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Résuḿe – Le concept de la radio intelligente définit deux types d’utilisateurs: les utilisateurs primaires (UP) qui ont accès aux ressources
spectrales d’une façon prioritaire et les utilisateurs secondaires (US)qui exploitent les opportunités de communication laissées vacantes par
les UPs. Dans ce papier on s’intéresse au problème de d́etection des ressources spectrales libres en utilisant les distributions du nombre de
conditionnement (NDC) de la matrice de covariance des signaux reus par l’US. Une nouvelle formule math́ematique est proposée pour la
distribution du NDC dans le cas d’absence des UPs permettant ainsi de développer un nouveau algorithme de détection. Les ŕesultats des
simulations nous permettent de valider la formulation théorique et les hypoth̀eses de bases.

Abstract – Spectrum sensing is the key enabler for dynamic spectrum access as it can allow secondary users to reuse ”free” spectrum with-
out causing harmful interference to primary users. In this paper, wegive the exact distribution of standard condition number (SCN) of dual
central uncorrelated Wishart matrices. This allows us to derive accurate closed-form expressions of the detection and false alarm probabilities.
Simulation results are presented to validate the accuracy of the derived expressions.

1 Introduction

One of the most promising solutions for the spectrum scar-
city and the inefficiency in its usage is cognitive radio (CR), in-
vented by Mitola [1]. Spectrum sensing is a critical component
of CR as it is a fundamental requirement for the secondary user
(SU) to continuously senses the channel before accessing itto
avoid causing interference to the primary user (PU).

Several detection techniques were explored by researchers
in the last decade [2]. Among these, Energy detector (ED) is
the most popular technique because of the fact that it is simple,
non-coherent, and need no prior knowledge about the PU’s si-
gnal. However, ED requires perfect knowledge of the noise
power which reveals the high performance degradation under
noise uncertainty conditions [3]. Other techniques, such as mat-
ched filter, cyclostationary detection, filter bank, wavelet detec-
tion and covariance detection methods were also proposed [2].

Eigenvalue based detector (EBD) has been recently propo-
sed as an efficient way for spectrum sensing in CR [4, 5, 6]
for the fact that it does not need any prior knowledge about the
noise power or signal to noise ratio. Due to this blindness pro-
perty, this technique has been shown to overcome the traditio-
nal energy detector technique [5]. EBD is based on the eigen-
values of the received signal’s covariance matrix and utilize re-
sults from random matrix theory. It detect the presence/absence
of the PU by exploiting receiver diversity that may consist of
cooperation between SUs, multiple antennas, or oversampling.

EBD includes the largest eigenvalue (LE) detector proposedin
[5], the scaled largest eigenvalue (SLE) detector [6], and the
standard condition number (SCN) detector [5, 4, 7, 8, 9, 10].

The standard condition number is defined as the ratio of
maximum to minimum eigenvalues. The SCN algorithms rely
on asymptotic assumptions that may not be practical. The main
limitation of this work, including Marchenko-Pastur (MP) law
used in [4], the Tracy-Widom (TW) distribution used in [5], or
the usage of Curtiss formula with TW-distribution in [7, 8],is
the asymptotic assumptions on the covariance matrix size, i.e.,
the number of samples and the number of antennas must tends
to infinity. In addition to this limitation, the analytical formulas
due to TW-distribution could not be implemented online and
lookup tables (LUT) should be used instead.

More recently, exact results on the SCN distribution of finite
sized Wishart matrices have been found in [11] and applied in
CR [9, 10]. The covariance matrix is known as Wishart ma-
trix if the receiver’s inputs are assumed Gaussian. The com-
plexity of SCN distribution, derived in [11], fastly increases as
the number of samples and/or the number of antennas increase.
In addition, it is very inmportant to have an inverse form of
the SCN distribution which is difficult using expressions from
[11].

In this paper, we cosider the dual case (i.e. two antenna CR
receiver) and we give a new simple and accurate form for the
SCN cumulative distribution function (CDF) and probability
density function (PDF) of the SCN of dual Wishart matrices.



Accordingly, we provide the exact form of the false-alarm pro-
bability and the decision threshold.

