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How big is a black hole?

Marios Christodoulou and Carlo Rovelli

CPT, Aix-Marseille Université, Université de Toulon, CNRS,
Samy Maroun Center for Time, Space and the Quantum.

Case 907, F-13288 Marseille, France.
(Dated: March 17, 2015)

The 3d volume inside a spherical black hole can be defined by extending an intrinsic flat-spacetime
characterization of the volume inside a 2-sphere. For a collapsed object, the volume grows with
time since the collapse, reaching a simple asymptotic form, which has a compelling geometrical
interpretation. Perhaps surprising, it is large. The result may have relevance for the discussion on
the information paradox.

PACS numbers: 04.70.Bw , 04.70.-s

I. INTRODUCTION

How much space is there inside the black hole formed
by a collapsed star of mass m? Not too much, one might
think: in flat space, the volume inside a sphere with ra-
dius r= 2m (in G= c= 1 units) is 4

3π(2m)3: a few km3

for a stellar black hole. But flat space intuition does not
apply to the curved geometry inside the hole: inside an
eternal hole described by Kruskal geometry, there is, in
a sense, an entire second asymptotic region.

In fact, the question is not well posed: what do we
mean by “the” volume inside the horizon? Which 3d
spacelike surface are we considering? The volume of the
t = const. surfaces, where t is a time coordinate, depends
on the arbitrary choice of coordinates. The issue has been
discussed by various authors [1–8].

Here we suggest a different way of thinking about the
volume of the space inside a black hole. Our starting
point is the simple observation that the exterior of the
Schwarzschild metric is static, but the interior is not.
The interior keeps changing. Therefore a good notion of
(interior) volume can be time-dependent. The horizon is
naturally foliated by two-spheres, and we can ask if there
is a natural definition of “interior volume” associated to

FIG. 1. Conformal diagram of a collapsing object spacetime.
The sphere Sv is on the horizon, at time v. The spacelike
surface Σv whose volume we are computing is the one of max-
imum volume among those bounded by Sv.

a single two-sphere.
In Minkowski spacetime there is a simple character-

isation of the volume inside a two-sphere that remains
meaningful in a spherically symmetric curved geome-
try: the volume inside a two-sphere S is the volume
of the largest spacelike spherically-symmetric surface Σ
bounded by S. This is what we mean by “volume inside
a sphere” in flat spacetime; Σ, indeed, lies on the simul-
taneity surface determined by S. This characterisation
provides a coordinate independent definition to the no-
tion of “volume inside a sphere” which remains valid in
the case of spherical black holes, and captures the idea
of “how much space is inside”.

The horizon of a spherically symmetric hole is foliated
by (spacelike) spheres Sv. A convenient labelling of the
spheres is asymptotic time, namely the null coordinate v
which at past infinity is related to Minkowski polar co-
ordinates by v = r + t. See Fig. 1. We find that the
volume V (v) inside the sphere Sv grows with v. This
makes sense: even if its surface-area remains constant,
the horizon is still an outgoing null surface and the inte-
rior volume keeps growing with time. Matter, so to say,
has newer and newer space where to fall into.

In this paper we compute V (v). The calculation de-
mands solving the differential equation that determines
the maximal-volume surface Σ. We find that, setting
v= 0 at collapse time (see Fig. 1), the volume takes the
simple expression

V (v) =
v→∞

3
√

3πm2 v (1)

when v is large with respect to m. The bulk of the vol-
ume turns out to be due to a region in the vicinity of a
constant value of the radial coordinate. That is: inside
the hole there is a long spacelike 3d cylinder with slowly
varying radius, which grows longer with time.

This is a surprising result, because the volume is large.
For instance, the black hole Sagitarius A∗ has radius ∼
106km and age ∼ 109years. Inside it, there is space for
∼ 1034km3, enough to fit a million Solar Systems!

If a black hole of initial mass m has a lifetime ∼m3 in
Planck units as predicted by Hawking radiation theory,
there might be room inside it for a spacelike surface with
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volume V ∼ m5. For a stellar black hole, this is larger
than our universe.

There is a lot of available real estate inside a black
hole, according to classical general relativity!

