic and the optimal solution is around 3.19%.

Table 13 shows the gap remaining to close after 3 hours of computation for the 27

instances that at least one of the methods could not solve to optimality within the time

limit. This gap is given by UB−LB
UB

, where UB is the objective value of the best feasible
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Table 13: Arithmetic average of gap (%) remaining to close for the 27 large instances TC
and TE not solved to optimality.

layered layered-r bc-5-heur Average

|Q|
5 0.00 1.48 0.00 0.49
10 1.09 10.07 3.24 8.13
20 25.91 17.66 19.01 20.86

Average Total 20.56 14.81 13.63

solution found, and LB the best guaranteed lower bound after 3 hours. For |Q| ∈ {5, 10}
we see, on average, that the gap remaining to close for the model layered is the smallest

one even if the gap proposed by the branch-and-cut algorithm is not far. For |Q| = 20,

the situation is different since the gap of layered-r is the smallest (17.66% compared to

25.91% and 19.01 respectively for the models layered and bc-5-heur). Nevertheless our

branch-and-cut algorithm bc-5-heur seems to be the best method from a global point of

view since its global gap is the smallest one. This conclusion is reinforced by the following

observation: bc-5-heur leads to the smallest gap remaining to close in 74.07% of the 27

large instances not solved to optimality. This figure goes down to 11.11% and 25.93% for

layered and layered-r, respectively.

From this numerical experiment it seems that the difficulty of a given instance is not

only linked to the number of commodities |Q|. Indeed in the SNDlib instances, the number

of commodities is high but the instances are easy to solve because the graphs from SNDlib

are sparse. In contrast TC and TE instances are difficult instances to solve because there

are complete graphs and this kind of instances become much more difficult to solve as the

number of commodities increases.

Detailed results for each instance can be found at http://bit.ly/eSWTsE. Moreover, all

our instances can be downloaded in text format at http://bit.ly/fH3pBO.
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