
HAL Id: hal-01255254
https://hal.science/hal-01255254

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic binary problems with simple penalties for
capacity constraints violations

Bernard Fortz, Martine Labbé, François Louveaux, Michael Poss

To cite this version:
Bernard Fortz, Martine Labbé, François Louveaux, Michael Poss. Stochastic binary problems with
simple penalties for capacity constraints violations. Mathematical Programming, 2013, 138 (1-2),
pp.199-221. �10.1007/s10107-012-0520-4�. �hal-01255254�

https://hal.science/hal-01255254
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Stochastic binary problems with simple penalties for
capacity constraints violations ?

B. Fortz · M. Labbé · F. Louveaux · M.

Poss

Received: date / Accepted: date

Abstract This paper studies stochastic programs with first-stage binary variables and

capacity constraints, using simple penalties for capacities violations. In particular, we

take a closer look at the knapsack problem with weights and capacity following indepen-

dent random variables and prove that the problem is weakly NP-hard in general. We

provide pseudo-polynomial algorithms for three special cases of the problem: constant

weights and capacity uniformly distributed, subset sum with Gaussian weights and ar-

bitrary random capacity, and subset sum with constant weights and arbitrary random

capacity. We then turn to a branch-and-cut algorithm based on the outer approxi-

mation of the objective function. We provide computational results for the stochastic

knapsack problem (i) with Gaussian weights and constant capacity and (ii) with con-

stant weights and capacity uniformly distributed, on randomly generated instances

inspired by computational results for the knapsack problem.

? This research is supported by an Actions de Recherche Concertées (ARC) project of the
Communautée française de Belgique. Michael Poss is a research fellow of the Fonds pour la
Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA). Martine Labbé also
acknowledges support from “Ministerio de Ciencia e Innovacion” of Spain through the research
project MTM2009-14039-C06.

B. Fortz
Department of Computer Science, Faculté des Sciences, Université Libre de Bruxelles, Brussels,
Belgium
E-mail: bfortz@ulb.ac.be

M. Labbé
Department of Computer Science, Faculté des Sciences, Université Libre de Bruxelles, Brussels,
Belgium.
E-mail: mlabbe@ulb.ac.be

F. Louveaux
Department of Business Administration, University of Namur (FUNDP), Namur, Belgium.
E-mail: flouveau@fundp.ac.be

M. Poss
Department of Computer Science, Faculté des Sciences, Université Libre de Bruxelles, Brussels,
Belgium.
E-mail: mposs@ulb.ac.be

2

Keywords Stochastic programming · Knapsack problem · Pseudo-polynomial

algorithm · Mixed-integer non-linear programming · Branch-and-cut algorithm.

1 Introduction

An important class of optimization problems with binary variables involves capacity

constraints. In some of these problems, we must transport a set of goods from suppli-

ers to customers without exceeding the capacity of transporting units. In others, we

must prescribe a production plan that respects the capacity of producing units. An

important subproblem that arises in both examples is how to fill the capacity of each

transporting (or producing) unit in the best way, leading to the knapsack problem.

Many efficient solution methods for capacitated problems benefit from fast algorithms

for the knapsack problem, for instance, by generating cover cuts or by providing strong

bounds within decomposition algorithms, see [3,25], among others. In what follows, we

work more specifically with uncertain parameters.

Different frameworks are able to handle capacity constraints with parameters fol-

lowing random variables. Probabilistic constraints are convenient to use because they

do not interfere with the structure of the original model. However, they yield very dif-

ficult optimization problems, although recent works have proposed solution methods

for integer programs with probabilistic constraints [4,16]. Herein we study a different

framework, where additional capacity can be added at a given unitary cost, yielding a

stochastic program with linear simple-recourse. This leads to tractable reformulations,

as long as we can handle the multi-variate integral involved in the recourse function.

Efficient solution methods for stochastic linear programs with simple-recourse have

been developed in the past, see for instance [30]. The case of integer recourse has also

been studied extensively [11,21].

In this paper, we apply simple penalty recourse to the difficult class of binary prob-

lems with capacity constraints. We look more specifically at the stochastic knapsack

problem and derive two types of results. First, we prove that three special cases of the

stochastic knapsack problem are weakly NP-hard:

– Stochastic knapsack with fixed weights and uniformly distributed capacity.

– Stochastic subset sum with Gaussian weights and arbitrary random capacity.

– Stochastic subset sum with fixed weights and arbitrary random capacity.

Then, we show that the LP/NLP algorithm of Quesada and Grossman [28] enables us to

solve efficiently the stochastic knapsack problem with Gaussian random variables. Our

computational results show that this algorithm is able to solve in less than a minute

problems involving up to a few thousands of variables, outperforming previous works

on the problem [10,19]. Finally, we compare the pseudo-polynomial algorithms and the

LP/NLP algorithm on the special cases. It turns out that some of the stochastic subset

sum problems can be solved extremely fast by using the specialized algorithm from

Pisinger [26].

The paper is structure as follows. Section 2 introduces the general models studied

herein and provides some examples, including the stochastic knapsack problem. Section

3 studies the complexity of the special cases of the stochastic knapsack problem, pro-

viding pseudo-polynomial algorithms. Section 4 presents an algorithm for the general

models and provide extensive computational experiments. A comparison of the general

algorithm and the pseudo-polynomial approaches is also presented for the special cases.

The paper concludes with Section 5.

3

2 The models

2.1 Capacity constraints

In this paper, we study binary problems featuring capacity constraints, that is

n∑
i=1

aixi ≤ a0, (1)

where ai and a0 are positive numbers. We denote such “capacitated problems” by

(CAP) in what follows. When coefficients ai and a0 are random variables, (1) yields

one equation for each scenario in a set of scenarios Ω, which is not convenient when Ω

contains a large (sometimes infinite) number of scenarios or when some of the proba-

bility weights are very small. Replacing (1) by the probabilistic constraint

P

(
n∑

i=1

aixi ≤ a0

)
≥ 1− ε, (2)

for ε ∈ (0, 1) is thus a natural choice in the stochastic context. Although easy to

incorporate into models, probabilistic constraints yield, in general, very difficult op-

timization problems. Moreover, they neglect the amount by which the constraint is

violated while this can be crucial in some applications. For instance, electrical lines are

built to resist against higher power flow than expected for a reasonable period of time,

while an extremely high power flow even for a short period of time is likely to burn

some of the lines. These two problems can be handled by the introduction of a penalty

y for capacity violation. Then, (1) becomes

n∑
i=1

ai(ω)xi ≤ a0(ω) + y(ω) ω ∈ Ω, (3)

and the weighted expected violation of the capacity KEa[y(ω)] is subtracted from the

objective function (for a maximization problem), where Ea[y(ω)] =
∫
A
y(a)dFa(a) and

Fa : Rn+1 → R+ is the distribution function of the random vector a = (a0, a1, . . . , an) :

Ω → A ⊂ Rn+1. This simple-recourse formulation weights capacity violation through

parameter K and yields tractable optimization problems, thus addressing the two

drawbacks of probabilistic constraints mentioned above. In what follows, we denote

by (SCAP) problems featuring penalized capacity constraints (3).