The result can be extended to other spherically sym-
metric geometries, like the non-singular black hole metric
considered in [9] and [10]; in Appendix A we treat the
Reissner-Nordström case. It can also be extended to the
case of a Kruskal black hole. We do so in Appendix B.
The volume turns out to be infinite (as expected) but the
difference V (∆v) = V (v2) − V (v1) can be appropriately
defined and is finite: it grows linearly in ∆v = v2 − v1

when ∆v is large.
In the last section, we present some considerations on

the relevance of these results for the “information para-
dox” discussion.

II. VOLUME INSIDE A SPHERE

Consider a (metric) 2d sphere S immersed in flat
Minkoswki spacetime. Let R be its radius and A = πR2

its area. We say that it encloses the volume V = 4
3πR

3.
What does this mean? It means that there is a 3d space-
like surface Σ bounded by S which has volume V . But
there are a lot of spacelike surfaces bounded by S in
spacetime: which one do we mean, to define the inte-
rior volume? The answer can be given in two equivalent
manners:

(i) Σ lies on the same simultaneity surface as S.

(ii) Σ is the largest spherically symmetric surface
bounded by S.

These two characterizations of Σ are equivalent. To see
this, we can chose (without loss of generality) coordinates
(x, y, z, t) where S is given by t = 0, r2 ≡ x2 + y2 + z2 =
R2. A spherically symmetric surface Σ bounded by S is
defined by the function t = t(r), r ∈ [0, R], with t(R) = 0.
Its volume is

V =

∫ R

0

dr 4πr2

√
1−

(
dt(r)

dr

)2

(2)

which is maximised by t(r) = 0 (because any variation
adds a contribution in the timelike directions and reduces
the volume), namely by the Σ on the simultaneity sur-
face. The “space inside S” is therefore the largest spher-
ically symmetric space bounded by S.

Let us now move to a curved spacetime. Given a sphere
S in a spherically symmetric geometry, what is the vol-
ume inside it? Lacking flatness, simultaneity surfaces
have no special significance, in general. But the second
definition of the space inside S extends immediately, and
we adopt it here from now. This allows us to define the
volume V enclosed in any 2d sphere S in a spherically
symmetric spacetime.

III. FORMULATION OF THE PROBLEM

Consider the geometry of a collapsed object. We work
in ingoing Eddington-Finkelstein coordinates (v, r, θ, φ).
For simplicity, we take a null spherical shell of energy
m collapsing along the v = 0 surface. Before this sur-
face, spacetime is flat. After this surface, the geome-
try is a Schwarzschild black hole and the line element
is the standard Schwarzschild geometry in Eddington-
Finkelstein coordinates

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2, (3)

where f(r) = 1− 2m/r and dΩ2 = sin2θ dφ2 + dθ2. The
relation with the Schwarzschild coordinates t, r, θ, φ, is
given by v = t+

∫
dr
f(r) = t+ r + 2m ln |r − 2m|.

The horizon is at r = 2m. It is foliated by spheres
Sv defined by r = 2m and constant v. The sphere Sv
is defined physically as the one crossed by a light signal
sent by a stationary observer at large (with respect to m)
distance r from the hole, at proper time t = v − r.

For each Sv we are interested in the spherically sym-
metric 3d surface Σv which is bounded by Sv and has
maximal 3d volume. The volume of this surface is called
V (v). Our objective is now to compute V (v). This a well
defined problem.

IV. THE MAXIMISATION PROBLEM

A 3d spherically symmetric surface Σ, can be thought
of as the direct product of a 2-sphere and a curve γ in
the v-r plane.

