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Abstract

Using the structure of the jet schemes of rational double point singularities, we construct
”minimal embedded toric resolutions” of these singularities. We also establish, for these
singularities, a correspondence between a natural class of irreducible components of the jet
schemes centered at the singular locus and the set of divisors which appear on every ”minimal
embedded toric resolution”. We prove that this correspondence is bijective except for the E8

singulartiy. This can be thought as an embedded Nash correspondence for rational double
point singularities.

1 Introduction

In this article, we construct embedded resolutions of surfaces having rational double point
singularities; also called simple singularities. The word simple refers to the fact that they have
no moduli (i.e., a hypersurface singularity with the same topological type of a simple singularity
is analytically isomorphic to the simple singularity [LeT]). But at the same time, they are simple
from a resolution of singularities point of view, i.e., easy to resolve. The traditional approach
to resolve singularities is to iterate blowing ups at smooth centers in order to make an invariant
drop. This invariant takes values in a discrete ordered set with a smallest element (which
detects smoothness). It should not only detect smoothness, but also be easy to compute so that
its behavior can be followed when iterating the blowing ups. In this article, we adopt a different
strategy to resolve a simple singularity X ⊂ C3 : we construct an embedded toric resolution of
X ⊂ C3. This construction is based on a deep invariant, the set EC (essential components) of
irreducible components of the jet schemes satisfying some natural properties. Recall that for
m > 0, the m−th jet scheme of a variety X parametrizes morphisms Spec C[t]/(tm+1) −→ X
(see section 2 for details). These are finite dimensional approximations of the space of arcs
which parametrize germs of curves drawn on X. Actually the geometry of the m−th jet scheme
is intimately related with the geometry of the set of arcs in a smooth ambient space containing
X and which have ”contact” with X larger than m. This explains in parts why while the arc
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space of X detect information about abstract resolution of singularities (see [N]), jet schemes
detect information about embedded resolution of singularities (see [Mo5], [LMR], [ELM]).

The other subject which this article considers is the minimality of embedded resolutions
of singularities. In contrast with the abstract resolution case, there is no ”universal” minimal
embedded resolution for surface singularities. Therefore we need to make this notion more pre-
cise. Actually, the embedded resolution of X ⊂ C3 that we construct is toric and is obtained
from a particular regular subdivision of the Newton dual fan Γ associated with X (see section
3 for the definition of Γ). Since simple singularities are Newton non-degenerate (see section 3),
regular subdivisions of Γ give toric embedded resolutions of X ⊂ C3 (see [Ho],[Va],[LJ]). This
is equivalent to say that an abstract resolution of singularities of the toric variety ZΓ defined by
the fan Γ gives an embedded toric resolution of X ⊂ C3. But the toric variety ZΓ is of dimension
3 and hence thanks to a theorem by Bouvier and Gonzalez-Sprinberg [BGS], we know that there
exists a toric resolution of singularities of ZΓ where all the irreducible divisors of the exceptional
locus are essential, i.e., the centers of the divisorial valuations associated with these divisors give
irreducible components of the exceptional locus of any other toric resolution of singularities of
ZΓ. We call such a resolution of singularities a minimal toric resolution; in [BGS], it is called
G−desingularization; we call a toric embedded resolution of X ⊂ C3 minimal if it corresponds
to a minimal toric resolution of ZΓ. Note that in general, a minimal toric embedded resolution of
singularities is not unique, but the divisorial valuations associated with the irreducible divisors
of its exceptional locus are the same for all minimal toric embedded resolution of singularities.
We say that these last divisorial valuations are embedded essential.
We will prove that the toric embedded resolution of X ⊂ C3 which we construct from jet schemes
is minimal for all simple singularities except for E8 (Note that the E8 singularity behaves ex-
ceptionally also from many other points of view [LeT2]). In particular we describe a bijection
between the set of essential components of the jet schemes of simple singularities (except for
E8) and the set of embedded essential divisorial valuations. This can be thought as a solution
of an embedded version of the Nash problem.

The choice of this class of singularities is related to the following facts:

First, for m big enough the number of irreducible components of their m−th jet scheme
is constant; this simplifies the classification of the irreducible components we are interested in,
when m varies. This is not the case in general (see [Mo2], [Mo3]).

Second, these singularities are Newton non-degenerate with respect to their Newton poly-
hedron, and therefore they have a toric embedded resolution; see [AGS],[O1],[O2]. Defining
the class of irreducible components of jet schemes, mentioned above, is more subtle for Newton
degenerate singularities [LMR]. This is related to a conjecture of Teissier on embedding any
singularity in such way that it can be resolved by a toric morphism (see [T1], [T2], [Mo5]).

We would like to thank Shihoko Ishii, Monique Lejeune-Jalabert, Patrick Popescu-Pampu
and Bernard Teissier for several discussions about this article.

2 Jet schemes

In this section, we begin by giving some preliminaries on jet schemes; we then recall from
[Mo1] the structure of jet schemes of rational double point singularities and we extract from
this stucture some information about particular irreducible components of these jet schemes.
These information will be used in the next section to obtain the canonical resolution of these
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singularities. We will all the cases of simple singularities (see their defining equations below);
the case of E6 (see below the defining equation) has been treated in [Mo1], but we consider it
briefly here for the convenience of the reader.

Let k be an algebraically closed field of arbitrary characteristic and X be a k-algebraic
variety. For m ∈ N, the functor

Fm : k − Schemes −→ Sets

Spec(A) −→ Homk(SpecA[t]/(tm+1), X)

where A is a k−algebra, is representable by a k−scheme Xm [Is]. Xm is the m-th jet scheme of
X, and Fm is isomorphic to its functor of points. In particular the closed points of Xm are in
bijection with the k[t]/(tm+1) points of X.
For m, p ∈ N,m > p, the truncation homomorphism A[t]/(tm+1) −→ A[t]/(tp+1) induces a
canonical projection πm,p : Xm −→ Xp. These morphisms verify πm,p◦πq,m = πq,p for p < m < q,
and they are affine morphisms, they define a projective system whose limit is a scheme that we
denote by X∞. This is the arc space of X.
Note that X0 = X. We denote the canonical projection πm,0 : Xm −→ X0 by πm, and denote
by Ψm the canonical morphisms X∞ −→ Xm.

We now assume that X ⊂ C3 is defined by one of the following equations:

An, n ∈ N : xy − zn+1 = 0.

Dn, n ∈ N, n > 4 : z2 − x(y2 + xn−2) = 0.