Consider that the original objective function is
∑n

i=1 cixi. Because constraints (3)

are satisfied at equality in any optimal solution with y(ω) > 0, variable y(ω) can

be replaced with max(0,
∑n

i=1 ai(ω)xi − a0(ω)), resulting in the non-linear objective

function:
n∑

i=1

cixi −KEa

[
max

(
0,

n∑
i=1

ai(ω)xi − a0(ω)

)]
. (4)

We review next two examples of (SCAP) that have been previously studied in the

literature.

4

2.1.1 Traveling salesman

Given a complete directed graph with node set N , and travel costs cij , i, j ∈ N , the

traveling salesman problem (TSP) looks for a cycle of minimum cost passing exactly

once through each node. A generalization of the problem considers that a time limit

T is given and that each edge has a travel time. The obtained tour can not exceed

the time limit. The stochastic extension written below describes each travel time by

a random variable aij . Whenever the total travel time of a tour exceeds T , a penalty

must be paid at the cost of K per unit of delay. This results in the subsequent problem,

which has been extended to a three-index model by Laporte et al. [20]:

min
∑

i,j∈N
cijxij +KEa

max

0,
∑

i,j∈N
aij(ω)xij − T


s.t.

∑
j∈N

xij = 1 i ∈ N

∑
i∈N

xij = 1 j ∈ N

∑
i,j∈S

xij ≤ |S| − 1 V 6= S ⊂ V

xij ∈ {0, 1}.

The only difference between the problem above and the deterministic (TSP) is the

presence of a non linear term in the objective.

2.1.2 Elastic generalized assignment

The generalized assignment problem looks for optimal assignment of n jobs to m ma-

chines that have a limited capacity. The problem has numerous applications, including

fixed-charge plant location models and scheduling of tasks in servers, among others.

Being NP-hard, the problem has attracted a considerable amount of attention in the

past, leading to efficient solution methods, see [9] and [25], among others. Brown and

Graves [8] introduce penalties for unsatisfied capacity constraints, yielding the elastic

generalized assignment problem. Spoerl and Wood extended the latter to stochastic

settings in [29], yielding

min

n∑
i=1

m∑
j=1

cijxij +

m∑
j=1

KjEa

[
max

(
0,

n∑
i=1

aixij − a0j

)]

(SEGAP)

m∑
j=1

xij = 1 i = 1, . . . , n (5)

xij ∈ {0, 1}.

The resulting (SEGAP) presents the structure of the assignment problem with a non-

linear cost function.

5

2.2 The knapsack problem

Given a set of items N, the deterministic knapsack problem looks for a subset of N not

exceeding the capacity a0 of the knapsack and maximizing the total profit. Each item

i ∈ N has a profit pi and a weight ai. Our two-stage stochastic version of the problem

considers that weights ai(ω) and capacity a0(ω) are independent random variables.

The subset of items is chosen first, then any real amount of additional capacity can be

bought at the unitary price of K, depending on the scenario ω. The objective function

maximizes the profit of the chosen subset minus the expected cost of the additional

capacity:

(SKP) max
∑
i∈N

pixi −KEa

[
max

(
0,
∑
i∈N

ai(ω)xi − a0(ω)

)]
s.t. xi ∈ {0, 1}.

This problem can be thought of as the following resource allocation problem [15].

A decision maker has to choose a subset of n known alternative projects to take on.

For this purpose, a known quantity a0 of relatively low-cost resource is available to

be allocated. Any additional amount of resource required can be obtained at a known

incremental cost of K per unit of resource. The amount ai of resource required by each

project is not known at the time the decision has to be made, but we assume that the

decision maker has an estimate of the probability distribution of those ai. Finally, each

project i has an expected reward of pi.

(SKP) has been first formulated by Cohn and Barnhart [10] who consider that a0 is

given and that ai follow Gaussian variables. They derive basic properties and propose

a simple branch-and-bound algorithm that they test on an example with 15 variables.

Recently, Kosuch and Lisser [19] use a stochastic gradient method to solve (SKP) with

Gaussian variables. They solve the problem up to 150 variables in at most two hours.

Kleywegt et al. [15] work on a similar model with discrete random variables to test their

sample average approximation method. Other ways of considering uncertainties in the

parameters of the knapsack problem include knapsack with a probabilistic constraint

[18,23], robust knapsack [17] and dynamic knapsack [14], among others.

3 Pseudo-polynomial cases

In this section we show that Problem (SKP) is in general weakly NP-hard. We then

turn to special cases of (SKP) that can be solved in pseudo-polynomial time. In the

remainder of this section, we use the notations B and B to denote {0, 1}n and [0, 1]n,

respectively; the summation
∑

refers to the sum over N unless stated otherwise.

Proposition 1 Problem (SKP) is NP-hard.

Proof We present a polynomial reduction from the problem of solving the deterministic

knapsack to optimality to the problem of solving (SKP) to optimality. Given an instance

of the deterministic knapsack problem described by the positive integer parameters a0
and pi, ai for each i ∈ N, we build an instance of (SKP) with a unique scenario Ω = {ω},

6

a0(ω) = a0, pi(ω) = pi and ai(ω) = ai for each i ∈ N, and K = maxi∈N pi + 1. Writing

the capacity constraint of (SKP) explicitly, the problem reads:

max
x∈B,y≥0

{∑
i∈N

pi(ω)xi −Ky(ω) s.t.
∑
i∈N

ai(ω)xi ≤ a0 + y(ω)

}
. (6)

We show next that y(ω) is equal to 0 in any optimal solution, so that (6) is equivalent

to the instance of the deterministic knapsack problem. To see this is true, consider a

feasible solution for (6) where y(ω) > 0. The integrality requirements on a(ω) imply

that y(ω) ≥ 1. Hence, withdrawing any item from the knapsack improves the objective

function, because it decreases the penalty by at least maxi∈N pi + 1 while decreasing

the profit by at most maxi∈N pi. ut

3.1 Fixed weights and uniformly distributed capacity

In this section, we consider that weights ai are fixed so that (SKP) becomes:

max
x∈B

∑
pixi −K

∫ ∑
aixi

0

(∑
aixi − a0

)
dF (a0). (7)

Assuming that a0 is uniformly distributed between positive integers a0 and a0 and that

all parameters are integers we show next that the optimization problem can be solved

by a pseudo-polynomial algorithm under a mild assumption on its parameters. Note

that this problem can also be seen as a robust knapsack problem with linear penalty

[24]. With a0 uniformly distributed, (7) becomes:

max
x∈B

∑
pixi −

K

a0 − a0

∫ min(
∑

aixi,a0)

min(
∑

aixi,a0)

(∑
aixi − a0

)
da0, (8)

where we assume
∑
ai > a0 to avoid the trivial solution x = (1, . . . , 1).