Σ ≡ γ × S2 (4)

γ 7→ (v(λ), r(λ)). (5)

The curve γ is given here in parametric form, with an
arbitrary parameter λ. We choose λ = 0 on the horizon
(r = 2m) and call λf (f for ‘final’) the value of λ at r = 0.
Thus, the initial and final endpoints of γ are given by

r(0) = 2m, r(λf ) = 0, (6)

v(0) = v, v(λf ) = vf . (7)

The surface Σ is coordinatized by λ, θ, φ. The line
element of the induced metric on Σ is

ds2
Σ =

(
−f(r)v̇2 + 2v̇ṙ

)
dλ2 + r2dΩ2 (8)

where the dot indicates differentiation by λ. We hereafter
do not consider the flat part inside the horizon (under the
null shell) which would have contributed to the volume by
about 4π(2m)3/3. We are interested in the asymptotic
behavior of the volume, when v >> m and it will be seen
that this contibution becomes negligible. The condition
that Σ is spacelike reads

− f(r)v̇2 + 2v̇ṙ > 0 (9)
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from the requirement that ds2|Σ > 0 for all coordinate
values. The proper volume of Σ is given by

VΣ[γ] =

∫ λf

0

dλ

∫
S2

dΩ

√
r4(−f(r)v̇2 + 2v̇ṙ) sin2 θ

= 4π

∫ λf

0

dλ
√
r4(−f(r)v̇2 + 2v̇ṙ). (10)

The surface Σv that extremizes the volume is deter-
mined by the curve γv that extremizes this integral and
by the specification of v and vf .

V. GEODESICS IN THE AUXILIARY
MANIFOLD

The last equation shows that finding Σv is the same as
solving for the equations of motion with langrangian

L(r, v, ṙ, v̇) =
√
r4(−f(r)v̇2 + 2v̇ṙ). (11)

It is useful to note that this can be rewritten as

L(r, v, ṙ, v̇) =
√
g̃αβdxαdxβ (12)

and can be thought of as the line element of an (auxiliary)
2d curved spacetime. That is, the metric g̃αβ is given by

ds2
Maux

= r4(−f(r)dv2 + 2dvdr) (13)

where α, β, ... can take the two values v and r. Finding
Σv is equivalent to finding the geodesics of this auxiliary
metric.

Furthermore, equation (10) shows that the proper
length of the geodesic in the auxiliary metric (times 4π)
is precisely the volume of Σ.

The condition (9) that Σ be spacelike, suggests that
L > 0, since r is positive. The Langrangian appears to
vanish at r = 0, which is the final point for the geodesic
but, as can be seen from (17), ṙ becomes infinite. Thus,
γ is a spacelike geodesic in Maux. We now recognize that
a well suited parametrization is to take λ as the proper
length in Maux. After the extremization, we set

L(r, v, ṙ, v̇) = 1

⇒ r4(−f(r)v̇2 + 2v̇ṙ) = 1 (14)

and from (10) we have immediately that

V = 4πλf . (15)

The metric g̃αβ has a Killing vector, ξµ = (∂v)
µ ∝

(1, 0). Since γ is an affinely parametrized geodesic in
Maux, the inner product of ξ with its tangent ẋα = (v̇, ṙ),
is conserved

r4(−f(r)v̇ + ṙ) = A (16)

Equations (14) and (16) are all we need to analyse the
geodesics. They can be recast in the form1

ṙ = − r−4
√
A2 + r4f(r) (17)

v̇ =
1

A+ r4ṙ
(18)

It can be easily seen that A has to be negative for the
geodesic to be spacelike. Then, v̇ and ṙ are both negative
and there are only positive terms in (11). Integrating (17)
we get

VΣ

4π
= λf =

∫ 2M

0

dr
r4√

A2 + r4f(r)
. (19)

Equation (19) shows that there is a restriction imposed
on A

A2 + r4f(r) > 0

⇒ A2 > −r4
V f(rV ) =

27

16
m4 ≡ A2

c (20)

The last condition comes from inspecting the polynomial
−r4f(r). It has roots at r = 0 and r = 2M , is otherwise
positive in that range and reaches a maximum at rV =
3
2m.

We integrate numerically equations (17) and (18) be-
low in Section VII; but we can already directly derive
the essential lesson by noticing the following: inserting a
constant radial value for r, (17) and (18) become

A2 = −r4f(r) (21)

v̇ =
1

A
(22)

Since −r4f(r) > 0 in the range 0 < r < 2M , every
constant r provides a solution. In other words, the r =
const. surfaces are spacelike geodesics of the auxilliary
manifold or equivalently stationary (maximal) points of
the volume functional (10). Integrating the v̇ equation
we get

λf = A(vf − v). (23)

Thus, the r = const. surface with the largest volume
betwen two given v is when A is largest. That is, for r =
rV which gives A = Ac. These considerations provide the
basis for the derivation of the asymptotic volume. This
is done in the next section.

