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ABSTRACT

In this paper, a system for overlapping acoustic event detection is

proposed, which models the temporal evolution of sound events. The

system is based on probabilistic latent component analysis, support-

ing the use of a sound event dictionary where each exemplar con-

sists of a succession of spectral templates. The temporal succes-

sion of the templates is controlled through event class-wise Hidden

Markov Models (HMMs). As input time/frequency representation,

the Equivalent Rectangular Bandwidth (ERB) spectrogram is used.

Experiments are carried out on polyphonic datasets of office sounds

generated using an acoustic scene synthesizer - simulator, as well as

real and synthesized monophonic datasets for comparative purposes.

Results show that the proposed system outperforms several state-of-

the-art methods for overlapping acoustic event detection on the same

task, using both frame-based and event-based metrics, and is robust

to varying event density and noise levels.

Index Terms— Acoustic event detection, probabilistic latent

component analysis, hidden Markov models

1. INTRODUCTION

Acoustic event detection, also called sound event detection, is a cen-

tral topic in the emerging field of acoustic scene analysis. The main

goal of the aforementioned task is to label temporal regions within

an audio recording, resulting in a symbolic description with start

and end times, as well as labels for each instance of a specific event

type [1]. Applications for acoustic event detection are numerous, in-

cluding but not limited to security and surveillance, urban planning,

smart homes, acoustic ecology, and organisation/navigation of sound

archives [1, 2, 3, 4].

The majority of research in acoustic event detection is directed

towards detecting only one event at a given time segment, which

is also referred to as monophonic event detection, or detection of

non-overlapping acoustic events. Methods that address the prob-

lem of detecting overlapping events from audio (also called poly-

phonic event detection) include the work by Heittola et al. on using

a context-dependent Hidden Markov Model (HMM) with multiple

path decoding [3]. Gemmeke et al. proposed the use of using vector-

ized time-frequency patches of pre-extracted isolated events within

the context of non-negative matrix factorization (NMF) [5]. Dennis

et al. [4] detect overlapping sound events using local spectrogram

features and a Generalised Hough Transform voting system. A more

recent approach for event detection uses multilabel deep neural net-

works with spectral features as inputs [6]. In addition, as part of
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the IEEE AASP challenge on Detection and Classification of acous-

tic scenes and events (DCASE) [7], a baseline system was created

using NMF with beta-divergence. Finally, also part of the DCASE

challenge, Vuegen et al. [8] proposed a system based on Gaussian

mixture models (GMMs), with MFCCs as input features.

In this paper, a method for polyphonic event detection is pro-

posed, based on probabilistic latent component analysis (PLCA -

the probabilistic counterpart of NMF). The proposed event detec-

tion system is adapted from [9], which was created for automatic

music transcription. Here, a dictionary of pre-extracted events is

created, which expresses each exemplar as a succession of spectral

templates. Temporal constraints modelling the evolution of each

produced sound event are incorporated in the proposed model, us-

ing event-wise HMMs. Experiments are carried out using the poly-

phonic event detection dataset from the DCASE challenge, gener-

ated using isolated sounds recorded at Queen Mary University of

London, as well as a new dataset generated using isolated sounds

from IRCCYN, France, in order to test the proposed method’s gen-

eralization capabilities. Comparative experiments are also made us-

ing real and synthesized monophonic datasets. Results show that

the system outperforms several state-of-the-art methods for detect-

ing overlapping events, using several types of evaluation metrics.

On relation to prior work: in contrast with the NMF-based sys-

tems of [5, 10], which model events using either vectorized or 2-

dimensional time-frequency patches, events are here modelled as a

temporal succession of spectral templates, leading to a computation-

ally efficient model. Also, in contrast with [11], this model proposes

an event class-exemplar-sound state hierarchy, which expresses a test

event as a linear combination of exemplars for that specific event

class.

The outline of this paper is as follows. The proposed system

is presented in Section 2. Evaluation, including a description of

the train/test datasets, evaluation metrics, and results, is presented

in Section 3. The paper concludes with a discussion in Section 4.

