
HAL Id: hal-01255000
https://hal.science/hal-01255000

Submitted on 13 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Survey and some new results on performance analysis of
complex-valued parameter estimators

Jean-Pierre Delmas, Habti Abeida

To cite this version:
Jean-Pierre Delmas, Habti Abeida. Survey and some new results on performance analy-
sis of complex-valued parameter estimators. Signal Processing, 2015, 111, pp.210 - 221.
�10.1016/j.sigpro.2014.12.009�. �hal-01255000�

https://hal.science/hal-01255000
https://hal.archives-ouvertes.fr


1

Survey and some new results on performance

analysis of complex-valued parameter estimators
Jean Pierre Delmas and Habti Abeida

Abstract

Recently, there has been an increased awareness that simplistic adaptation of performance analysis developed

for random real-valued signals and parameters to the complex case may be inadequate or may lead to intractable

calculations. Unfortunately, many fundamental statistical tools for handling complex-valued parameter estimators

are missing or scattered in the open literature. In this paper, we survey some known results and provide a rigorous

and unified framework to study the statistical performance of complex-valued parameter estimators with a

particular attention paid to properness (i.e., second order circularity), specifically referring to the second-order

statistical properties. In particular, some new properties relative to the properness of the estimates, asymptotically

minimum variance bound and Whittle formulas are presented. A new look at the role of nuisance parameters is

given, proving and illustrating that the noncircular Gaussian distributions do not necessarily improve the Cramer-

Rao bound (CRB) with respect to the circular case. Efficiency of subspace-based complex-valued parameter

estimators are presented with a special emphasis is put on noisy linear mixture.

Index Terms

Circular (proper) and noncircular (improper) complex-valued signals, statistical performance analysis,

Cramer-Rao bound, asymptotically minimum variance bound, Slepian-Bangs and Whittle formulas.

Manuscript accepted for publication in Signal Processing

I. INTRODUCTION

Complex-valued random signals associated with complex-valued parameters play an increasingly important

role in many science and engineering problems, including those in communications, radar, biomedicine,

geophysics, oceanography, electromagnetics, and optics, among others (see e.g., [1], [2] and the references

therein). But the usual way to analyze the statistical performance of complex-valued parameter estimators is

still often by splitting each complex parameter into its real and imaginary part and treating them as separate
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real parameters [3], [4]. Although this procedure is mathematically correct, it involves complicated expressions,

lacking the engineering insight necessary for a lucid understanding of the various phenomena and for suggesting

improved solutions. Unfortunately, many fundamental statistical tools for handling complex-valued parameter

estimators are missing or scattered in open literature (see e.g., [5, Chap. 6] and the references therein).

In this paper, we provide a rigorous and unified framework to study the statistical performance of complex-

valued parameter estimators. As for all parameter estimation, an algorithm or estimator extracts an approximation

θ̂N of an unknown parameter θ from measurements [x(1), ...,x(N)]. Here the measurements are characterized

by a joint PDF p(x(n)n=1,...,N ;θ,α) where x(n) ∈ Cr, θ = (θ1, ..., θq)
T ∈ Cq is the parameter of interest

and α gathers all the other unknown parameters (nuisance parameters). There are two issues to consider in

performance analysis. The first one, which is treated in Section II, consists in studying the performance of

a particular algorithm, principally to derive the asymptotic1 distribution, bias and covariance of θ̂N . In this

section, particular attention is paid to properness (i.e., second-order circularity) of the asymptotic distribution

of the parameter estimates where new properties are given. The second one is to establish a limit on the accuracy

of any estimator belonging to a family of estimators. This is the subject of Sections III and IV, respectively,

dedicated to the Cramer-Rao and asymptotically minimum variance bounds, where new extensions are given.

A particular treatment of the noisy linear mixture is given in Section V, where the efficiency of subspace-

based complex-valued parameter estimators are studied. Illustration are given in Section VI dedicated to blind

identification of complex SIMO channels and complex independent component analysis. Finally, Section VII

presents a conclusion.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation, while T , H ,

∗ and # stand for transpose, conjugate transpose, conjugate and Moore-Penrose inverse, respectively. o(ϵ)

denotes a quantity such that limϵ→0 o(ϵ)/ϵ = 0. E(.), Tr(.), Re(.) and Im(.) are the expectation, trace, real and

imaginary part operators respectively. I is the identity matrix. vec(·) is the “vectorization” operator that turns

a matrix into a vector by stacking the columns of the matrix one below another which is used in conjunction

with the Kronecker product A ⊗ B as the block matrix whose (i, j) block element is ai,jB and with the

vec-permutation matrix K which transforms vec(C) to vec(CT ) for any square matrix C. v(.) denotes the

operator obtained from vec(.) by eliminating all supradiagonal elements of the matrix. ã = (aT ,aH)T and

ā = (Re(a)T , Im(a)T )T are the augmented and real-valued vector associated with complex-valued vector a.

1In general only the asymptotic distribution, bias and covariance can be derived, either w.r.t. the number N of measurements, the
size r or the signal to noise ratio of the measurements. Hopefully, in practice the obtained results give good approximations for finite
values of these quantities.
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II. PERFORMANCE ANALYSIS

To study the asymptotic performance of an algorithm, it is fruitful to adopt a functional analysis that consists

in recognizing that the whole process of constructing the estimate θ̂N is equivalent to defining a functional

relation linking this estimate to the measurements from which it is inferred. Note that this functional analysis

first introduced in [6], has been presented in [7, Sec. 3.1] for the real-valued DOA parameter and can be

considered as an extension of this one. As generally θ̂N are functions of some statistics sN ∈ Cp deduced from

(x(n))n=1,...,N , we have the following mapping

(x(n))n=1,...,N 7−→ sN
g7−→ θ̂N . (1)

The statistic sN is assumed to converge almost surely to s(θ) = E(sN ) and θ is supposed identifiable from

s(θ), so generally p ≥ q. The functional dependence θ̂N = g(sN ) constitutes an extension of the mapping

s(θ) 7−→ θ in the neighborhood of s(θ). Each extension g specifies a particular algorithm. The statistics

sN may be sample moments2, cumulants of x(n) or any specific statistics adapted to the distribution of the

measurements. For example, for the noisy linear mixtures (31), the orthogonal projectors associated with the

sample estimates of the covariance, complementary covariance3 or augmented covariance of x(n) have been used

for subspace-based algorithms. In the specific case of independent identically distributed (IID) measurements

x(n), closed-form expressions 1
NRs and 1

NCs of the covariance E[(sN − s)(sN − s)H ] and complementary

covariance E[(sN − s)(sN − s)T ] matrices of sN (where s = s(θ) for short) can be easily derived for sample

moments or cumulants of x(n). For stationary measurements x(n) and associated sample statistics sN , central

limit theorems and standard theorems of continuity allow us to derive convergences in distribution w.r.t. the

number N of the measurements (see e.g., [9] for the second-order statistics sN ), viz,

√
N (sN − s)

L→ NC(0;Rs,Cs), (2)

whereNC(m;R,C) denotes the complex Gaussian distribution with mean m, covariance R and complementary

covariance C, defined as the distribution of a complex-valued random variable z such that the associated scalar

real-valued random variable ãH z̃ is Gaussian distributed NR(mz;Rz) with mean mz = ãHm̃ and covariance

Rz = ãH

 R C

C∗ R∗

 ã for any vector a of compatible dimension.

Finally, note that this functional analysis (1) is not always relevant for other distributions of (x(n))n=1,...,N .

For example, if x(n) = s(θ, n) + e(n) where s(θ, n) is a non-linear deterministic function4 of θ and

2This is typically the case for the estimates derived from the method of moments, where sN are sample moments of x(n). This is
also the case for the maximum likelihood estimator for Gaussian distribution for which sN are first and second-order statistics.

3Other names for complementary covariance matrix include pseudo-covariance matrix, conjugate covariance matrix and relation
matrix.

4The celebrated noisy sinusoid case where s(θ, n) =
∑K

k=1 ake
i(2πnfk+ϕk) is such an example.

December 11, 2014 DRAFT



4

(e(n))n=1,..,N is zero-mean IID, (x(n))n=1,..,N are independent, but not identically distributed and the speed

of convergence of the sequence of estimates θ̂N can depend on its component and be different from
√
N .