The rest of this paper is organized as follows. In section 2,
we give the cognitive radio system model. In section 3, the SCN
metric is analysed and the detection algorithm is provided.The
new analytical forms of the CDF and PDF of the SCN metric
as well as the form of the false-alarm probability and decision
threshold are also derived. Simulation results are provided in
section 4 and the paper conclusion in section 5.

2 System Model

Let us consider a multiple-antenna CR system aiming to de-
tect the presence/absence of a single PU during a sensing per-
iod corresponds toN samples and denote byK the number of
antennas at the CR receiver. For this detection problem, there
are two hypothesizes :H0 corresponds to the absence of the
PU (i.e. free spectrum) ; andH1 where the PU exists (i.e. spec-
trum being used). The received vector, at instantn, under both
hypothesizes is given by :

H0 : y(n) = η(n), (1)

H1 : y(n) = h(n)s(n) + η(n), (2)

wherey(n) = [y1(n), · · · , yK(n)]T is the observedK × 1
complex samples from all antennas at instantn.η(n) is aK×1
complex circular white Gaussian noise.h(n) is aK × 1 com-
plex vector that represents the channels’ coefficient between
the PU and each antenna at the CR receiver ands(n) stands for
the primary signal to be detected.

After collectingN samples from each antenna, the received
signal matrixY is written as (3).

Y =











y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)

...
...

. ..
...

yK(1) yK(2) · · · yK(N)











(3)

Without loss of generality, we suppose thatK ≤ N and we
define the received sample covariance matrix asW = Y Y †,
where.† define the Hermitian conjugate.

3 SCN-based Algorithm

Let us denote byλ1 ≥ λ2 ≥ · · · ≥ λK > 0 the eigenvalues
of W then the SCN metric is given by :

SCN =
λ1

λK
. (4)

Denoting byt the decision threshold, then the detection pro-
bability (Pd), defined as the probability of correctly detecting
the presence of PU, and the false alarm probability (Pfa), defi-
ned as the probability of detecting the presence of PU while it
does not exist, are, respectively, given by (5) and (6).

Pd = P (SCN ≥ t/H1) (5)

Pfa = P (SCN ≥ t/H0) (6)

These probabilities depend on the threshold (t) being used.
However, if the expression of thePfa andPd are previously
known, then a threshold could be set according to a required
error constraints. Then, it is clear that these probabilities de-
pend on the distribution of the SCN metric. If we denote the
CDF and PDF of SCN, respectively, byFi(.) andfi(.) with
indexi ∈ {0, 1} indicates the considered hypothesis. Then we
can write :

Pfa = 1− F0(t) (7)

Pd = 1− F1(t) (8)

Accordingly, for a prescribed false-alarm probabilityPfa
1,

the SCN detector algorithm could be described as follows :
1. Compute the Covariance matrixW = Y Y †.
2. Compute the minimum and maximum eigenvalues (λ1, λK )

of W .
3. Evaluate the SCN value (SCN = λ1/λK ).
4. AcceptH0 if and only if SCN ≤ F−1

0 (1− Pfa).
Thus, it is important to have a simple and accurate form of the
SCN distribution for the algorithm to work in real time system.

3.1 SCN distribution under H0

UnderH0, the input of the matrixY is a complex circu-
lar white Gaussian noise with zero mean and unknown va-
rianceσ2

η, thenW is well known as a central uncorrelated com-
plex Wishart matrix and is denoted byW ∼ CWK(N,σ2

ηIK)
whereK is the size of the matrix,N is the number of degrees
of freedom (DoF), andσ2

ηIK is the correlation matrix. In this
case, the exact generic form of the SCN distribution,F0(t),
could be found in [11] and forK = 2 andK = 3 in [9, 10]
respectively. However, this formula has a complex expression
and finding the inverse functionF−1

0 can be very difficult to do.
In this section, we propose new mathematical expressions of
the probability density function and the cumulative distribution
function of the SCN under null hypothesisH0. Consequently,
expressions of thePfa and the thresholdtopt are provided.