2. PROPOSED SYSTEM

2.1. Motivation

The overall aim of the proposed work is the creation a computa-

tionally efficient dictionary-based system for overlapping acoustic

event detection that expresses a sound event as a combination of ex-

emplars. Each exemplar consists of a series of spectral templates

each corresponding to a sound state, the order of which is con-

trolled using temporal constraints. Thus, the model is able to ex-

ploit spectro-temporal features without resorting to computationally

expensive convolutional formulations [12, 10] or vectorized time-
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Fig. 1. Proposed system diagram.

frequency patches [13].

The proposed system adapts the model of [9], which was pro-

posed for the task of automatic music transcription, and is based

on PLCA [14], a spectrogram factorization method which supports

the detection of overlapping sound events. In contrast to [9], the

proposed model does not support shift-invariance across a log-

frequency representation, as the concept of musical tuning does

not apply to everyday sounds. Instead, as input time-frequency

representation, we propose the use of the Equivalent Rectangular

Bandwidth (ERB) spectrogram [15], which provides a more com-

pact representation compared to the STFT spectrogram. A diagram

for the proposed system is shown in Fig. 1.

2.2. Model

The proposed model takes as input a normalised time-frequency rep-

resentation Vf,t (f is the frequency index and t is the time index) and

approximates it as a bivariate probability distribution P (f, t). In this
work, Vf,t is created by processing the input signal with an Equiv-

alent Rectangular Bandwidth (ERB) filterbank [15]. This auditory-

motivated filterbank uses 250 filters, linearly spaced between 5Hz

and 10.8kHz on the ERB scale, and is computed using the method

of [16], where each subband is partitioned into disjoint 23ms time

frames, and the rms is computed for each frame. A linear pre-

emphasis filter is applied to Vf,t in order to boost high frequencies,

which in the case of sound event detection carry useful information.

The model decomposes P (f, t) into a series of spectral tem-

plates per event class, exemplar index, and sound state, as well as

probability distributions for event activations, exemplar contribu-

tions per class, and sound state activations per class. The model

is formulated as:

P (f, t) = P (t)
∑

q,c,s

P (f |q, c, s)P (s|t)P (c|s, t)P (q|s, t) (1)

where s denotes the sound event class, c denotes the exemplar index,

and q the sound state index. P (t) is defined as
∑

f
Vf,t, which is

a known quantity. P (f |q, c, s) is a 4-dimensional tensor that con-

tains the pre-extracted spectral templates for event s, exemplar c and

sound state q. P (s|t) is the time-varying event activation (which

is the main output used for evaluation). P (c|s, t) denotes the time-

varying exemplar contribution for producing a specific event. Fi-

nally, P (q|s, t) is the sound state activation per event class, across

time.

P (s|t) and P (c|s, t) can be estimated using iterative update

rules through the Expectation-Maximization (EM) algorithm [17].

For the E-step, the following posterior is computed:

P (q, c, s|f, t) =
P (f |q, c, s)P (s|t)P (c|s, t)P (q|s, t)∑

q,c,s
P (f |q, c, s)P (s|t)P (c|s, t)P (q|s, t)

(2)

For theM-step, P (s|t) and P (c|s, t) are updated using the posterior
of (2):

P (s|t) =

∑
q,c,f

P (q, c, s|f, t)Vf,t∑
s,q,c,f

P (q, c, s|f, t)Vf,t

(3)

P (c|s, t) =

∑
q,f

P (q, c, s|f, t)Vf,t∑
c,q,f

P (q, c, s|f, t)Vf,t

(4)

2.3. Temporal constraints

Without any temporal constraints, P (q|s, t) can be estimated using

an iterative update rule similar to (3) or (4). In this system however,

temporal constraints on the order of the sound states are introduced

through the use of hidden Markov models (HMMs). One HMM is

created per event class, which has the sound states q as hidden states.

Thus, the basic elements of the event-wise HMMs are: the sound

state priors P (q
(s)
1 ), the sound state transitions P (q

(s)
t+1|q

(s)
t ) and the

observations Pt(f̄t|q
(s)
t ). Here, f̄ corresponds to the sequence of

observed spectra from all time frames, f̄t is the observed spectrum

at the t-th time frame, and q
(s)
t is the value of the hidden state at the

t-th time frame.