E6 : z2 + y3 + x4 = 0.

E7 : x2 + y3 + yz3 = 0.

E8 : z2 + y3 + x5 = 0.

We denote by X0
m := π−1

m,0(O), where O is the origin of C3; it is the singular locus of X.

We will now associate a divisorial valuation over C3 with the irreducible component of
Cm ⊂ X0

m satisfying the property (?) that for every irreducible component Cm+1 ⊂ X0
m+1,

if πm+1,m(Cm+1) ⊂ Cm then codim(Cm+1) > codim(Cm). (?)

For m ∈ N, let ψam : C3
∞ −→ C3

m be the canonical morphism, here the exponent a stands for
”ambient”. For p ∈ N, we consider the following cylinder in the arc space

Contp(f) = {γ ∈ C3
∞; ordtf ◦ γ = p}.

Since ψam is a trivial fibration, for every irreducible component Cm ⊂ X0
m, we have that

ψam
−1(Cm) ∩ Contm+1(f)

is an irreducible component of Contm+1(f), whenever this last intersection is non-empty. But
from the property (?) we have codim(Cm+1) > codim(Cm), this implies

ψam
−1(Cm) ∩ Contm+1(f) 6= ∅.
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Let γ be the generic point of ψam
−1(Cm) ∩ Contm+1(f), then for every h ∈ C[x, y, z], we define

the map νCm : C[x, y, z] −→ N, as follows

νCm(h) = ordth ◦ γ. (1)

It follows from corollary 2.6 in [ELM], that Cm is a divisorial valuation (see also [dFEI],
[Re], prop. 3.7 (vii) applied to ψam

−1(Cm)).

Given m > 1, with an irreducible component Cm of X0
m, we associate the following vector

that we call the weight vector:

v(Cm) = (νCm(x), νCm(y), νCm(z)) ∈ N3.

In the following definition, we consider the irreducible components of X0
m that will be meaningful

for the problem we are considering.

Definition 2.1. The following set of particular irreducible components of X0
m :

EC(X) := {Cm ⊂ X0
m,m > 1 is an irreducible component satisfying (?) and

v(Cm) 6= v(Cm−1) for any component Cm−1 verifying πm,m−1(Cm) ⊂ Cm−1}, (2)

is called the set of essential components of X.
We also consider the following set of associated valuations :

EE(X) := {νCm , Cm ∈ EC(X)},

Where EE stands for Embedded-Essential, to say that these valuations are supposed to appear
in every embedded toric resolution.

Note that the definitions of the sets EC(X) and EE(X) are ad-hoc to simple singularities.
Indeed, the fact that these singularities are non-degenerate with respect to their Newton poly-
hedron implies that the meaningful valuations are monomial; this motivates the definition above
of the set EC(X). From another point of view, if we check carefully the equations, we will figure
out that the components which does not belong to the set EC(X), are at their generic points
trivial fibrations above components which belong to EC(X); that is why they are not useful and
this phenomenon reflects the fact that the singularities we consider are Newton non-degenerate.

Note also that on one hand we are interested in the embeddings of the singularities in C3

that are defined by the equations we gave at the beginning of this section; this includes that
we consider the variables x, y, z as given and hence the embedding of the torus in C3 is also
given. On the other hand, since we are interested in toric resolutions, the exceptional locus
of such a resolution will be defined as the inverse image of the complement of the torus, i.e.,
of the coordinate hyperplanes. So the fact that the x axis (defined by y = z = 0 in C3) and
the y axis (defined by x = z = 0 in C3) belong to the singularities An, the y axis belongs to
the singularities Dn and the z axis belongs to the singularity E7, suggests that if we want to
find a toric resolution, we need also to consider the jets which go through respectively these
coordinate axis. But the family of m−th jets whose center is a generic point on one of these axis
is irreducible because our surfaces have isolated singularities at the origin. So the components
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which come from those families are easy to determine; again since our singularities are Newton
non-degenerate, we are only interested in the vectors associated with these components, so we
only consider such components for small m, whenever the associated vector changes. For m
large enough, the associated vector stabilizes.

A careful reading of [Mo4] (and of [Mo2]) produces a determination of the set EC for
a rational double point (X, 0). We will denote it by EC(X). Let f(x, y, z) ∈ C[x, y, z] be the
defining equation of a rational double point singularity X. We write

f(
m∑
i=0

xit
i,

m∑
i=0

yit
i,

m∑
i=0

zit
i) =

i=m∑
i=0

Fit
i mod tm+1, (�)

then the m-th jet scheme Xm of X is naturally embedded in

C3(m+1) = (C3)m = SpecC[xi, yi, zi, i = 0, . . . ,m]

and is defined by the ideal Im = (F0, F1, ..., Fm). From Section 3 in [Mo4] and section 3.2 in
[Mo1], we are able to determine the set EC(X). This is the subject of the following lemma.
We do not treat the E8 singularity (which will be in some sense an exception to part of our
formulation) because it takes too much space; we only give the weight vectors associated with
the components in EC(E8)) in the corollary that follows the lemma.

Lemma 2.2. For an An singularity, EC(An) is given by the components centered at the origin

{V (x0, . . . , xl−1, y0, . . . , ym−l, z0), l = 1, . . . ,m and m = 1, . . . , n},

and the components centered at the x respectively y axis are

{V (y0, . . . , yl, z0), l = 0, . . . , n},

respectively
{V (x0, . . . , xl, z0), l = 0, . . . , n}.

For a D2n singularity, EC(D2n) is given by the components centered at the origin

{X0
1 = V (x0, y0, z1),

X0
2 = V (x0, y0, z0, z1),

H2k = V (x0, y0, z0, z1, y1, y2, ..., yk−1, z2, z3, ..., zk), k = 2, . . . , n− 1,

H2k+1 = V (x0, y0, z0, z1, y1, y2, ..., yk, z2, z3, ..., zk), k = 1, . . . , n− 2,

L2k+1 = V (x0, x1, y0, z0, z1, y1, y2, ..., yk−1, z2, z3, ..., zk), k = 1, . . . , 2n− 1},

and the components centered at the y-axis are

V (x0, z0), and V (x0, x1, z0).

For an E6 singularity we have

EC(E6) = {V (x0, y0, z0), V (x0, y0, z0, z1), V (x0, y0, y1, z0, z1),
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V (x0, x1, y0, y1, z0, z1, z2), V (x0, x1, y0, y1, y2, z0, z1, z2, z3),

V (x0, x1, x2, y0, y1, y2, y3, z0, z1, z2, z3, z4, z5)}.