Theorem 1 Problem (8) is NP-hard. Moreover, if(
pi + Kai

2(a0−a0)
(2a0 − ai)

)
≥ 0 for each i ∈ N, the problem can be solved in O(nK

∑
ai).

For a large number of items with individual volumes small enough, this condition is

likely to be satisfied.

Lemma 1 Problem (8) is NP-hard.

Proof Consider an instance of the deterministic knapsack problem with positive integer

a0, ai and pi for each i ∈ N. We show that the optimal solutions of this problem

are the optimal solutions of an instance of problem (8) with a0 = a0 + 1 = a0 and

K = 2 maxi∈N pi + 1. Let x∗ ∈ B and suppose that
∑
aix
∗
i > a0. Then, because a is

integer it holds that
∑
aix
∗
i ≥ a0 + 1 = a0. Withdrawing any object j ∈ N from the

knapsack decreases the penalty by

K

∫ a0

a0

∑
i∈N

aix
∗
i −

∑
i∈N\{j}

aix
∗
i

 da0 ≥ K
∫ a0

a0

da0 = K/2 = max
i∈N

pi + 1/2,

while decreasing the profit by at most maxi∈N pi. The rest of the proof is similar to

the proof of Proposition 1. ut

7

The remainder of the section shows how (8) can be solved in pseudo-polynomial time

whenever
(
pi + Kai

2(a0−a0)
(2a0 − ai)

)
≥ 0 for each i ∈ N. Let Z be the the function to

be maximized in (8). We rewrite Z as follows:

Z(x) =


Z1(x) =

∑
pixi for

∑
aixi ≤ a0

Z2(x) =
∑
pixi − K

2(a0−a0)

(∑
aixi − a0

)2
for a0 ≤

∑
aixi ≤ a0

Z3(x) = K
a0+a0

2 +
∑

(pi −Kai)xi for a0 ≤
∑
aixi.

(9)

Lemma 2 Let x∗, x∗1, x
∗
2 and x∗3 be optimal solutions of maxB Z(x),

maxB{Z1(x) s.t.
∑
aixi ≤ a0}, maxB Z2(x) and maxB{Z3(x) s.t.

∑
aixi ≥ a0}, re-

spectively. Then, Z(x∗) = max(Z1(x∗1), Z2(x∗2), Z3(x∗3)).

Proof We can relax the domain restriction a0 ≤
∑
aixi ≤ a0 for Z2 because Z1(x) ≥

Z2(x) and Z3(x) ≥ Z2(x) for any x ∈ B. ut

The following three lemmas show that each of the problems from Lemma 2 can be

solved in pseudo-polynomial time.

Lemma 3 Maximizing Z1(x), for x binary and
∑
aixi ≤ a0, can be done in O(n

∑
ai).

Proof This is a knapsack problem, which can be optimized in O(na0) and thus in

O(n
∑
ai) because a0 <

∑
ai. ut

Lemma 4 Maximizing Z3(x), for x binary and
∑
aixi ≥ a0, can be done in O(n

∑
ai).

Proof In the following, we assume that
∑
ai > a0, otherwise

∑
aixi is always smaller

than a0 so that the problem does not have a solution. We show that the problem is a

knapsack problem.

1. Define M = {i ∈ N | pi −Kai < 0} and ã0 =
∑
ai − a0; let x∗ be the solution to

the following knapsack problem (x∗i = 0 for i ∈ N/M)

max
B

(∑
i∈M

(Kai − pi)xi s.t
∑
i∈M

aixi ≤ ã0

)
. (10)

2. An optimal solution to maxB{Z3(x) s.t.
∑
aixi ≥ a0} is given by xi = 1− x∗i , for

each i ∈ N.

Then, because ã0 ≤
∑
ai, (10) can be solved in O(n

∑
ai). ut

Lemma 5 If
(
pi + Kai

2(a0−a0)
(2a0 − ai)

)
≥ 0 for each i ∈ N, maximizing Z2(x), for x

binary, can be done in O(nK
∑
ai).

Proof Expanding the square in Z2, and using the identity x2i = xi because x ∈ B, we

obtain:

−
Ka0

2

2(a0 − a0)
+max

x∈B

∑
i∈N

(
pi +

Kai
2(a0 − a0)

(2a0 − ai)
)
xi −

K

a0 − a0

∑
i, j ∈ N
i 6= j

aiajxixj

 .

(11)

8

Assuming that
(
pi + Kai

2(a0−a0)
(2a0 − ai)

)
≥ 0 for each i ∈ N, linear coefficients of (11)

are all positive. We need them to be integer as well to apply the tools from optimization

of pseudo boolean functions.

Multiplying all terms by 4K(a0 − a0), (11) becomes a particular case of half-

products [2]

f =
∑
i∈N

cixi −
∑

i, j ∈ N
i 6= j

aibjxixj ,

where c 7→ 4K(a0−a0)
(
p+ Kw

2(a0−a0)
(2a0 − ai)

)
and a = b 7→ 2Kw. Badics and Boros

[2] provide a dynamic programming algorithm for general half-products with positive

coefficients. Its running time is O(nA), where A = 2K
∑
ai. ut

Besides this dynamic programming approach, new versions of optimization softwares,

including CPLEX 11, can manage maximization of integer problems with a concave and

quadratic objective function. Nevertheless, we show in Section 4.2 that the LP/NLP

algorithm described in the Section 4.1.1 solves (11) much faster than CPLEX 11 and

the algorithm from Badics and Boros do.

3.2 Subset sum

A well known particular case of the deterministic knapsack problem is the subset sum

problem which assumes that weight ai is equal to profit pi for each item i ∈ N. Even

though weakly NP-hard to solve, adapted algorithms can have a much better behavior

for this problem than for the general knapsack.

To the best of our knowledge, no stochastic version of the subset sum has been

addressed in the literature so far. To define the stochastic subset sum, we replace the

deterministic constraint a = p by:

– Ea[a] = p,

– Var[a] = λp for some λ ≥ 0,

where Ea[v] = (Ea[v1], . . . ,Ea[vn]) and Var[v] = (Var[v1], . . . ,Var[vn]) for any random

vector v. The constraint Ea[a] = p is the direct extension of a = p. Then, to enforce the

link between p and a we also impose Var[a] = λp. Note that the case λ = 0 results in a

deterministic knapsack, where additional capacity can be purchased at the incremental

cost of K per unit, see problem (6).

The relation Var[a] = λEa[a] is not invariant under the change of units of mea-

surement. Therefore, for a given problem instance, the units used in the parameters

definition should be chosen carefully when constructing the mathematical model. In

particular, whenever |N| = 1 the units can always be scaled so that the relation is

satisfied. This linear relation has been used previously for (SEGAP) through the Pro-

portional Mean-Variance Model [29].

3.2.1 Gaussian weights

In this section, we assume that weights ai, i ∈ N, are independent Gaussian variables

with parameters µi and σ2i = λµi, i ∈ N, for some λ ≥ 0, and that capacity a0
is a strictly positive random variable whose smallest value is denoted by a0 > 0.