VI. ASYMPTOTIC EXPRESSION FOR THE
VOLUME

We are now interested in the volume for large v. The
proper length of the geodesic should increase monoton-
ically from S which is situated at the endpoint (v, 2m)

1 The plus sign choice in (17) would correspond to geodesics out-
side the horizon
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up to (vf , 0). The v coordinate of the point where Σv
reaches r = 0 can be easily estimated: it must be before
the formation of the singularity, because this increases
the available volume, and in the large v limit we can
take vf = 0 without significative error. Let us therefore
take the end of γ at the coordinates (0, 0).

Can we guess which path maximizes the volume? The
crucial observation is that in order to maximize λf when
v is very large, the geodesic must spent the maximum
possible time at the radius r where the line element is
longer and the line element happens to have a maximum2.
Therefore we may approximate the geodesic with an ini-
tial and a final transients and an intermediate long steady
phase where ṙ ∼ 0. Then the auxilliary line element (13)
becomes

dsMaux
∼ −

√
−r4f(r)dv, (24)

with the approximation improving as v incrases. The
choice of the minus sign is needed because dv < 0. To
maximise the length, the steady phase of the geodesic
must run at the value of r that maximises ds/dv, which
is given by

d

dr

√
−r4f(r) = 0. (25)

This value of r is the one that maximizes the polynomial
−r4f(r), which we already called rV

rV =
3

2
m (26)

Therefore, for large v the largest spherically symmetric
spacelike surface is formed by a long stretch at nearly
constant radius rV = 3

2m, joined to the r = 2M horizon
on one side and to r = 0 to the opposite extreme by tran-
sients3. The infinitesimal proper length in the auxiliary
metric is given by (24). Thus,

V ≈ −4π r4
V f(rV ) v (27)

= −4π Ac v

= 3
√

3πm2 v

which is the result anticipated in the introduction. It is
simply the combination of equations (15) and (23) for
vf = 0.

The result extends immediately to other spherically
symmetric spacetimes defined by the metric (3), with a
different function f(r). It is sufficient to find the maxi-
mum of −r4f(r) and the asymptotic expression for the

volume is given by (27) with Ac = −
√
−r4

V f(rV ).

2 Recall that the ṙ = 0 surfaces extremize the volume, see end of
previous section

3 We thank an anonymous referee for pointing out that the exis-
tence of the maximal slide at r = 3

2
m, which is a key point of

this paper, was already noticed numerically in [11], starting from
a somewhat different approach.

FIG. 2. The area coordinate r, in m = 1 units, as a function
of the volume parameter λ, obtained integrating the equation
(17). As A→ Ac , λf = V/4π →∞.

FIG. 3. The integrand in (19) for different values of A grad-
ually approaching Ac. As A → Ac the volume contribution
comes increasingly from rV = 3m/2.

VII. NUMERICAL ANALYSIS

In order to verify the legitimacy of the approximations
taken in the previous section, and to study the volume
for finite times, we solve the equations defining Σv nu-
merically. More precisely, we solve (17) numerically and
plot r(λ) against λ. The volume is given by (4π times)

FIG. 4. Black hole spacetime in Eddington-Finkelstein co-
ordinates. The horizon is the vertical line r = 2m. Dashed
lines are the null geodesics. Maximum volume surfaces for
different values of A, starting from the same sphere on the
horizon are depicted.
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λf which is such that r(λf ) = 0. The result of the nu-
merical integration is given in Figure 2 for a range of
values of the integration constant A, which in turn de-
termines v. In all Figures, we have plotted the values for
A2 = A2

c + {10, 1, 10−1, . . . , 10−5}.
The plot shows that the total volume increases as A

approaches Ac. Values of A close to Ac correspond to
larger v. Figure 2 confirms the analysis of the previous
section: for large volumes, the surface Σ has two transient
regions at the beginning and at the end, and a long steady
region, where most of the volume builds up precisely at
the value 1.5 (that is 3