For an E7 singularity, EC(E7) is given by the components centered at the origin

{V (x0, y0, z0), V (x0, x1, y0, z0), V (x0, x1, y0, y1, z0), V (x0, x1, x2, y0, y1, z0),

V (x0, x1, x2, y0, y1, y2, z0), V (x0, x1, x2, y0, y1, z0, z1), V (x0, x1, x2, x3, y0, y1, y2z0, z1),

V (x0, x1, x2, x3, x4, y0, y1, y2z0, z1), V (x0, x1, x2, x3, x4, y0, y1, y2, y3z0, z1),

V (x0, x1, x2, x3, x4, x5, y0, y1, y2, y3z0, z1, z2), V (x0, x1, x2, x3, x4, x5, x6, y0, y1, y2, y3, y4z0, z1, z2),

V (x0, x1, x2, x3, x4, x5, x6, x6, x8, y0, y1, y2, y3, y4z0, z1, z2, z3)},

and those centered above the z axis

{V (x0, y0), V (x0, y0, y1)}.

From lemma 2.2, we deduce directly the set EE. First recall that a monomial valuation,
defined on the ring C[x, y, z] and associated with a vector a = (a1, a2, a3) ∈ N3, is defined by:
for h =

∑
i=(i1,i2,i3)∈N3 cix

i1yi2zi3 ∈ C[x, y, z] then

νa(h) = mini∈N3;ci 6=0 a1i1 + a2i2 + a3i3. (3)

From lemma 2.2 we deduce:

Proposition 2.3. The valuations that belong to EE(An) are monomial. They are associated
with the vectors v(Cm) where Cm ∈ EC(An). These vectors are

(l,m− l + 1, 1), l = 1, . . . ,m and m = 1, . . . , n

(l, 0, 1), l = 1, . . . , n+ 1,

(0, l, 1), l = 1, . . . , n+ 1.

The valuations that belong to EE(D2n) are monomial. They are associated with the vec-
tors v(Cm) where Cm ∈ EC(D2n). These vectors are

U1 = (1, 1, 1), U2 = (1, 2, 2), . . . , Un−1 = (1, n− 1, n− 1),

W1 = (1, 1, 2),W2 = (1, 2, 3), . . . ,Wn−1 = (1, n− 1, n),

V1 = (2, 1, 2), V2 = (2, 2, 3), . . . V2n−2 = (2, 2n− 2, 2n− 1),

W0 = (1, 0, 1), V0 = (2, 0, 1).

The valuations that belong to EE(E6) are monomial. They are associated with the vectors
v(Cm) where Cm ∈ EC(E6) :

(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 3), (2, 3, 4), (3, 4, 6)

The valuations that belong to EE(E7) are monomial. They are associated with the vectors
v(Cm) where Cm ∈ EC(E7) :

(1, 1, 0), (1, 2, 0), (1, 1, 1), (2, 1, 1), (2, 2, 1), (3, 2, 1), (3, 3, 1), (3, 2, 2),
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(4, 3, 2), (5, 3, 2), (5, 4, 2), (6, 4, 3), (7, 5, 3), (9, 6, 4)

The valuations that belong to EE(E8) are monomial. They are associated with the vectors
v(Cm) where Cm ∈ EC(E8) :

(1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 3), (2, 2, 3), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 6),

(3, 5, 7), (3, 5, 8), 4, 6, 8), (4, 6, 9), (4, 7, 10), (5, 7, 11), (5, 8, 11)(5, 8, 12), (5, 9, 13)

(5, 9, 14), (6, 10, 14), (6, 10, 15)

Proof. Let a = (a1, a2, a3) ∈ N3. Assume that

Cm = V (x0, . . . , xa1−1, y0, . . . , ya2−1, z0, . . . , za3−1) ⊂ C3
m

is an irreducible component ofXm, which belongs to EC(X). Then, a generic point of Ψa
m
−1(Cm)∩

Contm+1(f) is of the shape (xa1t
a1 +· · · , ya2ta2 +· · · , za3ta3 +· · · ) where (xa1 , ya2 , za3) is generic.

For h ∈ C[x, y, z], it follows from the definition of νCm(h) (see equation (1)) and from the defi-
nition of νa(h) (see equation (3)) that νCm(h) = νa(h). The proposition follows.

3 Toric minimal embedded resolutions

In this section, we define minimal toric embedded resolutions, and we give the motivations for
this definition.

Let N w Z3 be a lattice and let σ ⊂ NR3 = N
⊗

ZR be the strictly convex cone generated
by the vectors v1, ..., vr, i.e.

σ =< v1, . . . , vr >= {
r∑
i=1

λivi, λi ∈ R+}.

Let f =
∑

i=(i1,i2,i3)∈N3 cix
i1yi2zi3 be a polynomial in C[x, y, z] with f(0) = 0. We denote

by NP+(f) its Newton polyhedron at the origin: this is the convex hull in R3
+ of the set

{(i1, i2, i3) + R3
+, ci 6= 0},

where we have supposed that f is given by its Taylor expansion at the origin and let NP (f)
be the union of the compact boundaries of NP+(f), called Newton boundary. This polyhedron
and its boundary depend on the choice of coordinates. Let Γ(f) be the dual fan of NP (f); we
will call covectors vectors which lie in Γ(f). A covector defines a linear map on R3. For a positive
covector L, i.e. with positive coefficients, we define the distance d(L, f) as the minimal value
of the linear map L at x ∈ NP+(f); let ∆(L, f) := {x ∈ NP+(f) : L(x) = d(L, f)} be the dual
face to L. We can then define fL(x) as the restriction of f to the dual face of L, ∆(L, f); that is

fL(x) =
∑

i=(i1,i2,i3)∈∆(L,f)

cix
i1yi2zi3 .

We can find more details about Newton polyhedra, their dual fans and Newton non-
degeneracy in [O2](see also [AGS]).
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Definition 3.1. Let f ∈ k[x, y, z] be such that f(0) = 0. We say that the hypersurface {f = 0}
is non-degenerate with respect to a covector L if the variety

F ∗(L) = {u ∈ k∗3/fL(u) = 0}

is a reduced smooth hypersurface in the torus k∗3. We say that f is non degenerate at the origin
0 with respect to its Newton Polyhedron NP (f) if it is non degenerate for each covector.

Recall that a fan Σ is said to be regular if every cone σ ∈ Σ is regular, i.e. the vectors
generating σ are part of a basis of Z3 as a Z−module, or equivalently (for σ a cone maximal
dimension), if σ =< v1, v2, v3 > then the absolute value | det(v1, v2, v3) |= 1. A very useful result
about toric embedded resolutions of this type of singularities goes as follows.