9

This is motivated by the following summation property: if a1, . . . , an are independent

Gaussians of mean µi and variance σ2i , and xi are real numbers, then Y :=
∑
xiai ∼

N (µ(x), σ2(x)), with µ(x) =
∑
xiµi and σ2(x) =

∑
x2i σ

2
i . Moreover, Gaussians are

often used to represent the error made on estimations of parameters for many physical

and economical problems.

Theorem 2 Consider the problem

max
x∈B

∑
µixi −KEa

[
max

(
0,
∑

ai(ω)xi − a0(ω)
)]
, (12)

where ai ∼ N (µi, λµi), µ is an integer vector and a0 is a strictly positive random

variable. Problem (12) is weakly NP-hard and can be solved by a pseudo-polynomial

algorithm in O(n
∑
µi).

The fact that (12) is NP-hard easily follows from an argument similar to the one used

in Proposition 1, taking λ = 0, K = maxi∈N µi + 1, and a0 > 0 as a constant random

variable.

The rest of the section shows how to construct a pseudo-polynomial algorithm for

(12). Let a(x) =
∑
aixi ∼ N (µ(x), σ2(x)), so that the usual recourse function reads

Q(x) = −KEa[max(0, a(x;ω)− a0(ω))],

and consider the auxiliary function

R(x) = −KEa[max(0, â(x;ω)− a0(ω))],

where â(x) ∼ N (µ(x), σ̂2(x)), with µ(x) =
∑
µixi as before and σ̂2(x) =

∑
σ2i xi.

Note that for each i ∈ N, x2i = xi when x ∈ B so that Q(x) = R(x) when x ∈ B.

We define then ZQ(x) =
∑
µixi + Q(x) and ZR(x) =

∑
µixi + R(x), so that

functions ZQ(x) and ZR(x) coincide on B, and maxB ZQ(x) = maxB ZR(x). In what

follows, we focus on the maximization of ZR. This is motivated by the following prop-

erty:

Lemma 6 If σ2i = λµi for each 1 ≤ i ≤ n and some λ ≥ 0, then there exists a function

Ẑ : [0,
∑
µi]→ R such that for all x ∈ B, ZR(x) = Ẑ(z) with z =

∑
µixi.

Proof By definition of z, ZR can be rewritten as z +R(x). Then, we see that µ(x) =∑
µixi = z and σ̂(x) =

√∑
σ2i xi =

√
λ
∑
µixi =

√
λz proving the result. ut

Note that R(x) = Q(x) only when x ∈ B; when x ∈ B/B these functions may be dif-

ferent. In particular, neither ZR nor Ẑ inherit from the concavity of recourse functions

[5]. Nevertheless, we prove analytically that Ẑ is concave, assuming that λ2/4a0 ≤ 1,

where a0 is the smallest value taken by a0. This assumption is not restrictive because

given an instance of the problem where α := λ2/4a0 > 1, one can always scale the

data so that the assumption is satisfied. Namely, suppose that the current unit choice

for the data a yields a ratio α > 1. Then, expressing the data in a new unit so that

a′ = a/α, we see that the ratio λ2/4a0 is equal to one.

Lemma 7 If λ2/4a0 ≤ 1, the function Ẑ is concave on its domain.

10

Proof Let F0 be the distribution function of a0. If λ = 0, Ẑ is defined by

z −K
∫ ∞
a0

(z − a0)dF0(a0)

and its second derivative is null. Hence, we suppose that λ > 0 in the following and we

let f be the density function of N (0, 1). Ẑ is defined by the following expression

Ẑ(z) = z −K
∫ ∞
a0

{
1

λz

∫ ∞
0

f
(
a− z + a0

λz

)
da

}
dF0(a0). (13)

Following [10], among others, the inner integral can be simplified, yielding:

Ẑ(z) = z −K
∫ ∞
a0

{
λzf

(
a0 − z
λz

)
+ (z − a0)G

(
a0 − z
λz

)}
dF0(a0), (14)

where G = 1− Φ and Φ is the distribution function of N (0, 1). Computing the second

derivative of (14) for any z > 0, we obtain:

Ẑ′′(z) = − K

8λ
√
π

∫ ∞
a0

(λ−2(z + a0)2 − z)e
− (z−a0)2

2λ2z

√
z
5

 dF0(a0). (15)

Because F0 can be arbitrarily chosen, (15) is non-positive if and only if its integrand

is non-negative for all a0 ≥ a0 > 0. Since the second factor of the integrand is always

positive, we must ensure that

λ−2(z + a0)2 − z = z2λ−2 + z(2a0λ
−2 − 1) + a20λ

−2 (16)

is non-negative for all a0 ≥ a0 > 0. This is the case whenever λ2/4a0 ≤ 1. Hence,

since (16) is an increasing function of a0, we see that Ẑ′′(z) is non-positive whenever

λ2/4a0 ≤ 1. ut

In the following we consider that the units have been scaled by factor α = λ2/4a0. We

rename the vector of means as ν so that ν = µ/α where µ is integer.

Thanks to Lemma 7, the set of the maximizers of Ẑ is connected. Suppose that

we can compute a maximizer z∗ of Ẑ over R+, which may be greater than
∑
νi. The

concavity of Ẑ implies that

z1 ≤ z2 ≤ z∗ ⇒ Ẑ(z1) ≤ Ẑ(z2) and z∗ ≤ z2 ≤ z1 ⇒ Ẑ(z1) ≤ Ẑ(z2),

for any z1, z2 ∈ [1,
∑
νi]. Recalling that Ẑ(

∑
νixi) = ZR(x), we can write similar

inequalities for ZR: ∑
νix1i ≤

∑
νix2i ≤ z∗ ⇒ ZR(x1) ≤ ZR(x2)

and z∗ ≤
∑

νix2i ≤
∑

νix1i ⇒ ZR(x1) ≤ ZR(x2),

for any fractional vectors x1, x2 ∈ B.

Hence, the closer
∑
νixi is to z∗, the higher is ZR(x). Then, two situations can

happen. If
∑
νi ≤ z∗, the closest z =

∑
νixi, x ∈ B, to z∗ is given by x∗i = 1 for

each i ∈ N. This x∗ is the solution to (12). If
∑
νi > z∗, we must look for x∗1 and x∗2

in B that minimize the distances between
∑
νix
∗
ji and z∗, where

∑
νix
∗
1i ≤ z∗ and

11

∑
νix
∗
2i ≥ z∗. In fact, because ν = µ/α and µ is integer, it is sufficient to compute

dαz∗e and bαz∗c, and the vectors x∗1 and x∗2 are optimal solutions of the following two

subset sum problems:

max
∑
i∈N

µixi

s.t.
∑

µixi ≤ bαz∗c

xi ∈ {0, 1},

(17)

and

min
∑
i∈N

µixi

s.t.
∑

µixi ≥ dαz∗e

xi ∈ {0, 1}.

(18)

A solution to (12) is given by x∗ ∈ {x∗1, x∗2} such that ZR(x∗) = max(ZR(x∗1), ZR(x∗2)).