For statistics sN satisfying (2) and for R−differentiable mapping g [10],

g(sN ) = g(s) +Dg(sN − s) +D∗,g(sN − s)∗ + o(||sN − s||), (3)

where Dg and D∗,g, q × p matrices, denote the R−derivative ∂g
∂s and the conjugate R−derivative ∂g

∂s∗ of g

at point s [11]. In practice, the matrices Dg and D∗,g are derived from perturbation analysis where only the

wide-linear term is kept. Furthermore, their derivations are simplified from the chain rule by decomposing the

mapping g (i.e., the algorithm) as successive simpler mappings.

It is proved in the Appendix that if [Dg,D∗,g] ̸= 0, the following convergence in distribution holds:

√
N (θ̂N − θ)

L→ NC(0;Rθ,Cθ) (4)

with

Rθ = [Dg,D∗,g]

 Rs Cs

C∗
s R∗

s

 Dg
H

D∗,g
H

 and Cθ = [Dg,D∗,g]

 Cs Rs

R∗
s C∗

s

 Dg
T

D∗,g
T

 . (5)

From (5), we deduce that for g C−differentiable at point s, D∗g = 0, and the usual expressions

Rθ = DgRsD
H
g and Cθ = DgCsD

T
g (6)

are derived. Furthermore in this case θ̂N is asymptotically proper (i.e., Cθ = 0) if and only if sN is

asymptotically proper (i.e., Cs = 0). We note that generally, if sN is asymptotically proper, θ̂N is not

necessarily asymptotically proper. It becomes proper if D∗
g = 0, i.e., if g is C−differentiable at point s

(g(sN ) = g(s) + Dg(sN − s) + o(||sN − s||). Finally for real-valued θ, D∗
g = D∗,g and the asymptotic

covariance Rθ is given by

Rθ = 2[DgRsD
H
g +Re(DgCsD

T
g )]. (7)

Under additional regularity assumptions on g, the covariance and complementary covariance of θ̂N are given

respectively by

E[(θ̂N − θ)(θ̂N − θ)H ] =
1

N
Rθ + o(

1

N
) and E[(θ̂N − θ)(θ̂N − θ)T ] =

1

N
Cθ + o(

1

N
). (8)

Using a second-order expansion of g(sN ) where g is supposed to be R−differentiable to the second-order [8],

it is proved in the Appendix that the bias is given by the closed-form expression not published in the open

December 11, 2014 DRAFT



5

literature:

E(θ̂N )− θ =
1

2N


2Tr(RsH

(1)
g,1) + Tr(C∗

sH
(2)
g,1) + Tr(CsH

(3)
g,1)

...

2Tr(RsH
(1)
g,q) + Tr(C∗

sH
(2)
g,q) + Tr(CsH

(3)
g,q)

+ o(
1

N
) (9)

where H
(1)
g,k, H(2)

g,k and H
(3)
g,k are the three Hessian matrices [5, A2.3] ∂

∂s

(
∂gk

∂s

)H
, ∂
∂s∗

(
∂gk

∂s

)H
and ∂

∂s

(
∂gk

∂s

)T
of the kth component gk of the function g at point s, respectively. We note that for g C−differentiable to

the second-order, the only nonzero Hessian is H
(3)
g,k, and (9) reduces to its last term which is zero if sN is

asymptotically proper. So for g C−differentiable to the second-order and sN asymptotically proper, θ̂N is

asymptotically unbiased to first order5. Finally, for real-valued θ, H(3)
g,k = (H

(2)
g,k)

∗, (9) reduces to

E(θ̂N )− θ =
1

2N


Tr(Rs̃Hg̃,1)

...

Tr(Rs̃Hg̃,q)

+ o(
1

N
),

where Hg̃,k = ∂
∂s̃

(
∂g
∂s̃

)H
=

 H
(1)
g,k H

(2)
g,k

H(2)∗
g,k H(1)∗

g,k

 is the complex augmented Hessian matrix [5, A2.3] of the

kth component of the function g at point s and Rs̃ =

 Rs Cs

C∗
s R∗

s

 is the asymptotic augmented covariance6

of sN .

We note that necessary mathematical conditions concerning the remainder terms of these first and second-

order expansions are in the signal processing literature never checked as these conditions are very difficult to

prove for the involved mappings sN
g7−→ θ̂N . For example, the following necessary conditions are given in

[12, Th. 4.2.2] for second-order algorithms: (i) the measurements {x(n)}n=1,...,N are independent with finite

eighth moments, (ii) the mapping sN
g7−→ θ̂N is four times R−differentiable, (iii) the fourth derivative of this

mapping and those of its square are bounded. These assumptions that do not depend on the distribution of

the measurements are very strong, but fortunately (8) and (9) continue to hold in many cases in which these

assumptions are not satisfied, in particular for Gaussian distributed data (see, e.g., [12, Ex. 4.2.2]).

Finally, we note that if in practice all functions g, i.e., algorithms are R−differentiable, only some of

them are C−differentiable. Among them, when θ̂N are roots (e.g., for the root MUSIC algorithms) or explicit

solutions (e.g., for the C(k, q) formula [13] extended to the complex case [14]) of polynomials equations whose

coefficients are C−differentiable functions of the statistics sN , the algorithm g is C−differentiable. This is in

contrast to the case where θ̂N maximizes a (real-valued) function depending on the statistics sN , where g may

5This contrasts with the real-valued case for which the bias on θ̂N is of order 1/N .
6Note that Rs̃ characterizes the asymptotic second-order moments of s̃N as Cs̃ =

[
Cs Rs

R∗
s C∗

s

]
.
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be now only R−differentiable. This is the case for the subspace-based algorithms for estimating the SIMO and

MIMO impulse responses.

III. ASYMPTOTICALLY MINIMUM VARIANCE BOUND

To assess the performance of an algorithm based on a specific statistic sN built from (x(n))n=1,...,N , it is

interesting to compare the asymptotic covariance Rθ (5) and complementary covariance Cθ (5) to an attainable

lower bound that depends on the statistic sN only. The asymptotically minimum variance bound (AMVB) is

such a bound7. This bound is generally easy to derive in contrast to the CRB which depends on the distribution

of the measurements that appears to be prohibitive to compute for non-Gaussian distributions, except in special

cases. This bound uses only the statistical properties of the statistic sN and can be used as a benchmark

against which potential estimates θ̂N = g(sN ) are tested. To extend the derivations of Porat and Friedlander

[15] concerning this AMVB to complex-valued measurements and parameters, three additional conditions than

those introduced in Section II must be satisfied. First, the mapping θ 7−→ s(θ) must be R−differentiable.

Second, the involved function g that defines the considered algorithm must be R−differentiable. And third, the

asymptotic augmented covariance Rs̃ of sN must be nonsingular. To satisfy this condition, the 2p components

of s̃N
def
= [sTN , sHN ]T must be asymptotically linearly independent random variables. Consequently, no component

of sN must be real-valued. If some components are real-valued, the redundancies in s̃N must be withdrawn

(see e.g., [17] for second-order statistics).

Using the augmented representation, and following the steps of the derivation of the AMVB for real-valued

sN and θ̂N [15], it is proved in the Appendix that the augmented covariance matrix Rθ̃ of the asymptotic

distribution of an estimate of θ given by an arbitrary consistent algorithm (characterized by the mapping g)

based on the statistic sN is bounded below by (D̃H
s R−1

s̃ D̃s)
−1:

Result 1

Rθ̃ =

 Rθ Cθ

C∗
θ R∗

θ

 = D̃gRs̃D̃
H
g ≥ AMVBs(θ̃)

def
= (D̃H

s R−1
s̃ D̃s)

−1 (10)

with D̃g
def
=

 Dg D∗,g

D∗
∗,g D∗

g

 and D̃s
def
=

 Ds D∗,s

D∗
∗,s D∗

s

 where Ds and D∗,s denote the R−derivative and

conjugate R−derivative of s(θ) at point θ.

Using the partitioned matrix-inversion lemma in (10), Rθ is lower bounded as well. But an algorithm that

attains this bound alone, does not necessarily attains the AMVB (10) since Rθ does not provide a full second-

order description of a complex random variable; Cθ is also needed.