2m in m = 1 units) of the radius.
To emphasise this point, we have plotted the integrand

of the volume of equation (19) in Figure 3. Notice that
as A→ Ac the major contribution of the volume increas-
ingly comes from a small region around rV = 3

2m.
We can visualise the surfaces we have found in an

Eddington-Finkelstein diagram by integrating numeri-
cally (18) using the result obtained from (17). This is
done in Figure 4. Depicted, in these coordinates, are the
maximum volume surfaces for different values of A, start-
ing from the same sphere on the horizon. As A→ Ac the
surfaces reach r = 0 at earlier times and the volume in-
creases. In other words, the hypersurfaces Σv elongate
along rV and build up volume while in that region, before
ending in lower values of v.

Notice that in the region 0 < r << 3m/2, Σv approach
the incoming null direction. This explains why the part
of each Σv that is close to the singularity gives no con-
tribution to the volume. Notice that there is no direct
relation between the existence of the singularity and the
volume becoming large. Locally, the behaviour of the
volume in a black hole spacetime is best captured by the
auxilliary metric (13), in which no infinities are present
because of the r4 factor. In a sense, the volume “does
not see” the singularity.

Finally, we return to the problem we started from: the
black hole generated by a collapsing object. Since the
black hole originates from a collapsed object, v is deter-
mined by the collapse time. The situation is illustrated
in Figure 5, where, instead of fixing S, we have depicted
the surface of maximal volume for different Sv’s. As we
move into the future of the black hole the volume be-
comes arbitrarily large.

From the perspective of the maximal-volume spherical
surfaces, the interior of a black hole is close to a cylinder
of approximate radius rV which grows longer with time.

VIII. DISCUSSION: ON THE VALIDITY OF
THE GENERALISED SECOND LAW

We have observed that in a spherically symmetric con-
text what we usually mean by “volume inside a sphere”
is the maximal proper volume of a spacelike spherically
symmetric 3d hyper-surface bounded by the sphere. We
have computed this volume for a spherically symmetric
black hole formed by a collapsed object. We have found

FIG. 5. The maximal volume surfaces inside a black hole
formed by a collapsing object. In red is an incoming spherical
null shell that collapses and forms a singularity at v = 0.
(The region below the null shell is flat.) As (asymptotic)
time passes, the interior grows. In green is the horizon.

that the volume inside the hole is given by equation (1).
The interesting aspect of this result is that the interior

volume of the black hole is large and increases with time.
The interior of a black hole “does not last long” in the
sense that all timelike geodesics hit the singularity in a
proper time of order m, but “is very big” in the sense
that a spacelike region of very large volume fits in it.
This large volume increases linearly with time since the
collapse.

The interior region of a black hole keeps increasing fast,
because the horizon is an outgoing null surface. The fact
that the area of this surface remains constant, which is
of course due to the curvature, does not contradict the
fact that an outgoing null surface encloses an increasingly
large volume as time passes. From this perspective, the
conformal diagram in Figure 1 gives a pretty accurate
picture of what happens.

This result might cast some doubts on a common in-
tuition about the amount of information that a horizon
may contain. An event horizon obeys, most likely, the
generalised second law [12] and therefore it makes sense
to assign it its Bekenstein entropy

S =
A

4
(28)

and assume that the sum of this quantity and the exter-
nal entropy never decreases. But quantum effects both
inside and at the horizon are likely to make event hori-
zons unphysical (see for instance the recent analysis of
the Planck star bounce [10, 13–15] and references therein.
A different scenario where the considerations of this pa-
per are also pertinent has been recently put forward in
[16]). Because of these, the horizon of a gravitationally
collapsed object might be an apparent horizon. In these
conditions, the validity of the second law of thermody-
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namics is obviously out of question, but the validity of
the generalised second law is far from certain.

