
HAL Id: hal-01254993
https://hal.science/hal-01254993v1

Submitted on 13 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SHoPS: Set Homomorphic Proof of data Possession
Scheme in cloud storage applications

Nesrine Kaaniche, Maryline Laurent

To cite this version:
Nesrine Kaaniche, Maryline Laurent. SHoPS: Set Homomorphic Proof of data Possession Scheme in
cloud storage applications. Services 2015 : IEEE World Congress on Services , Jun 2015, New York,
United States. pp.143 - 150, �10.1109/SERVICES.2015.29�. �hal-01254993�

https://hal.science/hal-01254993v1
https://hal.archives-ouvertes.fr

SHoPS: Set Homomorphic Proof of Data
Possession Scheme in Cloud Storage Applications

Nesrine Kaaniche, Maryline Laurent

Institut Mines-Telecom, Telecom SudParis, UMR CNRS 5157 SAMOVAR
e–mail: {Nesrine.Kaaniche, Maryline.Laurent}@telecom-sudparis.eu

Abstract—The prospect of outsourcing an increasing amount of
data to a third party and the abstract nature of the cloud promote
the proliferation of security and privacy challenges, namely, the
remote data possession checking.
This paper addresses this security concern, while supporting the
verification of several data blocks outsourced across multiple
storing nodes. We propose a new set homomorphic proof of
data possession, called SHoPS, supporting the verification of
aggregated proofs. It proposes a deterministic Proof of Data
Possession (PDP) scheme based on interactive proof protocols.
Our approach has several advantages. First, it supports public
verifiability where the data owner delegates the verification
process to another entity, thus releasing him from the burden
of periodical verifications. Second, it allows the aggregation of
several proofs and the verification of a subset of data files’ proofs
while providing an attractive communication overhead.

I. INTRODUCTION

The explosive growth of data continues to rise the demand
for new storage and network capacities, along with an
increasing need for more cost effective architectures [9]. As
such, recent years have witnessed the trend of leveraging
cloud data storage, since it provides efficient remote storage
services in a pay per use business model.
However, these promising data storage services bring many
challenging design issues, considerably due to the loss
of control on outsourced data. That is, cloud data are
often subject to a large number of attack vectors and the
responsibility of securely managing these outsourced data is
splitting across multiple storage capacities. Nonetheless, in
order to reduce operating costs and save storage capacities,
dishonest providers might intentionally slight these replication
procedures, resulting in unrecoverable data errors or even data
loss. Even when cloud providers implement a fault tolerant
policy, clients have no technical means of verifying that their
files are not vulnerable, for instance, to drive-crashes. There
is an implementation of remote data checking at the three
following levels:
(1) between a client and a CSP – a cloud client should have
an efficient way to perform periodical integrity verifications,
without keeping the data locally. This client’s concern
is magnified by his constrained storage and computation
capabilities and the large size of outsourced data.
(2) within a CSP – for the CSP to check the integrity of
data blocks stored across multiple storage nodes, in order to
mitigate byzantine failures and drive-crashes.

(3) between two CSPs – in the case of the cloud of
clouds scenarios, where data are divided on different cloud
infrastructures. Therefore, a CSP, through its cloud gate,
should periodically verify the authenticity of data blocks
hosted by another cloud platform.
Many approaches have been proposed, in order to ensure
remote data checking [1], [2], [10], [3], [7], [6], [15]. These
schemes are called Provable Data Possession PDP schemes.
Under different security models, several schemes ensure
integrity verifications of stored data on untrusted remote
servers. They are designed to guarantee several requirements,
namely lightweight and robust verification, computation
efficiency and constant communication cost. These PDP
techniques are widely analyzed into two categories, according
to the role of the verifier: private verifiability, where only
the data owner can verify the server’s data possession, and
public verifiability, where any authorized entity can perform
the verification procedure.