Problems (17) and (18) are weakly polynomial, because they are particular cases

of the knapsack problem. Finally, bαz∗c and dαz∗e can be computed in O (log2
∑
µi),

using a dichotomic search based on the sign of Ẑ′.

3.2.2 Fixed weights

We show next a result similar to Theorem 2 when ai, i ∈ N, are fixed and a0 is an

arbitrary random variable.

Theorem 3 Consider the problem

max
x∈B

∑
aixi −KEa[max(0,

∑
aixi − a0(ω))], (19)

where a0 is a random variable. Problem (19) is weakly NP-hard and can be solved by

a pseudo-polynomial algorithm in O(n
∑
ai).

Proof The reduction from Proposition 1 holds when the variance of a0 is zero and

K = maxi∈N ai + 1. Let Z be the objective function from (19). We must prove that Z

has the same properties as ZR from previous section so that the same argument as in

the proof of Theorem 2 can be applied:

– Z depends only on z =
∑
aixi: Z(x) = Ẑ(z).

– Ẑ : [0,
∑
ai]→ R is concave.

– We can compute dz∗e and bz∗c in O(n
∑
ai).

It is straightforward to see that Z depends only on z =
∑
aixi, with Ẑ(z) = z −

Ea0 [max(0, z − a0(ω))].

Then, the concavity of Z (and therefore Ẑ) follows from a general result in stochas-

tic programming [5]. Using δ > 0 small enough, we can use compute dz∗e and bz∗c by

a dichotomic search based on the sign of Ẑ(x)− Ẑ(x+ δ). ut

12

4 Algorithms and computational experiments

In this section, we assume that random vector a is absolutely continuous, with density

function fa. One of the main difficulty of (SCAP) is to evaluate the concave expectation

term from (4):

Q(x) = −KEa

[
max

(
0,

n∑
i=1

ai(ω)xi − a0(ω)

)]

= −K
∫
A

fa(a) max

(
0,

n∑
i=1

aixi − a0

)
da0da1 . . . dan. (20)

For an arbitrary continuous random vector a, the multivariate integral (20) is non-

trivial and must be solved using efficient packages for numerical integration, see [27].

To avoid this computational burden, we restrict ourselves to particular cases involv-

ing Gaussian and uniform distributions in the next subsections. Note that for special

distributions, such as the exponential, the recourse function has a closed form [12].

4.1 General case

4.1.1 LP/NLP algorithm

Problem (SCAP) belongs to the class of mixed-integer non-linear programs, which have

witnessed a tremendous attention in recent years. Efficient algorithms and solvers are

now available to handle convex MINLP, see [1,6,7]. Moreover, results from [7] sug-

gest that LP/NLP algorithms are particularly efficient to handle problems with linear

constraints only, such as (SCAP). Notice that these particular LP/NLP algorithms

turn out to be branch-and-cut algorithms where cuts are linearizations of the objective

function. The main steps of our LP/NLP algorithm are explained in detail in what

follows.

Consider the following linearly constrained convex MINLP:

max h(x)

(P) s.t. Ax ≤ b
xi ∈ {0, 1},

where h is assumed concave and differentiable. Problem (P) is equivalent to

max γ

s.t. h(x) +

n∑
i=1

∂h

∂xi
(x)(xi − xi) ≥ γ x ∈ Rn

+ (21)

Ax ≤ b
xi ∈ {0, 1},

which has an infinite number of constraints. The main idea of outer-approximation is

that, given a sensitivity parameter ε > 0, only a finite number of constraints (21) are

13

required in a solution. Given a cut pool R, we define the upper bounding problem

max γ

(MP) s.t. h(x) +

n∑
i=1

∂h

∂xi
(x)(xi − xi) ≥ γ x ∈ R

Ax ≤ b
xi ∈ {0, 1}.

Our algorithm lp/nlp solves (MP) with the branch-and-cut described in Algorithm 1.

T represents the branch-and-cut tree and solving a node o′ ∈ T means solving the LP

relaxation of (MP) augmented with branching constraints of o′.

Algorithm 1: lp/nlp

begin /* Initialization */
T = {o} where o has no branching constraints;
UB = +∞;

while T is nonempty do
select a node o′ ∈ T;
T← T\{o′}; /* withdraw node o′ from the tree */
solve o′;
let (γ, x) be an optimal solution;
if γ < UB then

if x /∈ {0, 1}n and depth(o′) ≥ 1 then
branch, resulting in nodes o∗ and o∗∗;
T← T ∪ {o∗, o∗∗}; /* add children to the tree */

else if γ ≥ h(x) + ε then
add x to R;
T← T ∪ {o′}; /* put node o′ back in the tree */

if x ∈ {0, 1}n and γ < h(x) + ε then
UB ← γ; /* define a new upper bound */
x∗ ← x; /* save current incumbent */

return x∗

4.1.2 Computational results

We present next results of lp/nlp for solving (SKP) with Gaussian weights and a fixed

capacity. As previously mentioned, more general distributions could be handled as long

as numerical integration packages are available. Recall that when each ai is a Gaussian

N (µi, σi) and a0 is a constant, (SKP) can be rewritten as

max
x∈B

∑
i∈N

pixi −K
{
σ(x)f

(
a0 − µ(x)

σ(x)

)
+ (µ(x)− a0)G

(
a0 − µ(x)

σ(x)

)}
, (22)

where µ(x) =
∑n

i=1 µixi, σ
2(x) =

∑n
i=1 σ

2
i x

2
i , f is the density function of N (0, 1),

G = 1 − Φ and Φ is the distribution function of N (0, 1). Note that function G is

read from a table. Algorithm 1 is implemented within CPLEX 11 [13], with ε = 0.1.

Since the model does not contain explicitly all constraints, we must deactivate the dual

14

presolve, setting BooleanParam.PreInd to false. Then, we implemented our (global) cut

generation with a LazyConstraintCallback, preventing CPLEX from using the dynamic

search. The algorithm has been coded in JAVA on a HP Compaq 6510b with a processor

Intel Core 2 Duo of 2.40 GHz and 2 GB of RAM memory. We fix a time limit of 100

seconds per instance and the solution time has been set to 100 seconds for instances

who could not be solved within this time limit or who exceeded the available memory.

We generated randomly different sets of instances, inspired by the instances from

Martello et al. [22]. We consider two data ranges: R = 1000 and R = 10000. Then,

parameters µi and pi for each item i ∈ N are integers uniformly generated between

4 and R. Each variance σi is an integer uniformly generated between 1 and bµ/4c
for each item i ∈ N, so that negative outcomes are negligible as explained next. We

generated 100 instances for each value of parameters K, n and R, with a capacity

a0 = (h/101)
∑
µi for instance number h; all results take the average over the groups

of 100 instances.

Note that Gaussian variables can take negative values which do not make sense

in real applications. Nevertheless, when the ratio σ/µ is small enough, the probability

that this happens is negligible so that it does not affect sensibly the objective. For

instance, the probability that N (µ, σ2) takes a value less than µ − 4σ is slightly less

than 0.0001. Therefore we will assume µ/4σ ≥ 1 when generating our instances.