Furthermore, it is proved in the Appendix that the following nonlinear least squares algorithm is an algorithm

7Also called asymptotically best consistent (ABC) estimators in [16].
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that attains the AMVB

θ̂N = argmin
β

[̃sN − s̃(β)]HWN [̃sN − s̃(β)], (11)

where s̃(β)
def
= [sT (β), sH(β)]T and WN is an arbitrary consistent estimate of R−1

s̃ that satisfies WN =

R−1
s̃ + o(||sN − s(θ)||).

For real-valued θ, D∗,g = Dg and the AMVB (10) reduces to

Rθ = 2[DgRsD
H
g +Re(DgCsD

T
g )] ≥ AMVBs(θ)

def
=

[DH
s ,DT

s

]
R−1

s̃

 Ds

D∗
s

−1

.

An example of such a derivation is given in [17] for second-order statistics applied to DOA estimation. Note that

in contrast to the Cramer-Rao bound (CRB) that is generally difficult to compute for nonGaussian distributions,

the AMVB that uses only the asymptotic second-order statistics of sN is much easier to derive.

IV. CRAMER-RAO BOUND

To simplify the notations, when the number N of measurements is fixed, these measurements are denoted

by x and their PDF by p(x;θ), where throughout this section, θ denotes the unknown parameter that gathers

the parameter of interest and nuisance parameter.

A. General properties of the FIM

Many authors have extended the CRB to complex-valued measurements and parameters. Among them, [18]

has derived this bound by imitating the proof in the real case and [19] has used the one-to-one mappings x̃←→ x̄

and θ̃ ←→ θ̄. Note that despite the CRB has been well covered in the complex case, new contributions continue

to appear (see e.g., [20]).

If θ̂ denotes an unbiased estimator of θ, the augmented covariance matrix of θ̂, R˜̂
θ
=

 R
θ̂

C
θ̂

C∗
θ̂

R∗
θ̂

, where

R
θ̂

def
= E[(θ̂− θ)(θ̂− θ)H ] and C

θ̂

def
= E[(θ̂− θ)(θ̂− θ)T ], is upper bounded by the inverse of the augmented

Fisher information matrix (FIM)

J
θ̃
=

 Jθ J∗,θ

J∗
∗,θ J∗

θ

 (12)

assumed to be nonsingular [19, Theorem 1], [5, Result 6.3], :

R˜̂
θ
≥ CRB(θ̃)

def
= J−1

θ̃
. (13)

Jθ and J∗,θ are the complex FIM and the complementary complex FIM, respectively given under regularity

December 11, 2014 DRAFT
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conditions by

Jθ = E

([
∂ ln p(x;θ)

∂θ

]H [∂ ln p(x;θ)

∂θ

])
= −E

(
∂

∂θ

[
∂ ln p(x;θ)

∂θ

]H)
, (14)

J∗,θ = E

([
∂ ln p(x;θ)

∂θ

]H [∂ ln p(x;θ)

∂θ∗

])
= −E

(
∂

∂θ∗

[
∂ ln p(x;θ)

∂θ∗

]T)
. (15)

The CRB (13) implies the following bound on the covariance matrix R
θ̂

of θ̂ [18]

R
θ̂
≥ (Jθ − J∗,θJ

−1
θ J∗

∗,θ)
−1 ≥ J−1

θ . (16)

If an unbiased estimator θ̂ attains this bound on R
θ̂

alone, it does not imply that θ̂ attains the CRB (13),

since also C
θ̂
= −(Jθ − J∗,θJ

−1
θ J∗

∗,θ)
−1J∗,θJ

∗−1
θ needs to hold (see also [19, Corrollary 1(a)]). Only if the

complementary FIM J∗,θ vanishes, then R
θ̂
= J−1

θ implies that θ̂ attains the CRB (13).

Note that (16) assumes that J
θ̃

is nonsingular, which is not the case for real-valued parameters for which

Jθ = J∗,θ. In this case, the complex CRB is simply given by R
θ̂
≥ J−1

θ .

In the presence of nuisance parameters α (generally real-valued), the complex CRB on the parameter of

interest θ only is obtained similarly that in the real case. Using the one-to-one mapping

 θ̄

α

←→
 θ̃

α

,

it is straightforward to prove the following result not published in the open literature:

In the case of nuisance parameter α, (13) are (16) respectively become

R˜̂
θ
≥ CRB(θ̃)

def
= (Jθ̃ − Jθ̃,αJ

−1
α JH

θ̃,α
)−1 ≥ J−1

θ̃
, (17)

R
θ̂
≥ [(Jθ̃ − Jθ̃,αJ

−1
α JH

θ̃,α
)−1]θ,θ ≥ (Jθ − J∗,θJ

−1
θ J∗

∗,θ)
−1 ≥ J−1

θ , (18)

where [.]θ,θ denotes the q × q top-left submatrix of [.], Jα is the usual FIM w.r.t. the real-valued parameter α

only, and Jθ̃,α =

 Jθ,α

J∗,θ,α

 with

Jθ,α = E

([
∂ ln p(x;θ,α)

∂θ

]H [∂ ln p(x;θ,α)

∂α

])
= −E

(
∂

∂α

[
∂ ln p(x;θ,α)

∂θ

]H)
(19)

J∗,θ,α = E

([
∂ ln p(x;θ,α)

∂θ∗

]H [∂ ln p(x;θ,α)

∂α

])
= −E

(
∂

∂α

[
∂ ln p(x;θ,α)

∂θ∗

]H)
. (20)

B. Specific Gaussian case

1) Slepian-Bangs formula: For complex Gaussian distributions, NC(mx;Rx,Cx), the Slepian-Bangs for-

mula has been extended in [21] and [5, 6.3.5] for real and complex-valued parameters, respectively, where their

December 11, 2014 DRAFT
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elementwise FIM and the complementary FIM have been given8. Note that these matrices can also be given

by the following compact expressions

Jθ =

(
∂mx̃

∂θ

)H

R−1
x̃

∂mx̃

∂θ
+

1

2
DH

rx̃C
−1∗
rx̃ Drx̃ , (21)

J∗,θ =

(
∂mx̃

∂θ

)H

R−1
x̃

∂mx̃

∂θ∗ +
1

2
DH

rx̃C
−1∗
rx̃ D∗,rx̃ , (22)

which gives

J
θ̃
=

 (∂mx̃

∂θ

)H(
∂mx̃

∂θ∗

)H
R−1

x̃

[
∂mx̃

∂θ

∂mx̃

∂θ∗

]
+

1

2

 DH
rx̃

DH
∗,rx̃

R−1∗
rx̃ [Drx̃ D∗,rx̃ ] , (23)

where mx̃ = (mT
x ,m

H
x )T , Rx̃ = E((x̃ −mx̃)(x̃ −mx̃)

H) with x̃ = (xT ,xH)T , Drx̃ and D∗,rx̃ denote the

R−derivative ∂rx̃
∂θ and the conjugate R−derivative ∂rx̃

∂θ∗ of rx̃
def
= vec(Rx̃), respectively, and where Rrx̃ = R∗

x̃⊗

Rx̃ is the covariance of the asymptotic distribution of rx̃,N = vec(Rx̃,N ) with Rx̃,N
def
= 1

N

∑N
n=1 x̃(n)x̃

H(n).

2) Whittle formula: When x(n) is a real-valued stationary zero-mean Gaussian multivariate process with

spectrum Rx(f) that depends on the real-valued parameter θ, the Whittle formula [22, th. 9] gives the elements

of the asymptotic FIM associated with N sample values of x(n). Thus the matrix-valued Cramer-Rao bound

is given by

R
θ̂
≥ J−1

θ where Jθ =
N

2

∫ +1/2

−1/2
DH

rx(f)
(
R−∗

x (f)⊗R−1
x (f)

)
Drx(f)df, (24)

where R
θ̂

is the covariance of any unbiased estimate of θ built from (x(n))n=1,...,N and Drx(f) denotes the

derivative ∂rx(f)
∂θ of rx(f)

def
= vec(Rx(f)) where Rx(f) is Hermitian structured.