In this paper, we present SHoPS, a novel Set-Homomorphic
Proof of data possession Scheme, supporting the 3 levels of
data verification. That is, stored across multiple storage nodes,
SHoPS takes advantage of the computation and storage capa-
bilities of the storage nodes. Each node has to provide proofs
of local data block sets. Then, the cloud gate is responsible
for performing operations on received proofs, while preserving
the authenticity of the resulting proof.
Indeed, we introduce the set homomorphism property, as our
scheme allows verifying sets in a way that any authorized
verifier can check the union of two proof sets, while con-
sidering the whole data file, or the intersection between two
data blocks, while checking integrity proofs over versions of
logging files, as conversations on social networks.
In addition, in the key role of public verifiability and the
privacy preservation support, our proposed scheme addresses
the issue of provable data possession in cloud storage envi-
ronments, following three substantial aspects: security level,
public verifiability and performances.
The remainder of this paper is organized as follows. First,
Section II describes the state of the art of existing PDP
schemes. Then, Section III gives a SHoPS overview and
provides the security assumptions. Section IV presents our
contribution and Section V gives a brief security analysis.
Finally, a performance evaluation of the proposed scheme is

given before concluding in Section VII.

II. REQUIREMENT ANALYSIS & RELATED WORK

The Proof of Data Possession is a challenge response
protocol enabling a client to check whether a file data D
stored on a remote cloud server is available in its original form.
The simplest solution to design a PDP scheme is based on a
hash function H . That is, the client pre-calculates k random
challenges ci, i ∈ {1, k} and computes the corresponding
proofs, pi = H(ci||D). During the challenging procedure, the
client sends ci to the server which computes p′i = H(ci||D).
If the comparison holds, the client assumes that the server
preserves the correct data file. This solution is concretely
unfeasible because the client can verify the authenticity of
the files on the server only k times.
Additionally, stored across multiple storage nodes, each node
has to compute the related possession proof, based on a
received challenge. As such, the aggregation process results
in the removal of some redundant proofs transmitted from
different nodes, in order to minimize the communication
latency. Generally, the processing overhead at the client side
is also reduced, but the new proof is longer than the original
generated proofs. As such, to guarantee the authenticity of the
resulting proof while avoiding the shortcuts of the classical
forwarding, we propose a new aggregate proof scheme, using
set-homomorphic properties.

A. Requirement Analysis

The design of our protocol is motivated by providing
support of both robustness and efficiency. SHoPS has to fulfill
the following requirements:
• Public verifiability– the public verification is an impor-

tant requirement, allowing an authorized entity to verify
the correctness of data. Thus, the data owner is relieved
from the burden of storage and computation.

• Unlimited challenges– the number of challenges should
be unlimited. This condition is considered as important
to the efficiency of a PDP scheme.

• Low computation complexity– on one hand, for scala-
bility reasons, the amount of computation at the cloud
server should be minimized, as it may be involved in
concurrent interactions. On the other hand, the proposed
scheme should also have low processing complexity, at
the client side.

• Low communication overhead– an efficient PDP should
minimize the usage of bandwidth.

• Low storage cost– the limited storage capacities of the
user devices has a critical importance in designing our
solution. As such, low storage cost at the client side is
highly recommended.

B. Related Work

The notion of PDP has been introduced by Ateniese et
al. in [1]. That is, the client divides the file data D into
blocks and creates one tag for each block bi as Ti,bi =
(H(Wi)g

bi)d)modN , where N is an RSA modulus, g is

a public parameter, d is the secret key of the data owner
and H(Wi) is a random value. The scheme is efficient as
there is no need to retrieve data for the verification of data
possession. The main drawbacks are computation complexity
due to the usage of RSA numbers and the private verifiability
feature. In [2], Ateniese et al. propose a publicly verifiable
version, which allows any entity to challenge the cloud server.
However, [2] is insecure against replay attacks in dynamic
scenarios because of the dependencies of index blocks in proof
generation and the lack of homomorphism property in the
verification procedure.
Juels et al. [10] introduce a method to detect unauthorized
changes of stored data by adding sentinels in the original data.
Their scheme, called Proof Of Retrievability (POR), does not
support public verifiability. In addition, only a fixed number
of challenges is allowed. On the basis of [10], Shacham et
al. [14] propose an improved scheme to realize public data
possession verification based on bilinear signature. However,
the number of authentication is proportional to the number of
data blocks, and the proposed technique does not prevent from
leakage of data blocks.
Recently, in [6], Bowers et al. provide a different formulation
of the threats that cloud users face. That is, RAFT proposes
an approach confirming data redundancy on storage systems,
based on a time measure function. The main disadvantages
of this scheme are the communication cost depending on the
number of blocks in the challenging request, and the important
storage cost. The authors exposed two verification approaches.
First, they propose a private verification scheme to check the
exactitude of server responses based on a local copy of data.
While this option may efficiently work for some scenarios, it is
restrictive in many cases as it undermines much of the benefits
of cloud outsourcing. Second, to improve storage capacity,
they refer to the Merkle Tree signature. Thus, this technique
also requires the use of a secret for each data file.
To theoretically evaluate the performances of SHoPS, we
compare, in Table I, our protocol with four of the most closely-
related schemes [1], [7], [14], [8], to our context, in terms of
bandwidth, computation and storage costs.
Table I shows that none of the presented schemes does cover