The information inside the hole could be recovered: af-
ter crossing the quantum region that replaces the classical
singularity, it may be free to exit. Therefore the informa-
tion inside the horizon is not degraded and should not be
counted as entropy. We can still associate an entropy (28)
to an apparent horizon, because this same quantity mea-
sures the quantum field theoretical entanglement across
the horizon (see [17] and references therein). This en-
tropy behaves precisely as a thermodynamical entropy,
and is indistinguishable from the Bekenstein-Bousso en-
tropy as long as the horizon is present; but it is a quan-
tum von Newman entropy and, as such, nothing prevents
it from decreasing when we have access to the black hole
interior, which is possible if the horizon is apparent. Von
Neumann entropy, of course does decrease with time, if
we access more observables at later time.

If the horizon can disappear in time, the information
contained inside an horizon can exit. The second law of
thermodynamics remains valid, but not its Bekenstein
generalisation. As we have shown, the interior of the
black hole has plenty of room to store information 4.
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Appendix A: Volume in Reissner-Nordström

In this appendix, we check the reasoning presented
in this paper in a less trivial example. This spacetime,
describing a non-rotating spherically symmetric charged
black hole, can be described by (3) with

f(r) = 1− 2M/r +Q2/r2. (A1)

There are two horizons on this spacetime located at the
zeros of f , given by

r± = M ±
√
M2 −Q2. (A2)

The outer horizon, at r+, is an event horizon and the
inner horizon, at r−, is an apparent horizon. It is easily

4 After the appearance of this paper on the arXiv, the result we
point out has been developed for the spinning case by Bengtsson
and Jacobson in [18] and for other cases by Yen Chin Ong in
[19].

FIG. 6. The family Σ0 in a Reissner-Nordström black hole
for M = 1 and Q = 0.7. The inner (apparent) horizon is at
r− ≈ 0.29 and the outer (event) horizon at r+ ≈ 1.71. We
have taken vf = 0

.

calculated that between r− and r+ the polynomial r4f(r)
has a minimum value at

rV =
1

4

(
3M +

√
9M2 − 8Q2

)
(A3)

Then,

A2
c > −r4

V f(rV ) (A4)

It is then evident that the analysis presented here is es-
sentially the same in this spacetime. The difference is
that instead of looking at the region between the singu-
larity and the horizon, we look at the region between the
two horizons. If one wishes to include the volume in the
region r < r− then a different analysis must be carried
out for that part since r re-acquires its interpretation as a
spacelike coordinate. The situation for that region would
be similar to that of Minkowski space (see Appendix C),
i.e. it would yield a constant contribution that becomes
negligible for large times.

Appendix B: Volume in Kruskal

A straightforward application of the definition of vol-
ume that we have given in the case of a Kruskal space-
time gives infinite volume for any sphere Sv on the hori-
zon. We may obtain a finite volume by requiring Σ to be
bounded by two spheres, Sv and Su, one on each of the
two outgoing horizons. Fixing Su, the volume V (u, v) of
this surface clearly satisfies

V (u, v2)− V (u, v1) ∼ 3
√

3πm2(v2 − v1) (B1)

in the asymptotic region.
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Appendix C: Volume in Minkowski space

It is instructing to see how the definition we gave in
the introduction and the results in the paper work in
the trivial case of flat space. We can again define a null
coordinate v = t+r. This is the same as setting f(r) = 1
in the line element (3) or most of the formulas given in
the paper. It is direct from the integral (19) that the
maximum volume is given by A = 0 and that the result
is the usual expression for the volume of a sphere with
radius 2M . The equations (17) and (18) become

ṙ =
1

r2
(C1)

v̇ =
1

r2
(C2)

from which we deduce that dr = dv. Thus, the max-
imal volume hypersurfaces are given by t = v − r =
constant as expected. Notice also that the Eddington-
Finkelstein diagram of flat space is the standard depiction
of Minkowski space in polar coordinates with the angular
directions suppressed. That is, the vertical axis is now
t̄ = v − r = t and the EF-diagram is simply a t vs r plot
with the usual 45 degrees causal structure.

The situation is of course very different. In this
case, there is a finite maximum volume to be achieved,
when A = Ac = 0. By the characterization we gave in
Section II, given a sphere Σ, we look for the spacelike
surface Σ0 that spans the interior of the sphere and
has the largest volume. These will always be the
t = constant surfaces.
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