As defined in (4), the standard condition number of dual ma-
trices can be expressed as following :

SCN =
λ1

λ2
=

1 +
√

1− 4D/T 2

1−
√

1− 4D/T 2
(9)

If we denote the elements of the matrixW by wi,j with i, j =
1, 2, thenT = w1,1 + w2,2 is the trace of the matrixW which
is also the sum of the eigenvalues, andD = w1,1 ∗w2,2 −w2

1,2

is the determinant of the matrixW which is also the product of
the eigenvalues. Because our sample sizeN is greater than 30
[12], the central limit theorem allows us to state thatw1,1 and
w2,2 converge in distribution to Gaussian distributions. Moreo-
ver, the random variable(w1,1 ∗ w2,2) has a normal product
distribution andw2

1,2 obeys to Chi-Square distribution. Using
variable substitution method and mathematical manipulation,

1. For a prescribed detection probability, one can considerthe same algo-
rithmH1 hypothesis and SCN distribution underH1



the random variableZ = 1 − 4D/T 2 has a beta distribution
with parametersα = 1 andβ = N/2. Finally, the probability
density of standard condition number (SCN=1+Z

1−Z ) is given by

f0(t) = βtβ−1(t− 1)2α−1 22β

(1 + t)2(α+β)−1
(10)

where t ∈ R and t ≥ 1. Then, the cumulative distribution
function of the random variable SCN is given as

F0(t) = 1−
22βtβ

(1 + t)2β
(11)

Now, given equations (11) and (7), the false-alarm probability
can be expressed as :

Pfa =
22βtβ

(1 + t)2β
(12)

The receiver optimization criterion is thus to maximize thede-
tection probability at a fixed false alarm probability (Neyman-
Pearson criterion). Therefore, the optimal threshold is given by

topt = 2(Pfa)
(−1/β)

[

1 +
√

1− (Pfa)(1/β)
]

− 1 (13)

If the standard condition number of the received covariance
matrixW is greater thantopt, the channel will be busy ; other-
wise channel will be idle.

3.2 SCN distribution under H1

UnderH1, the exact generic form ofF1(t) is derived in [11],
however, any further numerical evaluation requires Nuttall-Q
function which could be replaced by Marcum Q-function and
a finite weighted sum Bessel functions [13] or by using hyper-
geometric functions that could be expanded to an infinite sum
(See, for example, [14] forK = 2 andN = 2). Thus, and
since both solutions are difficult to manipulate, a third solution
is to use the non-central/central approximation that approxi-
mates the distribution of the non-central uncorrelated Wishart
by the distribution of the central semi-correlated Wishart. The
exact general form of the distribution of SCN of central semi-
correlated Wishart matrix is provided by [11], and used to ap-
proximateF1(t) for K = 2 in [11, 9].

4 simulation

In this section, the theoretical results presented in Section
3.1 are validated via Monte-Carlo simulations. The simulation
results are obtained by generating106 random samples of the
random matrixY ∈ R

K,N according to (3), whereK = 2.
Figure 1 validates the new proposed expression for the cumu-
lative distribution function of the SCN of uncorrelated central
dual Wishart matrices with arbitrary degreesN . It is clearly
that the analytical curves yield an excellent match with theMat-
lab simulator output.

Figure 2 shows the performance of the proposed algorithm
for a given probability of false alarm, signal-to-noise ratio on
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FIGURE 1 – Standard condition number CDF of a2× 2 uncor-
related central dual Wishart matrices

X-axis and probability of detection on Y-axis. We compare the
performance of the proposed scheme with that of ideal energy
detection algorithm and also the practical energy detectorwhere
there are some noise uncertainty. The noise uncertainty makes
the energy detector very unreliable where good estimation of
the noise power level is not available. Moreover, The proposed
algorithm shows significant robustness to the noise uncertainty
problem.
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FIGURE 2 – Detection probability as function of the SNR for
a fixed false alarm (Pfa = 0.1), K = 2, andN = 256, com-
parison between ideal energy detector, energy detector under
noise uncertainty, and proposed algorithm.

5 Conclusion

In this paper, we have presented a new expression of the cu-
mulative distribution function of the standard condition number
of uncorrelated central dual Wishart matrices. A new detection
algorithm based on this new formula is proposed. We derived



accurate expressions of the false alarm probability and theop-
timal threshold. We have shown that the simulation results va-
lidate the accuracy of the derived expressions.
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