Metrics [1] [7] [14] [8] SHoPS
Nb. of chall. fixed ∞ ∞ ∞ ∞
Public verif Yes No Yes No Yes
CSP CPU cost O(1) O(n) O(n) O(logn) O(logn)
User CPU cost O(1) O(n) O(n) O(logn) O(nlogn)
Band. cost O(1) O(1) O(l) O(l) O(n)
Storage cost O(1) O(1) O(1) O(1) O(1)

TABLE I
COMPLEXITY COMPARISON BETWEEN DIFFERENT PDP TECHNIQUES (n IS

THE NUMBER OF DATA BLOCKS AND l IS THE NUMBER OF ELEMENTS IN
EACH DATA BLOCK)

the totality of the fixed requirements, in Section II-A.

III. MODEL DESCRIPTION

A. SHoPS Overview

SHoPS introduces three participating entities: the client, the
authorized user and the cloud service provider.
SHoPS considers that each data file is divided into blocks, and
each block B into q subblocks, where q is a system parameter.
Each subblock is represented by a single element of the
multiplicative group G2. Our single data block proof scheme
is made up of five algorithms, on the basis of two phases.
During the first phase, the system initialization procedures
are executed. This phase is performed once when the file is
uploaded.
• gen : {1}λ → Kpub2 × Kpr × G2

2q−1 – given a
security parameter λ, this algorithm outputs the data
owner public and secret keys (pk, p̂k, sk), and a set
of public credentials, with respect to the Diffie-Hellman
Exponent assumption.

• stp : 2M×G2
q → G2 – given a data block Bi ∈ {0, 1}∗

and the public key pk, the setup algorithm generates
the corresponding accumulator {Bi, $i}, where i ∈
{1, · · · , n}, and n is the number of blocks of a given
data file.

The second phase occurs when the verifier wants to check the
authenticity of a given data block file.
• clg : Zp∗ × Zp∗ → C – this algorithm is computed by

the verifier and takes as input the number of data blocks
q. It generates a challenge c ∈ C consisting on a random
block index and the public key element p̂k hidden with
a random nonce η as c = (i, p̂k

η
).

• prf : Kpub×2M×C → P – the prf algorithm computes
the server’s response P = (σ1, σ2) to a challenge, using
the encoded file blocks stored on the server disks.
In the following, we denote the algorithm that calculates
the second element of the proof σ2, by prf2. That is, we
have P = prf(pk,B, c) = {σ1, prf2(B, c)}, where B is
the related data block and c represents the challenge.

• vrf : P × Kpub2 → {0, 1} – a verification function for
the cloud server’s response P , where 1 denotes accept,
i.e., the client has successfully verified correct storage by
the server. Conversely, 0 denotes reject.

The difference between SHoPS and traditional proof schemes
is that the generation of the possession proof operates on sets
of data blocks in 2M, instead of operating in data blocks in
M. Our choice is mainly motivated by proofs’ authenticity,
malleability concerns and energy efficiency while applying
proof aggregation, as described in Section II.
For instance, taking advantage of the storage and processing
capabilities of the storing nodes, SHoPS saves energy within
the CSP by distributing the computation over multiple nodes.
In fact, each node provides proofs of local data block sets.
This is to make applicable, a resulting proof over sets of data
blocks, satisfying several needs, such as, proofs aggregation.
Supporting the public verifiability, SHoPS allows an imple-
mentation of remote data checking at the three networking
interfaces, namely, the client-CSP interface, the CSP-storing