Using the one-to-one mappings x̃(n) ←→ x̄(n) and θ̃ ←→ θ̄, it is proved in the Appendix the following

extension of the Whittle formula:

Result 2 Let x(n) be a complex-valued stationary zero-mean non necessarily circular, Gaussian multivariate

process with spectrum Rx(f) and complementary spectrum Cx(f) [5, Sec: 8.1] that both depend on the

complex-valued parameter θ, the matrix-valued Cramer-Rao bound is given by

R˜̂
θ
≥ J−1

θ̃
with J

θ̃
=

 Jθ J∗,θ

J∗
∗,θ J∗

θ

 is assumed to be nonsingular, (25)

and Jθ and J∗,θ are given respectively by

Jθ =
N

2

∫ +1/2

−1/2
DH

rx̃(f)
(
R−1∗

x̃ (f)⊗R−1
x̃ (f)

)
Drx̃(f)df, (26)

J∗,θ =
N

2

∫ +1/2

−1/2
DH

rx̃(f)
(
R−1∗

x̃ (f)⊗R−1
x̃ (f)

)
D∗,rx̃(f)df, (27)

8Note that (21) and (22) are slightly different from the elementwise expressions [5, (6.65)] and [5, (6.66)] because the latter expressions
are erroneous.
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or more compactly, by

J
θ̃
=

N

2

∫ +1/2

−1/2

 DH
rx̃(f)

DH
r∗,x̃(f)

R−∗
x̃ (f)⊗R−1

x̃ (f)
[
Drx̃(f) Dr∗,x̃(f)

]
df, (28)

where Drx̃(f) and D∗,rx̃(f) denote the R−derivative ∂rx̃(f)
∂θ and the conjugate R−derivative ∂rx̃(f)

∂θ∗ of rx̃(f)
def
=

vec(Rx̃(f)), respectively, and Rx̃(f) is the spectrum of the augmented process x̃(n)

Rx̃(f) =

 Rx(f) Cx(f)

C∗
x(−f) R∗

x(−f)

 ,

with Rx(f) and Cx(f) the Fourier transforms of Rx(k) = E[(x(n)xH(n−k)] and Cx(k) = E[(x(n)xT (n−k)],

respectively, both characterizing the statistical properties of the random process x(n).

Note that for real-valued parameters, (25) reduces to R
θ̂
≥ J−1

θ that was proved in [23] for derived the CRB

of estimated delays in the context of complex-valued stationary processes.

3) Circular to noncircular comparison: For the Gaussian distribution characterized by (mx,Rx,Cx),

suppose now that the parameter θ is identifiable from (mx,Rx) only. A question remains open (see [5,

Section 6.3.5]): Is Jθ̃ more positive definite if Cx ̸= 0 than if Cx = 0? Or in other words, does the

noncircular case generally improve the CRB of θ with respect to the circular case? Addressing generally

this question from (21) and (22) seems very challenging. But formulating this question in the framework of

measurements x = (x(n))n=1,...,N , where x(n) are IID and where mx, Rx and Cx denote the mean, covariance

and complementary covariance of x(n), respectively, is much easier, as the AMVB based on the statistics that

include both the sample mean, sample covariance and sample complementary covariance attains the CRB for

the Gaussian distribution, i.e.,

J−1

θ̃
= (D̃H

s R−1
s̃ D̃s)

−1, (29)

where J
θ̃

is associated with x(n) alone and where the augmented statistics involved is s̃(θ) =

[mT
x ,m

H
x , vecT (Rx), v

T (Cx), v
H(Cx)]

T in order to satisfy the three conditions of the AMVB (10). Using

(29), it is proved in the Appendix:

Result 3 When the parameter θ of the Gaussian distribution (characterized by (mx,Rx,Cx)) of x(n) is

identifiable from (mx,Rx) only, noncircular Gaussian distributions generally improve the CRB for θ with

respect to the circular case.

CRBmx,Rx,Cx
(θ̃) ≤ CRBmx,Rx,0(θ̃) (30)

where CRBmx,Rx,Cx
(θ̃) and CRBmx,Rx,0(θ̃) denote the augmented complex CRB (13) associated with

noncircular and circular Gaussian distribution, respectively.

In the presence of nuisance parameters α, the previous question is much more involved because the
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complementary covariance matrix Cx can bear information on the parameter of interest θ, but can also introduce

additional nuisance parameters. An example in which (30) is not satisfied in the presence of nuisance parameters

is presented in Section VI. However in particular statistical models, (30) can be extended as it is proved in the

next section.

V. NOISY LINEAR MIXTURE

Consider the following model

x(n) = A(θ)s(n) + e(n) ∈ Cr n = 1, ..., N, (31)

where (i) s(n) and e(n) are independent zero-mean random variables, (ii) e(n) is circular with E(e(n)eH(n)) =

σ2
eI and s(n) ∈ Cp is either circular with E(s(n)sH(n)) = Rs nonsingular or noncircular with E(s̃(n)s̃H(n)) =

Rs̃ nonsingular, (iii), the useful parameter θ ∈ Cq is characterized by the subspace generated by the columns

of the full column rank r × p matrix A(θ) with p < r. The nuisance parameters α gathers here the terms

(Rs)i,j for 1 ≤ i ≤ j ≤ p and σ2
e [resp., the terms (Rs)i,j and (Cs)i,j for 1 ≤ i ≤ j ≤ p and σ2

e ] in the

circular [resp., noncircular] case.

A. CRB expressions

Using the direct approach introduced by [24] to concentrate the CRB on the parameter θ, it is proved in the

Appendix the following result not been published in the open literature:

For the model (31) with assumptions (i)-(iii) where (s(n))n=1,...,N and (e(n))n=1,...,N are independent

Gaussian distributed random variables, the CRB for the real-valued parameter alone θ̄
def
= [ReT (θ), ImT (θ)]T

is given by

CRB(θ̄) =
σ2
e

2N

[
Re

(
∂aH

∂θ̄
(HT ⊗Π⊥

A)
∂a

∂θ̄

)]−1

, (32)

where a
def
= vec(A), Π⊥

A
def
= I − A(AHA)−1AH is the ortho-complement of the projection matrix on the

columns of A and H is given by the Hermitian matrices RsA
HR−1

x ARs and [RsA
H ,CsA

T ]R−1
x̃

 ARs

A∗C∗
s


in the circular and noncircular cases, respectively.

We note that (32) extends the CRB compact expression [24, rel. (5)] given for the DOA modeling with scalar-

sensors for one parameter per source, and encompasses DOA modeling with vector-sensors for an arbitrary

number of parameters per source and many others models as the SIMO and MIMO modelings.

Using the one-to-one mapping θ̄ ←→ θ̃, the following compact expression of the augmented complex CRB

(12)-(13) is proved in the Appendix.

Result 4 For the model (31) with assumptions (i)-(iii), where (s(n))n=1,...,N and (e(n))n=1,...,N are independent

December 11, 2014 DRAFT



12

Gaussian distributed random variables, we have

R˜̂
θ
≥ CRB(θ̃), with CRB(θ̃) = J−1

θ̃
=

 Jθ J∗,θ

J∗
∗,θ J∗

θ

−1

, (33)

where

Jθ =
N

σ2
e

[(
∂a

∂θ

)H

(HT ⊗Π⊥
A)

(
∂a

∂θ

)
+

(
∂a

∂θ∗

)T

(H⊗Π⊥T

A )

(
∂a

∂θ∗

)∗
]
, (34)

J∗,θ =
N

σ2
e

[(
∂a

∂θ

)H

(HT ⊗Π⊥
A)

(
∂a

∂θ∗

)
+

(
∂a

∂θ∗

)T

(H⊗Π⊥T

A )

(
∂a

∂θ

)∗
]
. (35)

In the particular case where a is C−differentiable w.r.t. θ (e.g., for SIMO and MIMO channel modelings),
∂a
∂θ∗ = 0 and (34) and (35) reduce to

Jθ =
N

σ2
e

(
∂a

∂θ

)H

(HT ⊗Π⊥
A)

(
∂a

∂θ

)
and J∗,θ = 0, (36)

and the AMV estimator is asymptotically circular with R
θ̂
= J−1

θ , whatever the circularity properties of x(n).