The following results show that the the penalty factor has little impact on the

solution times, while a larger number of items makes the problem more difficult to solve.

We study more specifically the time spent at the root node of Algorithm 1. The tables

below report the total time in seconds (Time), the fraction of time spent at the root

node (Initialization), the number of cuts generated at the root node and the number of

cuts added deeper in the tree. We can see in Table 1 that the penalty factor K has little

K
Time Initialization InitCuts AddCuts

R = 103 R = 104 R = 103 R = 104 R = 103 R = 104 R = 103 R = 104

2 0.346 0.332 65% 65% 8.33 8.26 0.69 0.73
4 0.369 0.357 64% 64% 8.83 8.73 0.97 0.85
6 0.358 0.357 64% 65% 8.98 8.98 0.98 0.78
8 0.362 0.36 65% 66% 9.09 9.06 0.79 0.78
10 0.343 0.341 64% 63% 9.15 9.18 0.8 0.91
12 0.341 0.341 63% 62% 9.23 9.19 0.98 1.0
14 0.341 0.379 65% 65% 9.33 9.28 0.79 0.84
16 0.352 0.363 67% 66% 9.37 9.1 0.7 0.78
18 0.381 0.361 66% 64% 9.46 9.14 0.76 0.86
20 0.386 0.369 65% 66% 9.71 9.3 0.88 0.81

Table 1 Uncorrelated Instances, n = 500.

influence on lp/nlp. Therefore, we fix K = 10 in the other tests. Results from Table

2 show that we can easily solve problems up to 5000 variables, even though times are

significantly larger than in the deterministic case. For example, uncorrelated instances

with 5000 items are solved by [22] on average in 0.01 seconds, whereas we need on

average 19 seconds to solve such problems. Note that an important fraction of the time

is spent in the generation of the cut pool at the root node, because most instances need

to explore less than 100 nodes in their branch-and-cut trees. Pursuing our comparison

with the deterministic knapsack, we wondered whether strongly correlated and Avis

15

n
Time Initialization InitCuts AddCuts

R = 103 R = 104 R = 103 R = 104 R = 103 R = 104 R = 103 R = 104

200 0.072 0.073 54% 49% 9.04 8.77 1.09 1.28
400 0.209 0.193 65% 62% 9.08 8.75 0.98 0.95
600 0.381 0.353 70% 72% 8.85 9.03 0.94 0.59
800 0.616 0.579 75% 77% 8.96 8.97 0.66 0.49
1000 0.896 0.876 78% 78% 8.73 8.92 0.61 0.61
2000 3.447 3.361 83% 84% 8.81 9.2 0.5 0.42
3000 7.329 7.5 86% 87% 8.85 9.22 0.34 0.28
4000 13.302 12.682 86% 87% 8.93 8.9 0.42 0.25
5000 20.405 17.462 86% 86% 9.02 7.8 0.4 0.28

Table 2 Uncorrelated Instances, K = 10.

instances [22] are harder to solve than uncorrelated ones. Strongly correlated instances

are characterized by the relations pi = µi + R/10, i ∈ N, while Avis instances are

defined as follows: pi is an integer uniformly generated between 1 and 1000, µi =

n(n+1)+ i, and a0 = n(n+1)b(n−1)/2c+n(n−1)/2. Results from Table 3 show that

strongly correlated instances are roughly of the same difficulty as the uncorrelated ones,

whereas strongly correlated ones are harder in the deterministic case. Avis instances

are significantly harder to solve, see Table 4. Column (Unsolved) reports the number

of unsolved instance within 100 seconds. While other problems were essentially solved

a the root node, solving even small Avis required to spend a large amount of time

exploring branch-and-cut trees. In fact, unreported results show that thousands of

nodes where required to solve Avis instances, while uncorrelated and strongly correlated

instances were usually solved by exploring less than a hundred of nodes.

n
Time Initialization InitCuts AddCuts

R = 103 R = 104 R = 103 R = 104 R = 103 R = 104 R = 103 R = 104

200 0.122 0.149 29% 26% 8.46 8.66 2.27 2.22
400 0.353 0.374 33% 31% 8.64 8.6 1.86 1.94
600 0.927 0.718 25% 33% 8.24 8.42 1.81 1.51
800 0.842 1.064 47% 36% 8.23 8.16 1.17 1.33
1000 2.09 1.006 30% 57% 8.05 8.16 0.89 0.99
2000 3.155 2.727 76% 78% 7.91 7.85 0.59 0.4

Table 3 Strongly Correlated Instances, K = 10.

n Time Unsolved Initialization InitCuts AddCuts
200 6.639 0 0.23% 11.34 1.79
400 29.379 6 0.05% 12.55 1.52

Table 4 Avis Instances, K = 10.

16

4.2 Pseudo-polynomial cases

In Section 3 we proved that special cases of (SKP) can be solved in pseudo-polynomial

time. Since we provide constructive proofs, a natural question is to find out whether

the pseudo-polynomial algorithms proposed in the proofs perform better than lp/nlp.

Although we present results for (SKP) only, the algorithms described next could be

used within decomposition schemes for more general problems of type (SCAP). For

instance, a classical method to solve the generalized assignment problem consists in

relaxing the demand constraints in a Lagrangian fashion, obtaining m independent

knapsack problems [9,25]. Similarly, one can relax constraints (5) in (SEGAP), yielding

m independent problems (SKP) that can be solved through dynamic programming

whenever weights and capacity are distributed according to one of the assumptions

from Section 3.

In all the following results, we fix a time limit of 100 seconds per instance and

the solution time has been set to 100 seconds for instances which could not be solved

within this time limit or which exceeded the available memory.

4.2.1 Fixed weights and uniformly distributed capacity

Lemma 2 shows how to obtain the solution to problem (8) from the solutions to two

knapsack problems and to the problem of maximizing the concave and quadratic func-

tion of binary variables (11). The computational results from Martello et al. [22] show

that the two knapsack problems can be solved in a very short amount of time, and we

provide below results of lp/nlp applied to (11). Notice that other methods than lp/nlp

can be used to solve (11). As mentioned in the proof of Lemma 5, (11) can be identified

to a half-product that can be solved in pseudo-polynomial time. However, the algorithm

from Badics and Boros performed much worse than lp/nlp, because very large num-

bers of states needed to be enumerated. Since the algorithm could hardly solve small

instances with 200 variables, we do not report these computational experiments. Com-

mercial MIP solvers are also able to handle (11). We provide below a numerical com-

parison of CPLEX 11 and lp/nlp described in Section 4.1. The instances are generated

lp/nlp cplex Time ratios
K Time Time Unsolved

R = 103 R = 104 R = 103 R = 104 R = 103 R = 104 R = 103 R = 104

2 0.019 0.02 0.019 0.038 0 1 0.7 0.91
4 0.018 0.02 0.036 0.943 0 0 0.78 0.82
6 0.02 0.021 0.246 5.718 0 0 0.77 1.27
8 0.019 0.023 1.311 9.913 0 1 1.05 0.59
10 0.02 0.022 2.598 11.894 0 1 1.15 0.91
12 0.02 0.022 3.233 14.764 0 1 1.11 0.94
14 0.021 0.022 3.299 17.98 0 0 1.09 3.93
16 0.021 0.023 3.329 21.403 1 0 1.29 6.15
18 0.022 0.025 4.662 25.744 0 2 1.14 1.19
20 0.021 0.024 5.256 28.096 0 2 1.23 1.39