nodes interface and between two CSPs interface. This ensures
the flexibility of SHoPS application and enables fulfilling each
verifier request. This verifier can be:
(1) a data owner, or an authorized verifier, challenging his
provider for a data possession proof. The proof aggregation,
presented by the union of several data blocks proofs, is an
interesting feature, as it allows a unique verification per file
and ensures energy efficiency at the client side.
(2) a CSP gate challenging the storing nodes. As the operations
on proof’ sets are not limited to the aggregation of proofs,
the intersection is important to detect byzantine failures at the
storing nodes.
(3) a CSP challenging another CSP, in the case of interleaved
clouds. The CSP may ask the hosting cloud to provide an
aggregated proof or the intersection between two history log
files of complex trade systems. In addition, the subset operator
may interest the CSP verifier to check the correctness of
replicated data hosted on remote servers. In the following,
we refer to the proof aggregation, every set-operation over
multiple proofs, namely, the union, the intersection and the
inclusion operator.

Definition 3.1: Set-Homomorphic based Proof – We con-
sider a message spaceM, a proof space P , a private key space
Kpr and a public key space Kpub. A set homomorphic based
proof scheme is defined as follows. There exist two operations
such as: � : P × P → P and } : Kpub ×Kpub → Kpub, that
satisfy the homomorphism and the correctness properties, for
a set operation • for any messages Bi and Bj in 2M.
– Homomorphism:

prf2(Bi •Bj , c) = prf2(Bi, c)� prf2(Bj , c) (1)

– Correctness:

vrf(prf(Bi •Bj , c), pk, p̂k) =

vrf(prf(Bi, c), pk, p̂k) ∧ vrf(prf(Bj , c), pk, p̂k) (2)

We define SHoPS = {gen, stp, clg, prf, vrf, agg}, where
the algorithm agg : P × P → P returns an aggregate proof
as:

agg(prf2(Bi, c); prf2(Bj , c)) = prf2(Bi, c)� prf2(Bj , c)
(3)

B. Complexity Assumptions

Let G1 and G2 be two cyclic multiplicative groups of the
same prime order p. An admissible symmetric pairing function
ê from G1×G1 in G2 has to be bilinear, non degenerate and
efficiently computable [13], [12].

q-Diffie Hellman Exponent Problem (q-DHE) – Let
G be a group of a prime order p, and g is a generator
of G. The q-DHE problem is, given a tuple of elements
(g, g1, · · · , gq, gq+2, · · · , g2q), such that gi = gα

i

, where
i ∈ {1, · · · , q, q+2, · · · , 2q} and α R←− Zp, there is no efficient
probabilistic algorithm AqDHE that can compute the missing
group element gq+1 = gα

q+1

.
Computational Diffie Hellman Assumption (CDH) – Let

G be a group of a prime order p, and g is a generator of G. The

CDH problem is, given the tuple of elements (g, ga, gb), where
{a, b} R←− Zp, there is no efficient probabilistic algorithm
ACDH that computes gab.

In the following, we denote by ? two elements multiplica-
tion belonging to a multiplicative group.

IV. SHOPS: A NEW SET HOMOMORPHIC PDP SCHEME

SHoPS is based on techniques closely related to the well-
known Pederson commitment scheme [11]. That is, we extend
the Pederson scheme to obtain a kind of a generalized commit-
ment, in a subblock-index manner, providing fault-tolerance
stateless verification. As such, for each verification session,
the verifier generates a new pseudo random value and new
index challenge position of the considered data file block, thus
making messages personalized for each session.
Additionally, we propose two verification processes. The first
scheme restricts the verification to the data owner using only
his private key. The second applies when the verification
is performed using public credentials. This is inspired by
the Boneh-Gentry-Waters (BGW) broadcast encryption sys-
tem [5]. The public key consists on a sequence of group ele-
ments (g, g1, · · · , gq, gq+2, · · · , g2q), where gi = gα

i

, defined
upon the bilinear Diffie-Hellman exponent assumption.