Theorem 3.2. ([Va],[O1],[AGS]) We consider a pair X ⊂ C3 where X = {f = 0} is a Newton
non-degenerate singularity, then the folllowing properties are equivalent:
1) A subdivison Σ of Γ(f) is regular,
2) The proper birational morphism µΣ : ZΣ −→ C3 = Spec k[x, y, z] induced by Σ is an embedded
resolution of singularities of the pair. Here ZΣ is the toric variety associated with the fan Σ.

Note that the morphism µΣ is explicit in term of Σ; more precisely, a regular cone σ =<
v1, v2, v3 >⊂ Σ of maximal dimension determines an affine chart of ZΣ which is isomorphic to
the affine space C3 = Spec k[q, r, s] and the rectriction of µΣ to this chart is given by

x = qv1,1rv2,1sv3,1

y = qv1,2rv2,2sv3,2

z = qv1,3rv2,3sv3,3 ,

where vi = (vi,1, vi,2, vi,3). Moreover, an edge of Σ (a cone of dimension 1) determines an orbit
of ZΣ whose Zariski closure defines a divisor on ZΣ which is an irreducible component of the
exceptional divisor of µΣ ([O]).

And the strict transform of X = {f = 0} is defined as follows:

Definition 3.3. Let Σ be a regular subdivision of Γ(f). The strict transform of {f = 0} by µΣ

is the Zariski closure of (µΣ)−1(C∗3 ∩ {f = 0}).

We now recall the notion of “essential divisor”, which is one of the motivations of this
work. For a singular variety, we can find infinitely many resolutions of singularities; the notion
of essential divisor searches for intrinsic data in all resolutions of singularities of a given singular
variety.

Definition 3.4. (Essential divisors)
Let X be a singular variety and π : (X̃, E) → (X, sing(X)) be a resolution of singularities
of (X,Sing(X). Let Ei ∈ E be a divisor which is an irreducible component of the exceptional
locus E. We say that Ei is an essential divisor if for any other resolution of singularities
π′ : (X ′, E′)→ (X,Sing X), the center on X ′ of the divisorial valuation determined by Ei is an
irreducible component of E′. A divisor Ei is said inessential if it is not essential.

It should be noted that the notion of essential divisor given above is associated with
abstract resolutions of singularity and not with embedded resolutions of singularities. For surface
singularities, a divisor is essential if it appears on the minimal resolution of singularities. Note
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that a minimal resolution does not exist in general for a singular variety of dimension larger
than 2.

For normal toric singularities, it is possible to determine essential divisors. For that we
need the following definition of a minimal system of generators of a cone.
Let N ∼= Zn be a lattice and let NR be the real vector space N ⊗Z R.

Definition 3.5. ([BGS], see also [AM]) Let σ ⊂ NR be a strongly convex rational polyhedral
cone. The minimal system of generators of σ is the set:

Gσ = {x ∈ σ ∩N\0 | ∀n1, n2 ∈ σ ∩N, x = n1 + n2 ⇒ n1 = 0 or n2 = 0}

An element in Gσ is also called irreducible. It is primitive by definition.

It follows from propostion 1.3 in [BGS], that the elements of Gσ appear on every regular
fan which subdivides σ as an extremal vector, i.e. a primitive generator of a 1−dimensional cone
of the fan. Note that such a subdivision determines a (toric) resolution of singularities of the
toric variety defined by σ, and dimension 1 cones determine the irreducible components of the
exceptional divisors. This gives a feeling for the following theorem which characterizes essential
divisors on toric varieties.

Theorem 3.6. ([BGS], [IK])
Let σ ⊂ NR be a strongly convex rational polyhedral cone. The minimal system of generators
Gσ is in bijection with the set of essential divisors of the toric variety Vσ. Therefore a primitive
vector is in Gσ if and only if it is an extremal vector of any regular subdivision of the cone σ.

Actually, the fact that the divisors which correpond to elements of Gσ are toric essential
(i.e. essential for toric resolutions of singularities) follows from [BGS] and the fact that they are
essential for all resolutions of singularities follows from [IK]. It also follows from [BGS] that for a
three dimensional toric variety defined by a cone σ there exists a toric resolution of singularities
which is associated with a subdivision of σ all of whose 1-dimensional cones are rays associated
to elements of Gσ. Such a resolution is called a Gσ-resolution. We think of such a resolution
as a minimal toric resolution. Note that such a resolution does not exist in general for normal
toric varieties of dimension larger than 3. Together with theorems 3.2 and 3.6, this discussion
motivates the following two definitions:

Definition 3.7. (Toric embedded-essential divisors)
Let X ⊂ C3 where X = {f = 0} is a Newton non-degenrate singularity. A toric embedded
essential divisor E is a divisor which appears on every toric resolution of singularities of X(such
a resolution exists thanks to theorem 3.2) as an irreducible component of the exceptional divisor.
This is equivalent to say that E corresponds to an element of Gσ for some cone σ ∈ Γ(f) of
maximal dimension.

Definition 3.8. (Minimal toric embedded resolution) Let X = {f = 0} ⊂ C3 be a Newton non-
degenerate singularity at the origin. A toric embedded resolution of X ⊂ C3 which is associated
with a subdivision Σ of Γ(f) is minimal if the only 1−dimensional cones which appear in Σ
are determined by elements of Gσ for some cone σ ∈ Γ(f) of maximal dimension and the
1−dimensional cones of Γ(f). This is equivalent to say that all the irreducible components of the
exceptional divisor of a minimal toric embedded resolution are toric embedded essential divisors.

Note that these definitions make sense also for non-isolated singularities as in [ACT] for
instance.
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4 Toric minimal embedded resolutions for simple singularities

In this section, we construct toric embedded resolutions from the data of the jet schemes of
simple singularities that we gave in section 2. We also prove that for all singularities of this
type, except for the E8 singularity, the essential components of the jet schemes (introduced in
section 2) correspond to toric embedded-essential divisors. We will treat each type of singu-
larity separately: first we construct a toric resolution of singularities using the weight vectors
associated in section 2 with essential components, then we construct a regular subdivision of
the dual fan of the singularity embedded in C3, and finally by using a theorem from [BGS]
(see also [AM]) which characterizes toric essential divisor for toric varieties, we will prove for
simple singularities (except for the singularity of type E8) the minimality of our toric embedded
resolution of singularities.