Note that the closed-form expressions (32), (34), (35) and (36) do not take into account the prior knowledge

relative to the sources because they have been derived without any constraint on Rs and Cs. But unfortunately,

taking into account these constraints leads to very intricate expressions (see e.g., [25, eq. (13)] for circular

uncorrelated sources for the DOA modeling). This point will be illustrated in Section VI with the SISO channel

modeling. Furthermore, note that the condition A is full column rank with p < r is not necessary to identify the

useful parameter θ when specific a priori knowledge about the sources is available, see e.g., [28] for real-valued

or QPSK modulations and [29] for offset linear modulations in SISO channel modeling.

Finally comparing the circular to the noncircular cases, it is proved in the Appendix that the CRB for θ in the

noncircular case is upper bounded by the associated asymptotic CRB in the circular case. More precisely, for

the model (31) with assumptions (i)-(iii), where (s(n))n=1,...,N and (e(n))n=1,...,N are independent Gaussian

distributed random variables, we have

CRBRx,Cx
(θ̃) ≤ CRBRx,0(θ̃). (37)

This result extends the CRB inequality proved in [21] for the DOA parameters. Consequently, when the precision

on the parameter θ is important, it is preferable to use noncircular s(k) signals (e.g., real-valued) than circular

ones, for example for blind SISO, SIMO and MIMO channels identification.

B. Efficiency of subspace-based estimators

For the model (31) with assumptions (i)-(iii), many algorithms are consistent subspace-based, i.e., the

estimates θ̂ are obtained by exploiting the orthogonality between a sample subspace and a parameter-
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dependent subspace [26]. In other words, for circular x(n), these algorithms satisfy the mapping (1) where

the statistic sN is usually the orthogonal projector ΠRx,N on noise (or signal) associated with the sample

covariance Rx,N = 1
N

∑N
n=1 x(n)x

H(n). To exploit the potential noncircularity of x(n), the orthogonal

projector ΠRx̃,N associated with the sample augmented covariance Rx̃,N = 1
N

∑N
n=1 x̃(n)x̃

H(n) or the

couple (ΠRx,N ,ΠCx,N ) of orthogonal projectors (where ΠCx,N is the orthogonal projector associated with

Cx,N = 1
N

∑N
n=1 x(n)x

T (n)) are used. Although, the asymptotic covariance Rs of the statistics vec(ΠRx,N ),

vec(ΠRx̃,N ) and vec(ΠRx,N ,ΠCx,N ) are singular, and thus do not satisfy the third condition introduced in the

beginning of Section III, the following result (not published in the open literature) is proved in the Appendix:

For the model (31) with assumptions (i)-(iii), the AMVB (10) becomes

Rθ̃ =

 Rθ Cθ

C∗
θ R∗

θ

 = D̃gRs̃D̃
H
g ≥ AMVBs(θ̃)

def
= (D̃H

s R#
s̃ D̃s)

−1 (38)

for sN = vec(ΠRx,N ), vec(ΠRx̃,N ) or vec(ΠRx,N ,ΠCx,N ). Furthermore, despite the lack of a one-to-one

mapping between (ΠRx,N ,ΠCx,N ) and ΠRx̃,N , contrary to the one-to-one mapping (Rx,N ,Cx,N )←→ Rx̃,N ,

the AMVB based on the statistics (ΠRx,N ,ΠCx,N ) and ΠRx̃,N coincide. Note that the expression of Rs̃

does not depend on the temporal covariance and the fourth-order moments of x(n) [21]. So, the asymptotic

augmented covariance Rθ̃ of an estimator of θ given by an arbitrary consistent subspace-based algorithm

built from ΠRx,N , ΠRx̃,N or (ΠRx,N ,ΠCx,N ) depends on the distribution of the time series x(n) through the

second-order moments of x(n) only.

To evaluate the efficiency of these subspace-based algorithms, we consider now the particular case where

(s(n)n=1,...,N and (e(n))n=1,...,N are independent Gaussian distributed random variables. In this case, the

following result is proved in the Appendix:

Result 5 For the model (31) with assumptions (i)-(iii), where (s(n)n=1,...,N and (e(n))n=1,...,N are independent

Gaussian distributed random variables, the AMVB (38) associated with the statistics ΠRx,N , [resp. ΠRx̃,N

or (ΠRx,N ,ΠCx,N )] are equal to the normalized (with N = 1) CRB (33) associated with the circular [resp.

noncircular] Gaussian distribution of x(n).

AMVBs(θ̃) = CRB(θ̃) (with N = 1). (39)

This result extends to arbitrary complex parametrization, a result proved in [27] in the particular case of DOA

modeling with a single parameter per source. It proves the interest of the subspace-based algorithms when no

a priori information is available on the distribution of the signals s(n) and e(n).

Finally, using a whitening approach, the following remark is proved in the Appendix:

Remark 1 All the Results of this section (rel. (32), Result 4, rel. (37) and (38), and Result 5) can be extended

to the case where the noise e(n) is circular with E(e(n)eH(n)) = σ2
eΣ where Σ is known positive definite,
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by replacing Π⊥
A by ΠΣ

def
= Σ−1 −Σ−1A(AHΣ−1A)−1AHΣ−1, which is no longer a projection matrix.

VI. NUMERICAL ILLUSTRATION

In this section, we illustrate the results of Section V by considering the complex blind SIMO channel iden-

tification and complex independent component analysis (ICA) models. The blind SIMO channel identification

data model can be written as shown in (31) after collecting the L + 1 successive received sampled complex

baseband signals at the output of a 1× P SIMO FIR channel of order M where

A(θ) =



h10 h11 · · · h1M
...

...
...

...

hP0 hP1 · · · hPM

h10 h11 · · · h1M
...

...
...

...

...
...

...
...

hP0 hP1 · · · hPM



∈ CP (L+1)×(L+M+1), with9 h10 = 1

with θ = [h20, ..., h
P
0 , h

1
1, ..., h

P
1 , ..., h

1
M , ..., hPM ]T ∈ C(M+1)P−1 and where s(n) gathers L+M + 1 successive

inputs. To satisfy the condition (iii) introduced in the beginning of section V, L must satisfy P (L + 1) >

L+M + 1 and the polynomials h(p)(z) =
∑M

k=0 h
p
kz

k, p = 1, .., P must not share common zeros.

We consider here the particular case P = L = M = 2, where the input s(n) is a sequence of equiprobable

independent BPSK σse
iϕs{−1,+1} or QPSK σse

iϕs{−1,+1,−i,+i} symbols. Consequently, Rs = σ2
sI for

both inputs, but Cs = σ2
se

2iϕsI for BPSK symbols and Cs = 0 for QPSK symbols.

Fig.1 exhibits the normalized (N = 1) asymptotic MSE(θ): Tr[AMVBBPSK
s (θ)] and Tr[AMVBQPSK

s (θ)]

associated with the projector statistics, as a function of the phase β for the channels h(1)(z) = (1− z−1
1,1z)(1−

z−1
2,1z) and h(2)(z) = (1 − z−1

1,2z)(1 − z−1
2,2z) with z1,1 = 0.8, z2,1 = 1.25eiπ/4, z1,2 = 0.8eiβ and z2,2 =

1.25e−iπ/4, where σ2
s/σ

2
e = 10dB and ϕs = π/3. We note that here the AMV estimators are asymptotically

circular because A(θ) is C−differentiable. For Gaussian distributed inputs s(n), these AMVBs are equal to

the associated CRBs (33), (36) from Result 2. Fig.1 shows that the difference between Tr[AMVBBPSK
s (θ)] and

Tr[AMVBQPSK
s (θ)] is large enough, in particular for β approaching 0 for which A(θ) is close to be singular

where θ is not identifiable. This behavior is similar to the DOA modeling for which the difference between

these two AMVBs is more prominent for low DOA separations [21].

9We have assumed h1
0 = 1 to avoid any ambiguity for the definition of the impulse response θ in the product A(θ)s(n).
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Fig.1 Tr[AMVBBPSK
s (θ)] and Tr[AMVBQPSK

s (θ)] as a function of the phase parameter β for the channel.