A. Single Data Block SHoPS

The single data block proof is a PDP scheme restricted to
a single block. The proofs correspond to all subblocks of a
data block. In the following, we provide a detailed description
of the steps, introduced in Section III, that are conducted in
each of the two aforementioned phases. The gen and stp

Algorithm 1 gen procedure
1: Input: system security parameter (ξ)
2: Output: public keys (pk, p̂k), master secret key pr and

public parameters param = {gi}1≤i≤2q;i6=q+1

3: Choose a multiplicative group G1 of a prime order q,
4: Select g a generator of G1;
5: α

R←− Zp∗;
6: param = {g}
7: for all j ∈ [1 . . . 2q] do
8: param← param ∪ {gαj}
9: end for

10: s
R←− Zp;

11: pr ← s;
12: pk ← gs;
13: p̂k ← gsq+1;
14: return (pk, p̂k, pr, {gi}1≤i≤2q;i 6=q+1)

are, respectively, presented by Algorithm 2 and Algorithm 1.
That is, each set of subblocks πi,j of Bi is presented by an
accumulator $i =

∏q
j=1 g

πi,j
q+1−j

pr.
1) clg procedure: The clg procedure is executed by the

client and yields a challenge for the cloud server. The client
chooses at random a subblock position k ∈ {1, q} and a nonce
η. The challenge c ∈ C consists on a random block index and

Algorithm 2 stp procedure
1: Input: Data block (Bi), private key pr and param
2: Output: Data block accumulator $

3: $i = 1;
4: for all j ∈ [1 . . . q] do
5: $i ← $i ∗ g

πi,j
q+1−j

pr;
6: end for
7: return (IDBi , $i)

the public key element p̂k hidden with a random nonce η as
c = (k, p̂k

η
).

2) prf procedure: The prf, executed by the server, has
to generate a valid proof of data possession of a given data
block Bi. That is, in his response, the server has to provide a
new valid accumulator using the random η sent by the client.
In our construction, the prf is presented by Algorithm 3. For
the sake of consistency, we suppose that the server possesses
a version of the data block file which is potentially altered.
Hereafter, this version is denoted by B̂i.

Algorithm 3 prf procedure

1: Input: File data block (Bi), public keys (pk, p̂k), the
public parameters param and the challenge c = (k, p̂k

η
)

2: Output: Proof P = (σ1, σ2)

3: σ1 ← (p̂k
η
)πi,k ;

4: $̂i = 1;
5: for all j ∈ [1 . . . q] do
6: if j 6= k then
7: $̂i ← $̂i ∗ g

πi,j
q+1−j+k;

8: end if
9: end for

10: σ2 ← $̂i;
11: return (σ1, σ2)

3) vrf procedure: In this section, we first present the
public verification correctness. Then, we introduce the private
verification process, which restricts the verification to the data
owner.

Public Single Data Block Verification–: An authorized
verifier checks the correctness of the server response, based
on public parameters. It is worth noticing that the client does
not store any additional information for the proof verification.
That is, the verification procedure makes only use of param.
The verifier checks the following equality, using the random
secret η, the challenge c, and the server response P = (σ1, σ2),
as presented in Equation 4.

[ê(gk, $i)ê(pk, σ2)
−1

]η ê(g, σ1)
−1

= 1 (4)

If the equality holds, the verifier has a proof that the data block
Bi exists and that it has not been altered.

Lemma 4.1: Public Single Data Block Verification Cor-
rectness The verification procedure of Equation 4 holds if,
and only if the data block file B̂i = Bi.

Proof: Having received (σ1, σ2) from the cloud, the
verifier first calculates ê(pk, σ2), using the public key of the
data owner pk. Then, he computes ê(gk, $i).
Hereafter, based on the random nonce η, the verifier checks
that [ê(gk, $i)ê(pk, σ2)

−1
]η is equal to ê(g, σ1) as:

[ê(gk, $i)ê(pk, σ2)
−1

]η

= [ê(gα
k

,
∏q
j=1 g

πi,j
q+1−j

s
) ? ê(gs,

∏q
j=1;j 6=k g

πi,j
q+1−j+k)

−1
]η

= [ê(gα
k

, g

q∑
j=1

πi,j∗αq+1−j
s

) ? ê(gs, g
∑q
j=1;j 6=k πi,j∗α

q+1−j+k
)
−1

]η

= [ê(gα
k
,g

q∑
j=1

πi,j∗α
q+1−j

s

)