Remark 4.1. Instead of drawing the dual fan of each polyhedron in R3 (with coordinates x, y, z)
we use the trace of the dual fan on the hyperplane defined by the equation x+ y+ z = 1. Vectors
are then represented by points. We call this trace the Newton face or simply, with some abuse
of notation dual fan.

4.1 The An singularities

Theorem 4.2. The weight vectors of An give a toric minimal embedded resolution of the sin-
gularity. In particular the set of essential components EC(An) is in bijection with the divisors
which appear on every toric minimal embedded resolution of these singularities.

The Newton polyhedron and its dual fan are the following:

(1,1,O)x

y

z

(1,0,0) (0,1,0)

(n+1,0,1) (0,n+1,1)

(0,0,1)((0,0,n+1)

The dual fan is not simplicial; a resolution of this singularity is given by a regular and
simplicial subdivision of the Newton dual fan.
The set EE(An) of valuations, found after a careful reading of [Mo1], is

(l,m− l + 1, 1), l = 1, . . . ,m and m = 1, . . . , n

(l, 0, 1), l = 1, . . . , n+ 1,

(0, l, 1), l = 1, . . . , n+ 1.

(see lemma 2.2 and proposition 2.3). We reorder this set in the following way in order to study
them more easily (see the remarks below):
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EE(An) := {(n, 0, 1), . . . (1, 0, 1), (0, n, 1), . . . , (0, 1, 1), (1, 1, 1), (2, 1, 1), . . . , (n, 1, 1),

(1, 2, 1) . . . (1, n, 1), (2, 2, 1), (3, 2, 1) . . . (n− 1, 2, 1),

(2, 3, 1) . . . (2, n− 1, 1) . . . (dn+ 1

2
e, dn+ 1

2
e, 1)}

to which we add , if n is even, (dn+1
2 e+ 1, dn+1

2 e, 1) et (dn+1
2 e, d

n+1
2 e+ 1, 1).

The weight vectors are positioned on the following figure :

(1,2,1)

A 4 A_5

(5,0,1)

(4,0,1)

(3,0,1)

(2,0,1)

(1,0,1) (0,1,1)

(0,2,1)

(0,3,1)

(0,4,1)

(0,5,1)

(1,1,1)

(2,1,1) (1,2,1)

(3,1,1) (1,3,1)

(2,2,1)

(3,2,1) (2,3,1)

(6,0,1)

(5,0,1)

(4,0,1

(3,0,1)

(2,0,1)

(1,0,1) (0,1,1)

(0,2,1)

(0,3,1)

(0,4,1)

(0,5,1)

(0,6,1)

(1,1,1)

(2,2,1)

(3,3,1)(4,2,1)(5,1,1) (2,4,1) (1,5,1)

(2,1,1)

(3,1,1)

(4,1,1) (3,2,1) (2,3,1) (1,4,1)

(1,3,1)

Figure 1 : Positions of EE(A4) and EE(A5)

CLAIM: these vectors are irreducible, i.e. they represent essential components
in the resolution.
Before proving this claim, we study the position of the vectors in the Newton face of dual fan,
and show that they provide a toric embedded resolution.

Some remarks on the vectors of EE(An):
(with abuse of notation, the vectors are considered as points on the Newton face of the cone
[(e3, (n+ 1, 0, 1), (0, n+ 1, 1)]).

1. We first prove that the vectors are rational sums of e1, e2, e3, v1 = (n + 1, 0, 1), v2 =
(0, n + 1, 1). By the symmetry of the singularity, we only have to look at half of the
vectors:
we have :

(k, l, 1) =
k

n+ 1
v1 +

l

n+ 1
v2 +

n− k − l + 1

n+ 1
e3

for all 1 6 k 6 n and 1 6 l 6 n− k + 1.

Moreover (k, 0, 1) = k
n+1v1 + n

n+1e3.
This implies that they all belong to the cone (e3, (n+ 1, 0, 1), (0, n+ 1, 1)).

2. One can remark the symmetry we obtain. It will follow that we have to do only half of
the computations;

3. The vectors (1, 1, 1) . . . (n, 1, 1) are on the line ((1, 1, 1), (1, 0, 0)) as (k, 1, 1) = (1, 1, 1) +
(k − 1)(1, 0, 0). The same holds for (k, k, 1) . . . (n+ 1− k, k, 1) for k 6 dn+1

2 e ;
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4. Homogeneous vectors (α, β, γ) such that α+ β + γ = k, for 3 6 k 6 n+ 2 are also on the
same line.

All these remarks show us a way to obtain an almost symmetric resolution from the vec-
tors. Many algorithms work, we propose one of them to the reader.

ALGORITHM
First place (1, 1, 1) and make the triangle ((0, 0, 1), (n+ 1, 0, 1), (0, n+ 1, 1)) simplicial.
Then place successively the vectors (k, 0, 1), . . . (1, 0, 1) , joining each new vector to (1, 1, 1), to
make the resolution simplicial. Do the same symmetrically with (0, k, 1), . . . , (0, 1, 1).
One has

(k, 0, 1) =
k

n+ 1
(n+ 1, 0, 1) +

n+ 1− k
n+ 1

(0, 0, 1)

Thus these vectors are primitive vectors.

For A2n:
Place the vectors (n, 1, 1) and (1, n, 1) and the corresponding edges. One can remark that the
vectors (k, 1, 1) lie on the line (n, 1, 1), (1, 1, 1)). It is at this point that the resolution is not
symmetrical: if one chooses (n, 1, 1), then one makes the trapezium simplicial by adding the
edges ((n, 1, 1), (0, 1, 0)) and ((n, 1, 1), (1, 0, 0)). So in the toric resolution, one will have the
edges joining the vectors on ((n + 1, 0, 1), (0, n + 1, 1)) to (0, 1, 0). Conversely, if one chooses
(1, n, 1), one will have the edges joining the vectors on ((n+ 1, 0, 1), (0, n+ 1, 1)) to (1, 0, 0).
For A2n+1, one had [(n+1

2 , n+1
2 , 1)] first, the trapezium thus becomes divided into three parts

and the resolution become symmetrical.

Then add alternatively (2, 2, 1), (n − 1, 2, 1), (2, n − 1, 1), (3, 3, 1) . . . (dn+1
2 e, d

n+1
2 e, 1),and

if n is even (dn+1
2 e+ 1, dn+1

2 e, 1),(dn+1
2 e, d

n+1
2 e+ 1, 1) . Then add the remaining vectors in the

natural order, with the corresponding edges.