When the structure information of Rs and Cs is used, two new AMVBs (AMVBBPSK
r,c (θ) and

AMVBQPSK
r,c (θ)) based on the statistics Rx,N = 1

N

∑N
n=1 x(n)x

H(n) and Cx,N = 1
N

∑N
n=1 x(n)x

T (n)

can be considered. Fig.2 exhibits the normalized (N = 1) asymptotic MSE(θ): Tr[AMVBBPSK
r,c (θ)] and

Tr[AMVBQPSK
r,c (θ)] in the same scenario as Fig.1. The AMBV AMVBNCG

r,c (θ) and AMVBCG
r,c (θ) associated

with noncircular and circular Gaussian distributions, respectively, are also exhibited. This figure shows that these

AMVB are slightly sensitive to the distribution of the inputs. Furthermore, the AMVB associated with BPSK

and noncircular Gaussian distributed inputs are upper bouded by the AMVB associated with QPSK and circular

Gaussian distributed inputs, respectively, despite the presence of the nuisance parameters α = [ϕs, σs, σe]
T .

Finally, comparing Fig.1 and 2, shows that this uncorrelation a priori information on the inputs is quite

informative. Moreover, we see that these bounds keep finite values when A is no longer full column rank,

i.e., for β = 0, meaning that the θ becomes identifiable when h(1)(z) and h(2)(z) share a common zero.

0 1 2 3 4 5 6
10

0

10
1

10
2

β (radians)

Tr
(A

M
VB

(θ)
) AMVBCG

r,c

AMVBQPSK
r,c

AMVBNCG
r,c

AMVBBPSK
r,c

Fig.2 Tr[AMVBBPSK
r,c (θ)], Tr[AMVBQPSK

r,c (θ)], Tr[AMVBCG
r,c (θ)] and Tr[AMVBNCG

r,c (θ)] as a function of the phase parameter
β for the channel.
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Fig 3 shows the presented bounds in Fig 2 with β = 0. We see Tr[AMVBNCG
r,c (θ)] can be larger than

Tr[AMVBCG
r,c (θ)], depending on the SNR values. This interesting counterexample does not contradict neither

Result 3 (due to the presence of nuisance parameters), nor eq. (33) (due to the structure information of Rs and

Cs that is taken into account).

0 5 10 15 20 25 30
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0
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1

10
2

10
3

SNR (dB)

 

 

Tr
(A

M
VB

(θ)
)

AMVBNCG
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AMVBCG
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AMVBQPSK
r,c

AMVBBPSK
r,c

Fig.3 Tr[AMVBBPSK
r,c (θ)], Tr[AMVBQPSK

r,c (θ)], Tr[AMVBCG
r,c (θ)] and Tr[AMVBNCG

r,c (θ)] as a function of the SNR for β = 0.

Fig.4 compares the AMVBs to the CRBs associated with BPSK and QPSK distribution sources. Because

the associated PDF of x(n) is a mixture of cL+M+1 (c = 2 [resp. 4] for BPSK [resp. QPSK] modulations),

Gaussian PDFs:

p(x(n);θ,α) =
1

cL+M+1πP (L+1)σ
2P (L+1)
e

cL+M+1∑
l=1

e
− ∥x(n)−A(θ)sl∥

2

σ2
e with sl

def
= σse

iαsϵl

with ϵl = (ϵ1,l, ϵ2,l, ...ϵL+M+1,l)
T , l = 1, ..., cL+M+1 where ϵk,l represent all the sequence of L + M + 1

{−1,+1} [resp., {−1,+1,−i,+i}] BPSK [resp. QPSK] symbols, this latter CRB appears to be prohibitive to

compute. Thus we use a numerical approximation derived from the strong law of large numbers applied to

the expectation of the first expressions of the different FIMs (14), (15), (19) and (20). Note that in contrast to

Gaussian inputs, efficient algorithms are no longer circular distributed because here J∗,θ ̸= 0. Fig.4 exhibits

the normalized (N = 1) Tr[CRBBPSK(θ)] and Tr[CRBQPSK(θ)] with CRB(θ) = [(Jθ̃ − Jθ̃,αJ
−1
α JH

θ̃,α
)−1]θ,θ

given by (18). It also exhibits Tr[CRBBPSK
1 (θ)], Tr[CRBBPSK

2 (θ)], Tr[CRBQPSK
1 (θ)] and Tr[CRBQPSK

2 (θ)],

with CRB1(θ)
def
= (Jθ − J∗,θJ

−1
θ J∗

∗,θ)
−1 and CRB2(θ)

def
= J−1

θ to see the impact of the nuisance parameters

and J∗,θ on the CRB. We see that Tr[CRBQPSK(θ)] is still larger than Tr[CRBBPSK(θ)]. The presence of

unknown nuisance parameters degrades the trace of the CRB of almost 10dB, but the impact of the nonzero

value of J∗,θ has little influence of the CRBs.
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Fig.4 Tr[CRB(θ)], Tr[(Jθ − J∗,θJ
−1
θ J∗

∗,θ)
−1] and Tr[J−1

θ ] for QPSK and BPSK modulations as a function of the phase parameter
β for the channel.

This contrasts with the estimation of the gain matrix for complex ICA model [20], in which the nonzero

value of J∗,θ can have a strong impact on the CRB. This is shown in Figs 5 and 6 that exhibit the

normalized (N = 1) Tr[CRB(θ)] and Tr[CRB1(θ)] where here CRB(θ)
def
= (Jθ − J∗,θJ

−1
θ J∗

∗,θ)
−1 (no

nuisance parameter) and CRB1(θ)
def
= J−1

θ . In this experiment, x(n) = As(n) where A is invertible square

unstructured, θ
def
= vec(WA), where W is the estimated demixing matrix A−1 and WA is the so-called

gain matrix. For these two figures, we consider 3 independent generalized Gaussian distributed sources

with shape parameter c > 0 and noncircularity coefficient γ ∈ [0, 1]. We see in these figures that the

nonzero terms J∗,θ can have a large influence on the CRB, particularly for c close to 1 (Gaussian sources

for which θ is not identifiable) and for γ close to 0 (circular sources for which θ is not identifiable) or

1 (rectilinear sources). This proves that the traditional lower bound J−1
θ on the CRB can be very loose.
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Fig.5 Tr[CRB(θ)] and Tr[J−1
θ ] as a function of the noncircularity coefficient γ for c = 0.25.
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Fig.6 Tr[CRB(θ)] and Tr[J−1
θ ] as a function of the shape parameter c for γ = 0.9.

VII. CONCLUSION

Despite the real-valued nature of physical signals, complex-valued signals and parameters are generally

encountered in many science and engineering problems as the complex formalism can provide a natural way to

capture the physical characteristics of these signals and parameters. The wider deployment of complex-valued

signal processing is still hindered by the fact that the statistical tools for handling complex-valued parameters

are missing or scattered in the literature. This paper has provided a rigorous and unified framework to study the

statistical performance of complex-valued parameter estimators, with a special attention to the complex Cramer-

Rao and asymptotically minimum variance-type performance bounds where new extensions and properties have

been presented with a special emphasis on noisy linear mixtures. Some of these results have been illustrated by

numerical examples with blind identification of complex SIMO channels and complex independent component

analysis examples and models.

APPENDIX

Proof of eqs. (4) and (5): From (3) and (2), we get respectively

˜̂
θN − θ̃ =

 Dg D∗,g

D∗
g D∗

∗,g

 (s̃N − s̃) + o(||sN − s)||

and
√
N ãH (s̃N − s̃)

L→ NR

0; ãH

 Rs Cs

C∗
s R∗

s

 ã

 ,

for any a ∈ Cp. Then following the steps of the proof of the standard theorem of continuity [30, Th.B, p.124],

we deduce for any b ∈ Cq:

√
N b̃H(

˜̂
θN − θ̃)

L→ NR

0; b̃H

 Dg D∗,g

D∗
g D∗

∗,g

 Rs Cs

C∗
s R∗

s

 Dg D∗,g

D∗
g D∗

∗,g

H

b̃

 .
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Proof of eq. (9): If the mapping g is R−differentiable to the second-order, the CR−calculus [11] allows us to

give the kth component of g:

[g(sN )]k = [g(s)]k +
∂gk
∂s

(sN − s) +
∂g

∂s∗
(sN − s)∗

+
1

2
(sN − s)H

∂

∂s

(
∂gk
∂s

)H

(sN − s) +
1

2
(sN − s)T

[
∂

∂s

(
∂gk
∂s

)H
]T

(sN − s)∗

+
1

2
(sN − s)H

∂

∂s∗

(
∂gk
∂s

)H

(sN − s)∗ +
1

2
(sN − s)T

∂

∂s

(
∂gk
∂s

)T

(sN − s)

+ o(||sN − s||2). (40)

Taking the expectation of (40) and assuming that the necessary mathematics conditions concerning the remainder

are met (see comments in Section II), it holds

E[θ̂N ]k = θk

+ Tr

(
E
(
(sN−s)(sN−s)H

)( ∂

∂s

(
∂gk
∂s

)H
))

+
1

2
Tr

(
E
(
(sN−s)∗(sN−s)H

)( ∂

∂s∗

(
∂gk
∂s

)H
))

+
1

2
Tr

(
E
(
(sN−s)(sN−s)T

)( ∂

∂s

(
∂gk
∂s

)T
))

+ o

(
1

N

)
.