ê(gs,g
∑q
j=1;j 6=k πi,j∗α

q+1−j+k
)
]η

= [ê(g,g
s∗

q∑
j=1

πi,j∗α
q+1−j+k

)

ê(g,g
s∗

∑q
j=1;j 6=k πi,j∗α

q+1−j+k
)
]η

= [
ê(g,gq+1

s∗πi,k?g
s∗

q∑
j=1,j 6=k

πi,j∗α
q+1−j+k

)

ê(g,g
s∗

∑q
j=1;j 6=k πi,j∗α

q+1−j+k
)

]η

= [
ê(g,g

s∗
q∑

j=1,j 6=k
πi,j∗α

q+1−j+k

)ê(g,gq+1
s∗πi,k)

ê(g,g
s∗

∑q
j=1;j 6=k πi,j∗α

q+1−j+k
)

]η

= ê(g, gq+1
s∗πi,k)

η

= ê(g, gq+1
s∗η∗πi,k) = ê(g, σ1)

This proves the correctness of the verification step (i.e., B̂i =
Bi). The non-singularity of the pairing function allows to state
that Equation 4 is true if, and only if B̂i = Bi.

Private Single Data Block Verification–: SHoPS pro-
poses a lightweight private verification variant, relying on the
private key of the data owner. For this purpose, we squeeze
the proposed checking algorithm, presented in Equation 4, in
order to support only two pairing functions computation. As
such the private verification of a single data block Bi is as
follows:

ê(gk
η, $i) ? ê(g, σ1σ2

sη)
−1

= 1 (5)

Similarly, we prove the correctness of private single data block
verification.

B. Set-Homomorphic Properties of the proposed Scheme

In this section, we extend the design of the data block ele-
mentary checking, in order to support subsets of data blocks.
That is, the verifier requests the cloud for data correctness
proofs, while considering a sequence of set-homomorphism
properties.
For ease of presentation, we prove the different properties,
using two different data blocks Bi and Bj . Our operations can
be extended easily to support multiple data blocks checking.

1) Set-Union Operator: In order to prove that our scheme
is set-homomorphic with regard to the union operator, we use
the received proofs prf(c,Bi) and prf(c,Bj) corresponding
to Bi and Bj , respectively, to express prf(c,Bi ∪Bj), based
on the same challenge c.

Lemma 4.2: For every data block Bi and Bj , the union
operator is defined as: Bi ∪Bj = Bi +Bj −Bi ∩Bj

To this purpose, we first express $Bi∪Bj , using $Bi and $Bj ,
as follows.

Lemma 4.3: For every data blocks Bi = {πi,1, · · · , πi,q}
and Bj = {πj,1, · · · , πj,q}, where πi,k ∈ 2M and 1 ≤ k ≤ q;
and given the accumulators $ presented in Algorithm 3, the
union accumulator is such that :$Bi∪Bj = lcm($Bi , $Bj)

Proof: The computation of $Bi∪Bj , is performed as
follows:

$Bi∪Bj =
∏

πk,l∈Bi∪Bj ;l∈[1,q];k∈{i,j}

g
πk,l
q+1−l

pr

= lcm(
∏

πi,l∈Bi;l∈[1,q]

g
pr∗πi,l
q+1−l ,

∏
πj,l∈Bj ;l∈[1,q]

g
pr∗πj,l
q+1−l)

= lcm($Bi , $Bj)

To compute the least common multiple of Bi and Bj , we
use the relation between gcd and lcm, as: gcd($Bi , $Bj) ∗
lcm($Bi , $Bj) = BiBj .
In the sequel, we have:

$Bi∪Bj = lcm($Bi , $Bj) =
$Bi ? $Bj

gcd($Bi , $Bj)
(6)

For instance, using the Bézout’s lemma, there exist unique
integers a and b, such that:

a$Bi + b$Bj = gcd($Bi , $Bj) (7)

As such, using the Equation 6 and Equation 7, we find the
lcm of the two data blocks Bi and Bj as follows:

$Bi∪Bj = lcm($Bi , $Bj) =
$Bi ? $Bj

a$Bi + b$Bj

(8)