(3,1,1)

(5,0,1)
(0,5,1)

(1,1,1)

(4,0,1)

(3,0,1)

(2,0,1)

(1,0,1) (0,1,1)

(0,2,1)

(0,3,1)

(0,4,1)

(1,0,0) !0,1,0)

(0,0,1)

((4,1,1) (1,4,1)

(3,2,1) (2,3?1)

(2,2,1)

(1,2,1)
(2,1,1)

(1,3,1)

Figure 2 : Resolution of A4 step by step
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CLAIM : This is a toric resolution for A2n.

Proof. • Let us look at triangles [(1, 1, 1), (k, 0, 1), (k + 1, 0, 1)] and [(1, 1, 1), (0, k, 1), (0, k +
1, 1)] for 1 6 k 6 n,
we have: ∣∣∣∣∣∣

1 0 0
1 k k + 1
1 1 1

∣∣∣∣∣∣ = −1 and

∣∣∣∣∣∣
1 k k + 1
1 0 0
1 1 1

∣∣∣∣∣∣ = 1

• We also have the triangles [(1, 0, 1), (1, 1, 1), (0, 0, 1)] et (0, 1, 1), (1, 1, 1), (0, 0, 1)] of deter-
minant 1.

• Now, we look at [(k, n− k, 1), (k − 1, n− (k − 1), 1), (0, 1, 0)].
We have ∣∣∣∣∣∣

k k − 1 0
n− k n− (k − 1) 1

1 1 0

∣∣∣∣∣∣ = 1

If n is even, we have the triangles t [(dn+1
2 e−1, dn+1

2 e, 1), (dn+1
2 e, d

n+1
2 e+1, 1), (0, 1, 0)] and

if n is odd, we have the triangles [(dn+1
2 e+1, n+1

2 , 1), (n+1
2 , n+1

2 , 1), (0, 1, 0)] et [(n+1
2 , n+1

2 −
1, 1), (n+1

2 , n+1
2 , 1), (0, 1, 0)] with determinant 1.

• The cones [e1, (n+ 1, 0, 1), (n, 1, 1)] and [e1, e2, (n, 1, 1)] are non singular.

• Finally we have to look at the triangles [(k + l, k, 1), (k + l − 1, k, 1), (k + 1, k + 1, 1)] and
[(k+ l, k, 1), (k+ l−1, k, 1), (n+2−k, k−1, 1)] for all 1 6 k 6 dn+1

2 e and k 6 l 6 n−1(and
to the symmetrical one too).
One has∣∣∣∣∣∣

k + l k + l − 1 k + 1
k k 1
1 1 1

∣∣∣∣∣∣ = 1 and

∣∣∣∣∣∣
k + l k + l − 1 n+ 2− k
k k k − 1
1 1 1

∣∣∣∣∣∣ = 1

Now we have to prove that in fact this resolution is minimal or a G−resolution (according
to C. Bouvier and G. Gonzalez-Sprinberg).
First of all, the weight vectors (l,m − l + 1, 1), l = 1, . . . ,m and m = 1, . . . , n are clearly
primitive as their third component is 1.
Consider the simplicial cone generated by e3, (n + 1, 0, 1), (0, n + 1, 1); all the weight vectors
belong to this cone.
Let us give the same names to the points in R3 which are the end of the vectors starting from
0 and the vectors themselves.

Lemma 4.3. The points in R3 {e3, (n+1, 0, 1), (0, n+1, 1), (l,m−l+1, 1), l = 1, . . . ,m and m =
1, . . . , n} belong to the face (e3, (n+1, 0, 1), (0, n+1, 1)) of the thetahedron [0, e3, (n+1, 0, 1), (0, n+
1, 1)]. This implies that the set {e3, (n+1, 0, 1), (0, n+1, 1), (l,m−l+1, 1), l = 1, . . . ,m and m =
1, . . . , n} is free over Z, i.e. none of the vectors is reducible into other vectors of this set.
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Suppose that the lemma is proved. Then the only primitive vectors that could generate
the characteristic vectors should be vectors inside the tetrahedron [0, e3, (n+1, 0, 1), (0, n+1, 1)].
Suppose that there is such a vector. By th. 1.10 of [BGS], it corresponds to an essential divisor
in the toric resolution of the cone [e3, (n+ 1, 0, 1), (0, n+ 1, 1)], i.e., it appears in every regular
subdivision as an extremal vector. But the vectors (l,m − l + 1, 1), l = 1, . . . ,m and m =
1, . . . , n}, we get such a regular subdivision, so there is no primitive vector in the tetrahedron
[0, e3, (n+ 1, 0, 1), (0, n+ 1, 1)].

Let us prove the lemma:

Proof. The equation of the face (e3, (n+ 1, 0, 1), (0, n+ 1, 1)) is z− 1 = 0. Clearly all the points
{e3, (n + 1, 0, 1), (0, n + 1, 1), (k, n − k, 1), (k − 1, n − (k − 1), 1), (0, 1, 0), (l,m − l + 1, 1), l =
1, . . . ,m and m = 1, . . . , n} belongs to it.

4.2 The Dn singularities

Theorem 4.4. The weight vectors of Dn give a ”canonical” toric minimal embedded resolution
of the singularity. In particular the set of essential components EC(Dn) is in bijection with the
divisors which appear on every toric minimal embedded resolution of these singularities.

Proof. Let us do it for D2n.
Let us recall what are the Newton polyhedron for D2n and the associated dual cone:

(2nï1,0,0)

(2,0,1)
(2,2nï2,2nï1)

(1,0,0) (0,1,0)

(0,0,1)(0,0,2)

(1,2,0)

Figure 3 : Newton polyhedron of D2n and its dual cone

First we make the dual polyhedron simplicial by adding the edge [e1, (2, 2n−2, 2n−1]. Let
us call C1 be the cone [e1, (2, 0, 1), (2, 2n− 2, 2n− 1)] , C2 be the cone [e1, e2, (2, 2n− 2, 2n− 1)],
C3 be the cone [e3, (2, 0, 1), (2, 2n− 2, 2n− 1)] , C4 be the cone [e2, e3, (2, 2n− 2, 2n− 1)] .