(8) concludes the proof.

Proof of Result 1: From the R−differentiability of the function g, we get from (3) the augmented equality:

g̃(s+ δs) = θ̃ + D̃gδs̃+ o(||δs||). (41)

In addition, because g̃[s(θ)] = θ̃ for all θ, we have:

g̃[s(θ + δθ)] = θ̃ + δθ̃

= g̃[s(θ) + (Ds,D∗,s)δθ̃ + o(||δθ||)]

= θ̃ + D̃gD̃sδθ̃ + o(||δθ||),

where we have used the R−differentiability of the functions θ 7−→ s(θ) and s 7−→ g(s) in the second and

third equalities, respectively. Therefore D̃g is a left inverse of D̃s, i.e., D̃gD̃s = I2q. So it is easy to check

that this implies the following equality

D̃gRs̃D̃
H
g − (D̃H

s R−1
s̃ D̃s)

−1 = [D̃g − (D̃H
s R−1

s̃ D̃s)
−1D̃H

s R−1
s̃ ]Rs̃[D̃g − (D̃H

s R−1
s̃ D̃s)

−1D̃H
s R−1

s̃ ]H ,

that concludes the proof of (10).

If VN (β)
def
= [̃sN − s̃(β)]HWN [̃sN − s̃(β)], its R−derivative ∂VN (β)

∂β is zero at β = θ + δθ where θ + δθ

is associated with s̃N = s̃ + δs̃. Expanding this derivative by a perturbation analysis and using s̃N − s̃(β) =

δs̃ − D̃sδθ̃ + o(||δθ||), we straightforwardly obtain (D̃H
s R−1

s̃ D̃s)δθ̃ + o(||δθ||) = D̃H
s R−1

s̃ δs̃ + o(||δ||s||).
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Consequently, the algorithm g defined by (11) satisfies

g̃(s̃+ δs̃) = θ̃ + (D̃H
s R−1

s̃ D̃s)
−1D̃H

s R−1
s̃ δs̃+ o(||δs)||).

Consequently, the C−derivative of the mapping s̃ 7−→ θ̃ = g̃(s̃) involved by (11) is

D̃g = (D̃H
s R−1

s̃ D̃s)
−1D̃H

s R−1
s̃ and the covariance of the asymptotic distribution of θ̃N is therefore

Rθ̃ = D̃gRs̃D̃
H
g = (D̃H

s R−1
s̃ D̃s)

−1, that concludes the proof of (11).

Proof of Result 2: Whittle formula (24) applies to x̄(n) associated with the real-valued parameter θ̄ where

U
def
= 1

2

 I I

−iI iI

 of conformable dimension.

Using

Drx̄(f) = Ur
∂rx̃(f)

∂θ̄
= Ur

[
∂rx̃(f)

∂θ
,
∂rx̃(f)

∂θ∗

]
U−1

q = Ur [Drx̃(f),D∗,rx̃(f)]U
−1
q

and Rx̄(f) = UrRx̃(f)U
H
r , we get from R̂̄θ ≥ J−1

θ̄
after straightforward algebra manipulations:

UqR̂̃
θ
UH

q ≥ Uq

N

2

∫ +1/2

−1/2

 DH
rx̃(f)

DH
∗,rx̃(f)

(R−∗
x (f)⊗R−1

x (f)
)
[Drx̃(f),D∗,rx̃(f)] df,

−1

UH
q ,

that concludes the proof of (25).

Proof of Result 3: From (29),

J
θ̃
(mx,Rx,Cx) =

[
D̃H

s1 , D̃
H
s2

]
R−1

s̃

 D̃s1

D̃s2

 ,

where s̃ is split in s̃1 and s̃2, i.e., s̃ =

 s̃1

s̃2

 with s̃1 = [mT
x ,m

H
x , vecT (Rx)]

T and s̃2 = [vT (Cx), v
H(Cx)]

T ,

and where D̃si
def
=

 Dsi D∗,si

D∗
∗,si D∗

si

, i = 1, 2.

Consequently J
θ̃
(mx,Rx,0) = D̃H

s1R
−1
s̃1

D̃s1 where Rs̃ =

 Rs̃1 Rs̃1,2

RH
s̃1,2

Rs̃2

. From lemma [31, A.4],

[
D̃H

s1 , D̃
H
s2

]
R−1

s̃

 D̃s1

D̃s2

 ≥ D̃H
s1R

−1
s̃1

D̃s1 , that concludes the proof of (30).

Proof of eq. (32): In the circular case, all the steps of the proofs given for the DOA model in [24] remain valid

with the general model (31), where [24, rel. (16)] is replaced by

∂Rx

∂θk
=

∂A(θ)

∂θk
RsA

H(θ) +A(θ)Rs
∂AH(θ)

∂θk

and where the term Ackd
H
k in [24, rel. (18)] and [24, rel. (27)] is replaced by the term A(θ)Rs

∂AH(θ)
∂θk

.
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In the noncircular case, the proof follows the steps of [21, Appendix C] based on [24], where [24, rel. (16)]

is replaced by

∂Rx̃

∂θk
=

∂Ã(θ)

∂θk
Rs̃Ã

H(θ) + Ã(θ)Rs̃
∂ÃH(θ)

∂θk
with Ã(θ)

def
=

 A(θ) 0

0 A∗(θ)


and where the term Ackd

H
k in [24, rel. (18)] and [24, rel. (27)] is replaced by the term Ã(θ)Rs̃

∂ÃH(θ)
∂θk

.

Proof of Result 4: Using θ̄ = Uθ̃, we have CRB(θ̃) = [UHCRB−1(θ̄)U]−1. Replacing CRB−1(θ̄) from (32)

by 8N
σ2
e

[
Re
(
U
(
∂a
∂θ ,

∂a
∂θ∗

)H (
HT ⊗Π⊥

A

) (
∂a
∂θ ,

∂a
∂θ∗

)
UH

)]
, (33) (34) (35) are obtained from straightforward

manipulations.

Proof of eq. (37): First, from [31, lemma A.4], we have Hnc − Hc ≥ 0 with Hnc
def
=

[RsA
H ,CsA

T ]R−1
x̃

 ARs

A∗C∗
s

 and Hc
def
= RsA

HR−1
x ARs, and this inequality applies to the transpose

of these matrices: HT
nc − HT

c ≥ 0. Then, because Π⊥
A ≥ 0, (HT

nc − HT
c ) ⊗ Π⊥

A ≥ 0 thanks to a

standard result of linear algebra (see e.g., [32, prop. 11.5]. Consequently ∂aH

∂θ̄

(
(HT

nc −HT
c )⊗Π⊥

A)
)

∂a
∂θ̄
≥

0. This inequality is extended to its conjugate and consequently to the real-valued symmet-

ric matrix Re
(
∂aH

∂θ̄

(
(HT

nc −HT
c )⊗Π⊥

A)
)

∂a
∂θ̄

)
. Then by inversion

[
Re
(
∂aH

∂θ̄

(
HT

nc ⊗Π⊥
A

)
∂a
∂θ̄

)]−1
≤[

Re
(
∂aH

∂θ̄

(
HT

c ⊗Π⊥
A

)
∂a
∂θ̄

)]−1
and consequently CRBRx,Cx

(θ̄) ≤ CRBRx,0(θ̄).