On linking the event-wise HMMs with the model of (1), the fol-

lowing assumption is made:

P (q|s = i, t) = Pt(q
s=i
t |f̄) (5)

thus, the sound state activations per event are assumed to be pro-

duced by the posteriors of the HMM corresponding to event i. Fol-

lowing [18], the observation probability is calculated as:

P (f̄t|q
(s)
t ) =

∏

ft

P (ft|q
(s)
t )Vf,t (6)

where P (ft|q
(s)
t ) is the approximated spectrum for a given sound

state and event class. This is because in PLCA-based models Vf,t

represents the number of times f has been drawn at the t-th time

frame [18].

For estimating the unknown HMM parameters, the EM algo-

rithm is again used. For the E-step, the HMM posterior per event

class is computed as:

Pt(q
(s)
t |f̄) =

Pt(f̄ , q
(s)
t )

∑
q
(s)
t

Pt(f̄ , q
(s)
t )

=
αt(q

(s)
t )βt(q

(s)
t )

∑
q
(s)
t

αt(q
(s)
t )βt(q

(s)
t )

(7)

where αt(q
(s)
t ) and βt(q

(s)
t ) are the forward and backward vari-

ables for the s-th HMM, respectively, and can be estimated using

the forward-backward algorithm [19]. The posterior for the sound

state transitions Pt(q
(s)
t+1, q

(s)
t |f̄) is computed as in [18].

In the M-step, the sound state priors and transitions per event

class are estimated from the posterior of (7):

P (q
(s)
1 ) = P1(q

(s)
1 |f̄) (8)

P (q
(s)
t+1|q

(s)
t ) =

∑
t
Pt(q

(s)
t , q

(s)
t+1|f̄)∑

q
(s)
t+1

∑
t
Pt(q

(s)
t , q

(s)
t+1|f̄)

(9)

Overall, for estimating all unknown parameters (P (s|t), P (c|s, t),
P (q|s, t)), both the PLCA-based and the HMM-based update rules

are used in an iterative fashion. For the E-step, the model posterior

is computed using (2), followed by the HMM posteriors of (7). For

the M-step, P (s|t) and P (c|s, t) are estimated using (3) and (4),

respectively. P (q
(s)
1 ) and P (q

(s)
t+1|q

(s)
t ) are estimated using (8) and

(9), respectively. Finally, P (q|s, t) is estimated using (5). For this

implementation, the algorithm was set to 30 iterations.
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Fig. 2. (a) The event activation P (s, t) for a recording of the DCASE
OS test dataset. (b) The post-processed event-roll. Class IDs 1-16

are described in Sec. 3.1.

2.4. Post-processing

The output of the proposed model is the event activation, weighted

by P (t): P (s, t) = P (t)P (s|t). This is a non-binary representa-

tion, which needs to be converted into a list of detected events per

time frame. Here, P (s, t) is post-processed by performing median

filtering across time, (with an 180ms span), followed by threshold-

ing (values are estimated using a development set, cf. subsection

3.1). Finally, events with a small duration (shorter than 60ms) are

removed. Fig. 2 shows an example event activation, along with the

post-processed binary event-roll which is used for evaluation.

3. EVALUATION

3.1. Training Data

For constructing the pre-extracted dictionary P (f |q, c, s), the IEEE
DCASE Event Detection training dataset was used [7, 1]. The

dataset contains isolated sounds recorded in an office environment

at Queen Mary University of London, and covers 16 event classes

(s ∈ {1, ..., 16}): alert, clearing throat, cough, door slam, drawer,

keyboard click, keys, door knock, laughter, mouse click, page turn,

pen drop, phone, printer, speech, and switch. Each class contains

20 exemplars (c ∈ {1, ..., 20}). In this work, the number of sound

states was set to 3 (q ∈ {1, 2, 3}) following experimentation. In

order to extract the sound state templates, each isolated sound ERB

spectrogram was split into 3 segments with equal duration. PLCA

with a single component was applied to each segment in order to

extract a single sound state spectral template. For tuning system

parameters for the polyphonic and monophonic datasets, the devel-

opment datasets for the IEEE DCASE Office Synthetic and Office

Live challenge [7] were used, respectively.