First of all, to obtain a toric resolution of singularities of D2n with equation z2 + x(y2 +
x2n−2) = 0, as it is not commode, one has to blow up the y axes, i.e. to add the vector (1, 0, 1).
Let us now consider the weight vectors and show some of their properties:

• The vectors Ui = (1, i, i) (1 6 i 6 n − 1) are primitive and belong to the cone C2. More
precisely they lie onto the line (e1, (0, 1, 1)):
In fact we have the following equalities:

Ui =
2n− 2i− 1

2n− 1
e1 +

i

2n− 1
e2 +

i

2n− 1
(2, 2n− 2, 2n− 1)

and if we note U0 = (1, 0, 0) , then for 1 6 i 6 n− 1,

Ui = Ui−1 + (0, 1, 1)
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• The vectors Wi = (1, i, i + 1) (1 6 i 6 n − 1) are primitive and belong to the cone C3.
More precisely they lie onto the line ((1, 0, 1), (0, 1, 1)):
In fact we have the following equalities:

Wi =
n− 1

2n− 2
e3 +

n− i− 1

2n− 2
(2, 0, 1) +

i

2n− 2
(2, 2n− 2, 2n− 1)

and if we note W0 = (1, 0, 1) , then for 1 6 i 6 n− 1, Wi = Wi−1 + (0, 1, 1)

• The vectors Vi = (2, i, i+ 1) (1 6 i 6 2n− 2) are primitive and belong to the cones C1 and
C3. More precisely they lie onto the line ((2, 0, 1), (0, 1, 1)):
In fact we have the following equalities:

Vi =
2n− 2− i

2n− 2
(2, 0, 1) +

i

2n− 2
(2, 2n− 2, 2n− 1)

and, if we note V0 = (2, 0, 1) , then for 1 6 i < 2n− 2, Vi = Vi−1 + (0, 1, 1).

CLAIM: the simplicial decomposition of the dual Newton cone of D2n obtained
by adding, the edge [e1, (2, 2n−2, 2n−1], the vector (1, 0, 1), then the vectors U1 to Un−1

in the natural order, the vectors W1 to Wn−1 in the natural order and the vectors
V1 to V2n−2 in the natural order too, give a toric minimal embedded resolution of
D2n.
The resolved dual cone is of the form:

(2,2n−2,2n−1)

(0,1,0)
(2,0,1)

(1,0,1) (0,1,1)

(1,0,0)

(0,0,1)

V2V1
V3

U1 U2 U3

W1 W2

Figure 4 : Resolution of D2n

Proof of the claim: by the previous observations, the vectors Ui, Vi, Wi above are primi-
tive; thus it remains to prove that the cones obtained are non singular, i.e. they have determi-
nant +1 or −1 and using the same proof as for An, we prove then that the vectors are irreducible.

We add first the vector (1, 0, 1), which corresponds to the blowing up of the y-axes. Then,
the cone C3 is decomposed into two cones : C31 = ((1, 0, 1), (2, 0, 1), (2, 2n − 2, 2n − 1)) and
C32 = ((1, 0, 1), e3, (2, 2n− 2, 2n− 1)) . By the above observation, we have now that each group
of characteristic vectors are in different cones.

• Decomposition of the cone C1:
Let us note U0 = e1.
We add the vectors from U1 to Un−1 and show by induction that we obtain at the end
regular cones. At each step the cone where lie the new Ai is decomposed into three cones:
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C31

(2,0,1)
(2,2nï2,2nï1)

(1,0,0) (0,1,0)

(0,0,1)

(2,1,2)

(1,1,2)

(1,0,1)

(0,1,1)

(1,1,1)

C1

Figure 5 : Resolution of D4 step by step

(Ui, Ui−1, e2), ((Ui, Ui−1, (2, 2n− 2, 2n− 1)) and (Ui, e2, (2, 2n− 2, 2n− 1). That last one
contains Ui+1 .∣∣∣∣∣∣

1 1 0
i i− 1 1
i i− 1 0

∣∣∣∣∣∣ = 1,

∣∣∣∣∣∣
1 1 2
i i− 1 2n− 2
i i− 1 2n− 1

∣∣∣∣∣∣ = −1,

∣∣∣∣∣∣
1 2 0
i 2n− 2 1
i 2n− 1 0

∣∣∣∣∣∣ = n− 1− 2i

That last determinant is not equal to +1 or −1, so we add Ui+1 and so on.
For i = n− 1 the last determinant is equal to one.

• Decomposition of the cone C31:
Let us note W0 = (1, 0, 1).
We add the vectors from W1 to Wn−1 and show by induction that we obtain at the end
regular cones. At each step the cone where lie the new Wi is decomposed into three cones:
(Wi,Wi−1, e3), ((Wi,Wi−1, (2, 2n − 2, 2n − 1)) and (Wi, e3, (2, 2n − 2, 2n − 1). That last
one contains Wi+k for k > 1.
We have :∣∣∣∣∣∣

1 1 0
i i− 1 0

i+ 1 i 1

∣∣∣∣∣∣ = −1,

∣∣∣∣∣∣
1 1 2
i i− 1 2n− 2

i+ 1 i 2n− 1

∣∣∣∣∣∣ = 1,

∣∣∣∣∣∣
1 2 0
i 2n− 2 0

i+ 1 2n− 1 1

∣∣∣∣∣∣ = 2n−2−2i

That last determinant is not equal to +1 or −1, so we add Ai+1 and so on.
For i = n− 1 the last determinant is equal to one.

• Decomposition of the cones C32 and C2:
Let us note V0 = (2, 0, 1).
We add the vectors from V1 to V2n−2 and show by induction that we obtain at the
end regular cones. At each step the two cones where lie the new Ci are decomposed
into two cones themselves: (Vi, Vi−1, e1), (Vi, Vi−1, (1, 0, 1)) and (Vi, e3, (2, 2n− 2, 2n− 1),
(Vi, (1, 0, 1), (2, 2n− 2, 2n− 1). Those last ones contain Vi+1 and are not regular.∣∣∣∣∣∣

2 2 1
i i− 1 0

i+ 1 i 0

∣∣∣∣∣∣ = 1
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∣∣∣∣∣∣
2 2 1
i i− 1 0

i+ 1 i 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 2 1
i 2n− 2 0

i+ 1 2n− 1 0

∣∣∣∣∣∣ = 2ni− i− 2ni+ 2i− 2n+ 2 = i− 2n+ 2

and ∣∣∣∣∣∣
2 2 1
i 2n− 2 0

i+ 1 2n− 1 1

∣∣∣∣∣∣ = 2n− 2− i

For i = 2n− 3 the two last determinants are equal to +1 or −1.