Using the one-to-one linear mapping θ̄ = Uθ̃ where U is unitary (U−1 = 2UH ),

CRB(θ̃) = 4UHCRB(θ̄)U. Consequently CRBRx,Cx
(θ̃) ≤ CRBRx,0(θ̃), as well.

Proof of eq. (38): First, note that the AMVB derivations in [27] apply to the real-valued parameter θ̄ and thus

we have:

Rθ̄ ≥ AMVBs(θ̄)
def
= (DH

s,θ̄R
#
s Ds,θ̄)

−1 (42)

where Ds,θ̄
def
= ds(θ̄)/dθ̄ which is related to the R−derivative Ds = ∂s

∂θ and the conjugate R−derivative

D∗,s =
∂s
∂θ∗ of s by Ds,θ̄ = [Ds,D∗,s]U

−1. Using θ̄ = Uθ̃, Rθ̄ = UR
θ̃
UH , (42) is equivalent to

R
θ̃
≥ [(Ds,D∗,s)

HR#
s (Ds,D∗,s)]

−1.

Consider now the statistic sN = vec(ΠRx,N ). Using the Hermitian structure of ΠRx,N , its asymptotic covariance

Rs and complementary covariance Cs are related by:

Rs̃ =

 Rs Cs

C∗
s R∗

s

 = 2BKRsB
H
K ,
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where BK
def
= 1√

2

 I

K

 satisfying BH
KBK = I. Consequently R#

s̃ = 1
2BKR#

s BH
K from [32, Prop. 7.69].

This implies

D̃H
s R#

s̃ D̃s =
1

4

 DH
s DT

∗,s

DH
∗,s DT

s

 I

K

R#
s [I,K]

 Ds D∗,s

D∗
∗,s D∗

s


= (Ds,D∗,s)

HR#
s (Ds,D∗,s), (43)

where KDs = D∗
∗,s and KD∗,s = D∗

s (due to the Hermitian structure of sN = ΠRx,N and the relation

(ds/dθ)∗ = ds∗/dθ∗ between R−derivatives) are used in the second equality. So (38) is proved for

sN = vec(ΠRx,N ). The proofs for vec(ΠRx̃,N ) and vec(ΠRx,N ,ΠCx,N ) are similar. Finally, note that AMVB

derivations in [27], the AMVB based on ΠRx̃,N and (ΠRx,N ,ΠCx,N ) coincide for θ̄, and thus for θ̃.

Proof of Result 5: Consider the statistic sN = vec(ΠRx,N ) whose Moore-Penrose inverse of the covariance of

its asymptotic distribution is given from [27] by:

R#
s =

1

σ2
e

[
(A∗H∗AT ⊗Π⊥

A) + (Π⊥T

A ⊗AHAH)
]
.

So from (43), D̃H
s R#

s̃ D̃s is given by

D̃H
s R#

s̃ D̃s =
1

σ2
e

 DH
s

DH
∗,s

[(A∗H∗AT ⊗Π⊥
A) + (Π⊥T

A ⊗AHAH)
]
[Ds,D∗,s], (44)

whose term (k, l) of the 1,1 block is written as:

1

σ2
e

vecH
(
∂Π⊥

A

∂θk

)(
(A∗H∗AT ⊗Π⊥

A) + (Π⊥∗
A ⊗AHAH)

)
vec

(
∂Π⊥

A

∂θl

)
. (45)

Using vecH
(
∂Π⊥

A

∂θk

)
= vecT

((
∂Π⊥

A

∂θ∗
k

)T)
and the identity Tr(ABCD) = vecT (AT )(DT ⊗B)vec(C), the term

(45) becomes

1

σ2
e

Tr

(
∂Π⊥

A

∂θ∗k
Π⊥

A

∂Π⊥
A

∂θl
AHAH +

∂Π⊥
A

∂θ∗k
AHAH ∂Π⊥

A

∂θl
Π⊥

A

)

=
1

σ2
e

Tr

AH ∂Π⊥
A

∂θ∗k︸ ︷︷ ︸Π⊥
A

∂Π⊥
A

∂θl
A︸ ︷︷ ︸H+

∂Π⊥
A

∂θ∗k
A︸ ︷︷ ︸HAH ∂Π⊥

A

∂θl︸ ︷︷ ︸Π⊥
A

 . (46)

Then Π⊥
AA = 0 implying ∂Π⊥

A

∂θi
A + Π⊥

A
∂A
∂θi

= 0 and ∂Π⊥
A

∂θ∗
i
A + Π⊥

A
∂A
∂θ∗

i
= 0, i = k, l and using the relation(

∂×
∂θi

)∗
= ∂×∗

∂θ∗
i

, i = k, l between R−derivatives of A and Π⊥
A, the term (46) is written as

1

σ2
e

Tr

((
∂A

∂θk

)H

Π⊥
A

∂A

∂θl
H+

(
∂A

∂θ∗k

)T

Π⊥T

A

(
∂A

∂θ∗l

)∗
HT

)

=
1

σ2
e

vecT
(
∂A

∂θk

)∗
(HT ⊗Π⊥

A)vec

(
∂A

∂θl

)
+

1

σ2
e

vecT
(
∂A

∂θ∗k

)
(H⊗Π⊥T

A )vec

(
∂A

∂θ∗l

)∗
.
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Consequently the block (1,1) of D̃H
s R#

s̃ D̃s is given by

1

σ2
e

(
∂a

∂θ

)H

(HT ⊗Π⊥
A)

(
∂a

∂θ

)
+

1

σ2
e

(
∂a

∂θ∗

)T

(H⊗Π⊥T

A )

(
∂a

∂θ∗

)∗
,

which is equal to the block Jθ of (34) for N = 1. The derivation of the other three blocks of D̃H
s R#

s̃ D̃s are

obtained following the same steps and (39) is proved for the statistic sN = vec(ΠRx,N ).

Concerning the statistics sN = vec(ΠRx̃,N ) and sN = vec(ΠRx,N ,ΠCx,N ), the covariance Rs of their

asymptotic distribution and the associated Moore-Penrose inverse R#
s have been derived in [27]. Following

the same steps that for sN = vec(ΠRx,N ), (39) is proved for these other two statistics.

Proof of Remark 1: Using an arbitrary square root L of Σ, i.e., Σ = LLH , the model (31) becomes

xL(n)
def
= L−1x(n) = AL(θ)s(n) + eL(n) (47)

with AL(θ)
def
= L−1A(θ) and eL(n)

def
= L−1e(n). Consequently, the three conditions introduced in the

beginning of Section V are still valid, and thus also all the results of this section apply by replacing A(θ) by

L−1A(θ) in expressions (32), (34), (35) and (36).

Note that in these expressions, a and Π⊥
A become aL = vec(L−1A) = vec(L−1AI) = (I⊗ L−1)vec(A) =

(I ⊗ L−1)a and Π⊥
AL

= I − L−1A(AHΣ−1A)−1AHL−H , respectively. H is invariant in the circular and

noncircular cases as

RsA
HL−H(L−1RxL

−H)−1L−1ARs = H

and

[RsA
HL−H ,CsA

TL−T ]

 L−1RxL
−H L−1CxL

−T

L−∗C∗
xL

−H L−∗R∗
xL

−T

−1  L−1ARs

L−∗A∗C∗
s


= [RsA

HL−H ,CsA
TL−T ]

 LH

LT

 Rx Cx

C∗
x R∗

x

−1

[L,L∗]

 L−1ARs

L−∗A∗C∗
s

 = H,

using partitioned inverse identities (see e.g., [32, prop. 14.11]).

Consequently the term
(
∂a
∂θ

)H
(HT ⊗Π⊥

A)
(
∂a
∂θ

)
in the expressions (32), (34), (35) and (36) becomes:(

∂aL
∂θ

)H

(HT ⊗Π⊥
AL

)

(
∂aL
∂θ

)
=

(
∂a

∂θ

)H

(I⊗ L−H)(HT ⊗Π⊥
AL

)(I⊗ L−1)︸ ︷︷ ︸
HT⊗ (L−HΠ⊥

AL
L−1)

(
∂a

∂θ

)
,

with L−HΠ⊥
AL

L−1 = Σ−1 −Σ−1A(AHΣ−1A)−1AHΣ−1 def
= ΠΣ.
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