3.2. Test Data

For testing, 2 polyphonic datasets of artificially concatenated of-

fice sounds were used, with varying levels of event density (i.e.

polyphony) and SNR. In addition, 3 monophonic datasets (1 real

and 2 synthesized) of office sounds were also used, for comparative

purposes.

On the polyphonic datasets, firstly the test dataset for the IEEE

DCASE Office Synthetic (OS) challenge was used [1]. The dataset

contains 12 recordings of 2min duration each, with 3 different event

Ff Feb Fcweb

Stowell et al. [1] 12.8% 7.8% 9.5%

Vuegen et al. [8] 13.5% 13.8% 10.5%

Heittola et al. [3] 18.7% 16.1% 18.7%

Gemmeke et al. [5] 21.3% 17.0% 14.2%

Proposed System 25.6% 21.8% 20.6%

Table 1. Event detection results for the polyphonic DCASE OS test

dataset.

density levels (low, mid, high) and 3 different SNR levels (-6dB,

0dB, and 6dB). The recordings were generated by concatenating

isolated office sounds recorded at Queen Mary University of Lon-

don (using different sources than the ones used for the training

dataset of subsection 3.1), using the acoustic scene synthesizer of

[20]. This dataset allows for a detailed evaluation wrt the proposed

method’s capabilities on different polyphony and background noise

levels. The second polyphonic dataset uses the same event ground-

truth with the OS dataset, as well as the same noise level and event

density settings, but was instead generated using samples recorded

at the École Centrale de Nantes, France. This second dataset, which

will be called OS-IRCCYN dataset from now on, thus allows for

evaluating the proposed method’s generalization capabilities.

For comparative purposes, 3 monophonic datasets of office

sounds were used. Firstly, the Office Live (OL) dataset from the

DCASE challenge was used [1], which contains 11 scripted record-

ings of event sequences recorded at Queen Mary University of

London. The second and third monophonic datasets were generated

using the acoustic scene synthesizer of [20], and each include 22

recordings of variable duration (1-3min), using as basis the annota-

tions for the OL dataset. Both synthesized datasets were generated

using isolated sounds recorded at the École Centrale de Nantes,

France, thus are useful for testing the proposed method’s general-

ization capabilities. The second monophonic dataset was generated

using the instance simulation process, while the third dataset was

generated using the abstract simulation process (see [20] for more

details).

3.3. Metrics

For evaluation, the same set of metrics used for the IEEE DCASE

event detection tasks was used [1]. Specifically, 3 different met-

rics are used: frame-based, event-based, and class-wise event-based.

Frame-based evaluation is performed on a 10ms step using the post-

processed event activation, while event-based and class-wise event-

based evaluation consider each event to be correctly detected if its

onset is within a±100ms onset tolerance. In all cases, the F-measure

is reported (Ff , Feb , and Fcweb , respectively).

3.4. Results

This subsection presents evaluation results using the proposed

method, as well as comparisons using the publicly available systems

of [5] (using a frame stacking-based NMF approach), [8] (using an

MFCC-GMM approach), as well as the NMF-based baseline system

for the IEEE DCASE challenge [1]. For the 1st test dataset, results

are also shown for the HMM-based multiple path decoding system

of [3], as reported in the DCASE challenge.

Event detection results using the OS test dataset for the proposed

method and the aforementioned comparative systems are presented

in Table 1, averaged across all recordings. It can be seen that the
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Fig. 3. Event detection results for the proposed system on the poly-

phonic DCASE OS dataset for (a) varying event density (b) varying

SNR levels.