Moreover we have obtained a G-resolution:
As for An singularity, one can show that Wi (resp.Ui and Vi) belongs to the base of the cone
(e3, (2, 0, 1), (2, 2n−2, 2n−1)) (resp. (e1, (2, 0, 1)(2, 2n−2, 2n−1))∩(e3, (2, 0, 1), (2, 2n−2, 2n−1)),
and (e1, e2, (2, 2n−2, 2n−1)) , whose equation is y−z+1 = 0 (resp. y−z+1 = 0;x+y−z−1 = 0
and x+ y − z − 1 = 0). With these vectors we obtain a regular subdivision of each cone, which
implies that there are no other primitive vectors inside each cone and that the characteristic
vectors are irreducible. So we also obtain a G-resolution for D2n.

Remark: the fact that each vector ”belongs” to the base of the cone is equivalent to saying
that the volume of the subdivisions stay the same during the process of the resolution.

4.3 The E6 singularity, according to [Mo4]

Now consider the singularity E6 given by the equation z2 + y3 + x4 = 0. A simplicial dual
Newton polyhedron associated to it is given on figure 6.

Theorem 4.5. The set of weight vectors EE(E6) is

(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 3), (2, 3, 4), (3, 4, 6)

Call them in the lexicographic order.
The weight vectors of E6 give a ”canonical” toric minimal embedded resolution of the singularity.
In particular the set of essential components EC(E6) is in bijection with the divisors which appear
on every toric minimal embedded resolution of these singularities.

C2

e1 e2

e3

P

e1 e2

e3

P

a

b

d
e

c(0,0,2)

(0,3,0)

(4,0,0)

C1

C3

Figure 6 : Newton dual polyhedron of E6 and its resolution
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Proof. The vectors are in different subcones of the dual fan. To make the fan regular, we divide
each cone using the vectors. So we have to look first at the positions of each vector. One has :

{(1, 1, 1), (1, 2, 2), (2, 2, 3), (2, 3, 4)} ⊂ C1}

{(2, 3, 4), (1, 2, 2)} ⊂ C2}

{(1, 1, 2), (2, 2, 3)} ⊂ C3}

As for the previous singularities, one can prove that adding the weight vectors in each
cone (in the alphabetic order, see fig. 6), gives a minimal resolution for each of them. See fig.
6 for the picture.

4.4 The E7 singularity

Now consider the singularity E7 given by the equation x2 + y3 + yz3 = 0. A simplicial dual
Newton polyhedron associated to it is given on figure 7.

Theorem 4.6. The set of weight vectors is

(1, 1, 0), (1, 2, 0) = O2, (1, 1, 1), (2, 1, 1), (2, 2, 1), (3, 2, 1), (3, 3, 1),

(3, 2, 2), (4, 3, 2), (5, 3, 2), (5, 4, 2), (6, 4, 3), (7, 5, 3), (9, 6, 4) = O1

Call them in the lexicographic order (except O1 and O2).
The weight vectors of E7 give a ”canonical” toric minimal embedded resolution of the

singularity. In particular the set of essential components EC(E7) is in bijection with the divisors
which appear on every toric minimal embedded resolution of these singularities.

(2,0,0) d

a

cg

e

f

h

j
b

e1 O2 e2

e3

O1

e1 e2

e3

O2

O1

C1C2

C3
C4

i
k

(0,1,3)

(0,3,0)

Figure 7 : Newton dual polyhedron of E7 and its resolution

Proof. The vectors are in different sub cones of the dual fan (see fig.7 for denomination of the
cones). To make the fan regular, we divide each cone thanks to the vectors. So first we have to
look at the positions of each vector. One has :

{(1, 1, 1), (2, 2, 1), (3, 2, 2), (4, 3, 2), (6, 4, 3)} ⊂ C1}

{(2, 1, 1), (3, 2, 2), (5, 3, 2), (6, 4, 3)} ⊂ C2}

{(1, 1, 0), (3, 2, 1), (3, 3, 1), (5, 3, 2), (5, 4, 2), (7, 5, 3)} ⊂ C3}
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{(3, 3, 1), (5, 4, 2), (7, 5, 3)} ⊂ C4}

As for the previous singularities, one can prove that adding the previous vectors in each
cone (in the lexicographic order), gives a minimal resolution for each of them. See fig.7 for the
picture.

4.5 The E8 singularity

Now consider the singularity E8 given by the equation z2 + y3 + x5 = 0. A simplicial dual
Newton polyhedron associated to it is given on figure 8.

Proposition 4.7. The weight vector gives an embedded resolution of E8 but this resolution is
not minimal.

Proof. Recall that the set of weight vectors are in this case :

(1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 3), (2, 2, 3), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 6),

(3, 5, 7), (3, 5, 8), 4, 6, 8), (4, 6, 9), (4, 7, 10), (5, 7, 11), (5, 8, 11)(5, 8, 12), (5, 9, 13)

(5, 9, 14), (6, 10, 14), (6, 10, 15) = O

(0,0,2)

e1 e2

O

a

b

c

d

e
f

g

h
i j

k

l m
n

e1 e2

e3

O

e3

(5,0,0)

(0,3,0)

Figure 8 : Newton dual polyhedron of E8 and its resolution

One can show that we get a regular subdivision of each cone thanks to the following
characteristic vectors

(1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 3), (2, 2, 3),

(2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 6), (3, 5, 7), (3, 5, 8), (4, 6, 9), (4, 7, 10), (5, 8, 12), (6, 10, 15) = O

(We call them in the lexicographical order on fig.8)
Moreover they are irreducible (one can show it in the same way as above), so they give subdivision
which induces a minimal embedded toric resolution for E8.
In fact we have

• (4, 6, 8) = (2, 3, 4) + (2, 3, 4)

• (5, 7, 11) = (4, 6, 9) + (1, 1, 2)

• (5, 8, 11) = (4, 7, 10) + (1, 1, 1)

• (5, 9, 13) = (3, 5, 8) + (2, 4, 5)

• (6, 9, 13) = (3, 4, 6) + (3, 5, 7)
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• (5, 9, 14) = (3, 4, 6) + (3, 5, 8)

• (6, 10, 14) = (3, 5, 7) + (3, 5, 7)

4.6 A remark on abstract resolution of singularities of simple singularities

For a simple singularity, the restriction of a minimal embedded resolution to the strict transform
of the singularitiy gives its minimal abstract resolution; note that not all the divisors that appear
on the minimal embedded resolutions meet the strict transform, only those which corresponds
to weight vectors which belong to the two dimensional cones of the Newton dual fan. Moreover,
these last divisors may meet the strict tansform along more than one irreducible component.
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