Table 5 Comparison between lp/nlp and cplex when K increases, n = 100.

as follows. The parameters ai and pi for each item i ∈ {1, . . . , n} are integers uniformly

17

generated between 1 and R. For each data range R, each value of the penalty factor

K and number of items n, we generate 100 instances, with Ea(a0) = (h/101)
∑
ai for

instance number h. Capacity a0 varies uniformly between 90% of Ea(a0) and 110%

of Ea(a0). We report on Tables 5 and 6 the average solution time in seconds and the

number of unsolved instances for cplex only because lp/nlp could solve all of them

within the time limit. Ratios, given by (T ime cplex) / (T ime lp/nlp), are computed

for each instance separately; we report the geometric average of the ratios, whereas

we report the arithmetic average of solution times. We compute geometric average for

ratios because of the following observation : if the ratio for one instance is 1/2 and the

one for another instance is 2, their “average” should be equal to one, which is the case

using the geometric average.

From Table 5, we see that the lp/nlp performance does not depend on the value of

K, and that instances for the two range values are of the same difficulty. However cplex

requires more time to solve instances with R = 104 than those with R = 103, which

becomes even more significant when K increases. Even tough cplex takes on average

more time than lp/nlp, the ratios close to one tell us that some instances are still solved

faster by cplex than by lp/nlp. Table 6 studies the impact of increasing the number n

lp/nlp cplex Time ratios
n Time Time Unsolved

R = 103 R = 104 R = 103 R = 104 R = 103 R = 104 R = 103 R = 104

200 0.029 0.032 0.08 0.269 0 0 1.93 1.77
400 0.052 0.057 0.484 0.239 0 0 5.33 4.14
600 0.076 0.081 1.878 0.638 1 0 9.51 7.75
800 0.097 0.109 2.083 1.447 0 0 14.83 13.31
1000 0.12 0.129 3.814 2.607 0 0 22.19 20.26
1200 0.144 0.166 4.176 4.064 2 1 28.52 28.29
1400 0.174 0.19 5.797 5.727 1 0 31.88 30.33
1600 0.203 0.222 6.982 7.984 1 0 34.8 36.09
1800 0.225 0.249 10.708 11.142 0 0 43.05 44.94
2000 0.264 0.281 12.313 14.309 2 0 48.28 50.86

Table 6 Comparison between lp/nlp and cplex when n increases, K = 2.

of items, hence variables in the model. It is clear from the values of the ratios that the

lp/nlp handles better bigger instances than cplex does, the ratio average increases

more or less linearly with the number of items. This may be explained by the following

observation: cplex deals with O(n2) variables so that its solution time is very impacted

by n. On the other hand, the number of variables in lp/nlp only increases linearly with

n, because this algorithm deals implicitly with the non linear objective. Then, because

K is small enough, solution times required by cplex to solve instances with R = 103

are similar to those required to solve instances with R = 104. We stopped our test to

2000 variables because cplex required almost all the available memory to solve these

instances.

4.2.2 Subset sum with gaussian weights

Our last group of tests studies subset sum instances with Gaussian weights as defined

in Theorem 2. Therefore, µi are (integer) uniformly distributed between 1 and R and

18

σi =
√
λµi and a0 is a constant random variable strictly positive. We have two algo-

rithms at our disposal to solve these problems. As for general knapsack problem with

Gaussian weights, we can use lp/nlp described in Section 4.1.1. Alternatively, using

Theorem 2, we can solve these problems by the algorithm described in Algorithm 2.

The later essentially solves two subset-sum problems using the method decomp from

Pisinger [26], available at www.diku.dk/hjemmesider/ansatte/pisinger/. Algorithm

2 has been coded in C on the same computer as the one used for lp/nlp. Table 7

Algorithm 2: stoch-subsum

1 compute bαz∗c and dαz∗e using a dichotomic search;
2 solve (17) and (18) with decomp from [26], yielding solutions x∗1 and x∗2;
3 if ZR(x∗1) > ZR(x∗2) then x∗ := x∗1 else x∗ := x∗2;

return x∗

studies the sensibility to parameter λ for lp/nlp, results for stoch-subsum are not re-

ported because all problems are solved within 0.001 seconds. As expected, Theorem 2

enables us to solve subset sum problems orders of magnitude faster than using lp/nlp,

which is even more striking in Table 8 below.

λ
Time Initialization InitCuts AddCuts

R = 103 R = 104 R = 103 R = 104 R = 103 R = 104 R = 103 R = 104

1/64 1.783 1.979 7% 5% 11.14 7.03 2.11 1.42
1/16 1.625 1.852 8% 3% 10.9 11.19 1.58 1.63
1/4 1.609 1.891 6% 3% 10.42 10.97 1.45 1.96

Table 7 Subset Sum with n = 500 and K = 10.

We fix λ = 1/16 in our subsequent computational results. Table 8 compares lp/nlp

and stoch-subsum for different values of n. Whenever stoch-subsum was able to solve

an instance in less than 0.001 seconds, its solution time was set to 0.001 seconds. Ra-

tios, given by (T ime lp/nlp) / (T ime stoch-subsum), are computed for each instance

separately; we report the geometric average of the ratios, whereas we report the arith-

metic average of solution times. Comparing Table 8 with Tables 2 and 3, we see that

stochastic subset sum problems are significantly harder to solve than uncorrelated and

correlated instances. This is due to the size of the branch-and-cut trees, hundreds of

nodes being explored for the subset sum instances.

Similarly to the Avis knapsack instances, we can define Avis subset sum instances

as follows: pi = µi = n(n + 1) + i, and a0 = n(n + 1)b(n − 1)/2c + n(n − 1)/2. To

obtain groups of 100 “different” instances, we shuffle the order in which the items are

read. Avis subset sum are extremely hard to solve already in the deterministic case,

specialized algorithms are needed to solve large instances. Table 9 compares lp/nlp

and stoch-subsum on these difficult instances. In fact, lp/nlp can not solve problem

with more than 20 variables within the time limit of 100 seconds. This is due to the

very large number of nodes explored. For n = 10, lp/nlp explores around 751 nodes

on average, while exactly 705430 nodes are explored for each instance with n = 20.

Although stoch-subsum requires more time than for other subset sum problems, it can

still handle problems containing up to 600 variables within 100 seconds of CPU time.