Ff Feb Fcweb

Stowell et al. [1] 13.8% 2.9% 2.4%

Vuegen et al. [8] 3.5% 1.1% 4.7%

Gemmeke et al. [5] 10.8% 5.9% 3.3%

Proposed System 14.7% 6.4% 5.6%

Table 2. Event detection results for the polyphonic OS-IRCCYN

test dataset.

proposed method outperforms all comparative approaches using the

3 different metrics. It is worth pointing out that frame-based met-

rics are generally larger than event-based metrics, which shows that

more work can be done in grouping frame activations into contigu-

ous events with a start and end time. Additional information on the

proposed method’s performance is presented in Fig. 3, showing re-

sults for groups of recordings with specific polyphony and SNR lev-

els. It is worth noting that frame-based performance is stable across

different polyphony levels, whereas event-based metrics drop with

increased event density. On SNR levels, again frame-based met-

rics are more stable compared to event-based metrics with increased

noise level. This shows that while the system can detect events irre-

spective of density and noise levels, tracking and grouping events in

noisy multisource environments would require an alternate approach

to the one presented in Section 2.4.

Results using the OS-IRCCYN dataset are shown in Table 2, for

the proposed and comparative methods, averaged across all record-

ings. A significant drop compared to the OS dataset results can

be seen across all methods, which can be attributed to the differ-

ent recording equipment and conditions used to generate the iso-

lated samples compared to the OS dataset. In particular, a signif-

icant drop is reported for [8], while the baseline system of [1] is

relatively robust. The proposed method ranks best across all met-

rics, although the results clearly indicate that source- and recording

condition-independent polyphonic event detection is a problem that

would need to be addressed in the future.

Comparative results on the proposed method’s performance

for monophonic event detection are shown in Table 3, using the

Office Live dataset, as well as the synthesized instance and ab-

Ff Feb Fcweb

Vuegen et al. [8] 43.4% 30.8% 24.6%

Stowell et al. [1] 10.7% 7.4% 9.0%

Gemmeke et al. [5] 31.9% 15.5% 13.2%

Proposed System 34.4% 23.8% 21.0%

Vuegen et al. [8] 9.5% 9.3% 7.3%

Stowell et al. [1] 14.0% 6.4% 5.7%

Gemmeke et al. [5] 18.5% 11.2% 6.0%

Proposed System 23.6% 16.3% 11.4%

Vuegen et al. [8] 9.7% 10.2% 7.3%

Stowell et al. [1] 14.4% 5.9% 5.6%

Gemmeke et al. [5] 18.8% 9.2% 5.4%

Proposed System 26.8% 14.4% 11.4%

Table 3. Monophonic event detection results for the OL (top group),

instance (middle group) and abstract (bottom group) datasets [20].

stract datasets using samples from IRCCYN. For the OL dataset,

the method of [8] ranks best across all metrics, followed by the

proposed method (it should be noted that [8] was also trained

on the OL development dataset). This changes when using the

IRCCYN-generated monophonic sequences, where the proposed

method shows better generalization capabilities across all metrics.

Still, there is a significant gap between the performance of frame-

based metrics and event-based metrics, which again indicates that

aggregating frame-based detections for forming coherent events re-

quires a methodology that goes beyond thresholding and minimum

duration pruning.

Finally, regarding runtimes, the proposed method performs at

about 0.7 × real-time using a (3-year old) Sony VAIO S15 lap-

top using a Matlab implementation. This shows that the proposed

approach can be used in applications requiring computational effi-

ciency, such as for real-time event detection.

4. DISCUSSION

This paper proposed a computationally efficient method for poly-

phonic acoustic event detection based on an HMM-constrained

PLCA-based model with an event class-exemplar-sound state hier-

archy. As input time-frequency representation, the ERB spectro-

gram was used. Experiments on both polyphonic and monophonic

datasets of office sounds showed that the proposed method outper-

forms other approaches in the literature.

However, results also show that the problem of overlapping

event detection is still far from being solved. Of particular impor-

tance for future research would be the adaptation of event detection

systems to various recording environments and conditions, different

sound sources, and variable noise levels. In addition, the template

extraction process of section 3.1 will be revised, as to use a different

number of sound states per event class. Another issue in need to be

resolved would be the discrepancy between frame-based metrics and

event-based metrics, which shows that an additional post-processing

step is needed in order to track and form coherent events across

time. To that end, future work will focus on a transduction post-

processing step for converting the non-binary event activation into

a list of events with start and end times, using as basis probabilistic

machine learning methods for sequential data.
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