Therefore, we obtain the proof of the lemma 4.3.
Theorem 4.4: Set-Homomorphism Property – Union Op-

erator SHoPS considers the algorithms clg, prf and vrf de-
fined above. Let agg be the algorithm, presented in Equation 1,
such that • is the set union operator, as follows.

prf2(Bi •Bj , c) = prf2(Bi, c)� prf2(Bj , c) =

prf2(Bi, c)?prf2(Bj , c)(a∗prf2(Bi, c)+b∗prf2(Bj , c))
−1

(9)
where a and b satisfy : aprf2(Bi, c) + bprf2(Bj , c) =
gcd(prf2(Bi, c), prf2(Bj , c))

Proof: We prove that SHoPS fulfills the homomorphism
and correctness properties.
– Proof of Homomorphism : We know that aprf2(Bi, c) +
bprf2(Bj , c) = a$̂Bi + b$̂Bj . Thus, we can write: b$̂−1Bi +

a$̂−1Bj = $̂−1Bi∪Bj .
Consequently, using Equation 8, we can write that:

a$̂Bi + b$̂Bj =
(a$̂Bi + b$̂Bj) ? $̂

−1
Bi
$̂−1Bj

$̂−1Bi $̂
−1
Bj

=
a$̂Bi$̂

−1
Bi
$̂−1Bj + b$̂Bj $̂

−1
Bi
$̂−1Bj

$̂−1Bi $̂
−1
Bj

=
a$̂−1Bj + b$̂−1Bi

$̂−1Bi $̂
−1
Bj

= $̂−1Bi∪Bj ? $̂Bi ? $̂Bj

As such, we demonstrate that $̂−1Bi∪Bj =
a$̂Bi+b$̂Bj
$̂Bi?$̂Bj

.
This proves that our framework fulfills the homomorphism
property.
– Proof of Correctness: We show that an authorized
challenger may check the correctness of two different data
blocks Bi and Bj , using an aggregate proof prf2(Bi∪Bj , c),
based on a challenge c = (k, p̂k

η
).

We suppose that πi,k 6= πj,k. That is, as presented in
Equation 2, the correctness of SHoPS is that vrf(prf(pk,Bi∪
Bj), pk, p̂k) = 1. We have:

ê(gk, $Bi∪Bj)ê(pk, σ2,Bi∪Bj)
−1

=
ê(gα

k

, $Bi∪Bj)

ê(gpr, $̂Bi∪Bj)

=
ê(gα

k
,

$Bi
$Bj

gcd($Bi
,$Bj

)
)

ê(gs,
$̂Bi

$̂Bj
gcd($̂Bi

,$̂Bj
)
)

=

ê(g,

∏q
l=1

g
πi,l
q+1−l+k

s∏q
l=1

g
πj,l
q+1−l+k

s

gcd($Bi
,$Bj

)α
k)

ê(g,

∏q
l=1;l6=k g

sπi,l
q+1−l+k

∏q
l=1;l6=k g

sπj,l
q+1−l+k

gcd($̂Bi
,$̂Bj

)s
)

=

ê(g,
gq+1

sπi,k ∏q
l=1;l6=k g

sπi,l
q+1−l+kgq+1

sπi,k ∏q
l=1;l 6=k g

sπj,l
q+1−l+k

gcd($Bi
,$Bj

)α
k)

ê(g,

∏q
l=1;l6=k g

sπi,l
q+1−l+k

∏q
l=1;l6=k g

sπj,l
q+1−l+k

gcd($̂Bi
,$̂Bj

)s
)

=

ê(g,
$̂sBi

$̂sBi

gcd($Bi
,$Bj

)α
k)ê(g,gq+1

sπi,kgq+1
sπj,k)

ê(g,
$̂s
Bi
$̂s
Bi

gcd($̂Bi
,$̂Bj

)s
)

= ê(g, gq+1
sπi,kgq+1

sπj,k)

As such, based on the random challenge η, we can write
[ê(gk, $Bi∪Bj)ê(pk, σ2,Bi∪Bj)

−1
]η as follows:

= [ê(g, gq+1
sπi,kgq+1

sπj,k)]η

= ê(g, gq+1
sπi,kηgq+1

sπj,kη)

= ê(g, σ1,Bi∪Bj)

2) Set-Inclusion Operator: In this section, we prove that
SHoPS is homomorphic with respect to the set-inclusion
operator.