19

lp/nlp stoch-subsum Time ratios
n Time Unsolved Time

R = 103 R = 104 R = 103 R = 104 R = 103 R = 104 R = 103 R = 104

200 0.199 0.244 0 0 0.001 0.001 170 198
400 0.917 0.991 0 0 0.001 0.001 636 736
600 2.542 2.726 0 0 0.002 0.002 1331 1364
800 5.306 5.568 0 0 0.002 0.002 2190 2096
1000 10.12 9.716 0 0 0.003 0.003 3422 3085
2000 84.768 79.023 31 26 0.005 0.005 12660 11475

Table 8 Comparison of lp/nlp and stoch-subsum on subset sum instances with K = 10 and
λ = 1/16.

n lp/nlp stoch-subsum Time ratios
10 0.055 0.001 51.8
20 40.124 0.001 40119
100 – 0.055 –
200 – 1.003 –
300 – 5.22 –
400 – 16.6 –
500 – 41.6 –
600 – 88.1 –

Table 9 Comparison of lp/nlp and stoch-subsum on Avis subset sum instances with K = 10
and λ = 1/16.

5 Conclusion

In this paper, we study two important aspects of the stochastic knapsack problem with

penalty recourse. We provide complexity results for three special cases of the problem,

and propose a branch-and-cut algorithm for the general problem. The algorithm is

tested on a large test of instances randomly generated and inspired by the instances

used in [22] for the deterministic knapsack problem. We can solve in less than a minute

uncorrelated and correlated problems involving up to 5000 variables. Only a few lin-

earizations are required and less than 100 nodes are explored in the branch-and-cut

tree. Similarly to the deterministic situation, Avis instances are very hard to solve,

requiring the exploration of much larger trees.

The branch-and-cut algorithm is less efficient with subset sum problems, usually

exploring up to a thousand of nodes. These subset sum problems can however be solved

almost as fast as the deterministic version of the problem, by using a specialized algo-

rithm from Pisinger [26]. The pseudo-polynomial algorithm devised for the knapsack

problem with constant weights and capacity uniformly distributed is also tested, but

does not provide positive results.

An interesting subject for future research would be to study how to extend ef-

ficiently the methods described herein to handle more general problems. We should

evaluate numerically our branch-and-cut algorithm lp/nlp for more general (SCAP),

and test decomposition algorithms that reduce general problems to a sequence of knap-

sack problems.

20

Acknowledgements

The authors thank the editor and an associate editor, whose valuable and constructive

remarks improved the presentation of this paper.

References

1. K. Abhishek, S. Leyffer, and J. T. Linderoth. Filmint: An outer-approximation-based
solver for nonlinear mixed integer programs. INFORMS Journal on computing. In press.

2. T. Badics and E. Boros. Minimization of half-products. Math. Oper. Res., 23(3):649–660,
1998.

3. C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to solve origin-
destination integer multicommodity flow problems. Oper. Res., 48(2):318–326, 2000.

4. P. Beraldi and M. E. Bruni. An exact approach for solving integer problem under prob-
abilistic constraints with random technology matrix. Annals of Operations Research,
177:127–137, 2010.

5. J. R. Birge and F. V. Louveaux. Introduction to Stochastic programming (2nd edition).
Springer Verlag, New-York, 2011.

6. P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework for convex
mixed integer nonlinear programs. Discrete Optimization, 5(2):186–204, 2008.

7. P. Bonami, M. Kilinc, and J. Linderoth. IMA Volumes. University of Minnesota, 2010.
Algorithms and Software for Convex Mixed Integer Nonlinear Programs.

8. G.G. Brown and G.W. Graves. Real-time dispatch of petroleum tank trucks. Management
Science, 27:19–32, 1981.

9. D. G. Cattrysse and L. N. Van Wassenhove. A survey of algorithms for the generalized
assignment problem. European Journal of Operational Research, 60(3):260 – 272, 1992.

10. A. Cohn and C. Barnhart. The stochastic knapsack problem with random weights: A
heuristic approach to robust transportation planning. In Proceedings of the Triennial
Symposium on Transportation Analysis (TRISTAN III), 1998.

11. W.K. Klein Haneveld, L. Stougie, and M.H. van der Vlerk. Stochastic integer program-
ming with simple recourse. Technical Report Research Memorandum 455, University of
Groningen, 1991.

12. B. Hansotia. Some special cases of stochastic programs with recourse. Operations Research,
25(2):361–363, 1977.

13. ILOG CPLEX Division, Gentilly, France. ILOG. ILOG CPLEX 11.0 Reference Manual.,
2007.

14. A. J. Kleywegt and J. D. Papastavrou. The dynamic and stochastic knapsack problem
with random sized items. Oper. Res., 49(1):26–41, 2001.

15. A. J. Kleywegt, A. Shapiro, and T. Homem de Mello. The sample average approximation
method for stochastic discrete optimization. SIAM J. Optim., 12(2):479–502, 2002.

16. O. Klopfenstein. Solving chance-constrained combinatorial problems to optimality. Com-
putational Optimization and Applications, In press.

17. O. Klopfenstein and D. Nace. A note on polyhedral aspects of a robust knapsack problem.
Optimization Online, 2007.

18. O. Klopfenstein and D. Nace. A robust approach to the chance-constrained knapsack
problem. Oper. Res. Lett., 36(5):628–632, 2008.

19. S. Kosuch and A. Lisser. Upper bounds for the 0-1 stochastic knapsack problem and a
b&b algorithm. Ann. Oper. Res., 2009. Article in press.

20. G. Laporte, F. V. Louveaux, and H. Mercure. The vehicle routing problem with stochastic
travel times. Transp. Science, 26(3):161–170, 1992.

21. F. V. Louveaux and M. H. van der Vlerk. Stochastic programming with simple integer
recourse. Mathematical Programming, 61:301–325, 1993.

22. S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for the
0-1 knapsack problem. Management Science, 45(3):414–424, 1999.

23. D. P. Morton and R. K. Wood. Advances in computational and stochastic optimization,
logic programming and Heuristic Search, chapter 5, pages 149–168. Woodruff, 1998.

24. J. M. Mulvey, R. J. Vanderbei, and A. Z. Stavros. Robust optimization of large-scale
systems. Oper. Res., 43(2):264–281, 1995.

21

25. R. M. Nauss. Solving the generalized assignment problem: An optimizing and heuristic
approach. INFORMS J. on Computing, 15(3):249–266, 2003.

26. D. Pisinger. An exact algorithm for large multiple knapsack problems. European Journal
of Operational Research, 114(3):528 – 541, 1999.

27. A. Prékopa. Stochastic Programming. Kluwer, 1995.
28. I. Quesada and I. E. Grossman. An LP/NLP based branch and bound algorithm for convex

MINLP optimization problems. Comput. Chem. Eng., 16(10/11):937–947, 1992.
29. D. Spoerl and R.K Wood. A stochastic generalized assignment problem. INFORMS

Annual Meeting, Atlanta, GA, 1922 October, 2003.
30. R.J.B. Wets. Solving stochastic programss with simple recourse. Stochastics, 10(3):219–

242, 1983.