Theorem 4.5: Set-Homomorphism Property – Subset
Operator SHoPS considers the algorithms clg, prf and vrf

defined above. Let agg be the algorithm, presented in Equa-
tion 1, such that • is the set inclusion operator, as follows.

prf2(Bi •Bj , c) = prf2(Bi, c)� prf2(Bj , c) =

prf2(Bj , c) ? prf2(Bi, c)
−1 (10)

where Bi and Bj are two data blocks of ∈ 2M, and Bi ⊂ Bj .
We prove the homomorphism and the correctness of SHoPS
with respect to the set inclusion operator.

Proof: Let Bi and Bj be two data blocks, where Bi ⊂ Bj ,
and k is the index challenge sent by the verifier.

– Proof of Homomorphism: We have prf2(Bj , c) = $̂Bj .
This can write, where l 6= k:

$̂Bj =
∏

πj,l∈Bj ,l∈[1,q]

g
sπj,l
q+1−l+k

=
∏

πj,l∈Bj\Bi,l∈[1,q]

g
sπj,l
q+1−l+k

∏
πi,l∈Bi,l∈[1,q]

g
sπi,l
q+1−l+k

As such, we show that
∏
πj,l∈Bj\Bi,l∈[1,q];l 6=k g

sπj,l
q+1−l+k

=
∏

πj,l∈Bj ,l∈[1,q];l 6=k

g
sπj,l
q+1−l+k ?

∏
πi,l∈Bi,l∈[1,q];l 6=k

g
−sπi,l
l−q−1−k

(11)
Using Equation 11, we demonstrate that SHoPS is homomor-
phic with respect to the set-inclusion operator:

prf2(Bj \Bi, c) =
∏

πj,l∈Bj\Bi,l∈[1,q];l 6=k

g
πj,l
q+1−l+k

= $̂Bj ? $̂
−1
Bi

= prf2(Bj , c) ? prf2(Bi, c)
−1

–Proof of Correctness : The correctness of SHoPS is that
vrf(pk, p̂k, prf2(Bj \Bi, c)) = 1, where Bi ⊂ Bj .

[
ê(gk, $Bj\Bi)

ê(pk, σ2,Bj\Bi)
]η = [

ê(gα
k

, $−1Bi ? $Bj)

ê(gpr, $̂−1Bi ? $̂Bj)
]η

= [
ê(g, σ1,Bi

η−1

σ1,Bj
η−1

$̂−sBi ? $̂
s
Bj

)

ê(g, $̂−sBi ? $̂
s
Bj

)
]η

= [
ê(g, σ1,Bi

η−1

σ1,Bj
η−1

)ê(g, $̂−sBi ? $̂
s
Bj

)

ê(g, $̂−sBi ? $̂
s
Bj

)
]η

= ê(g, σ1,Bi
η−1

σ1,Bj
η−1

)η

= ê(g, σ1,Bj\Bi)

Therefore, we obtain the proof of correctness of Theorem 4.5.

3) Set-Intersection Operator: We proved that SHoPS al-
lows the generation of aggregate proofs with respect to the
subset and the union operators. That is, we extend our dis-
cussion, using the relations between these two set operators.
For instance, based on Theorem 4.4 and Theorem 4.5, we
demonstrate that SHoPS is set-homomorphic with respect to
the intersection operator. Note that the intersection operation
between Bi and Bj may be expressed in terms of the union
and the set difference operators as follows.

Bi ∩Bj = (((Bi ∪Bj) \ (Bi \Bj)) \ (Bj \Bi)) (12)

V. SECURITY DISCUSSION

In this section, we present a brief security discussion of
SHoPS, based on two different threat models.

A. Threat Model

For our technique to be efficient in cloud storage
applications, we have to consider realistic threat models.
We first point out the case of a lazy cloud service provider.
In such cases, the storage server wants to reduce its

resources consumption. That is, this lazy server claims
doing the requested computations to provide responses to
the challenger. Second, we consider the case of a malicious
verifier that intends to get information about the outsourced
data of the data owner. The fact that the verification process
can be performed using public elements makes it possible for
malicious clients to gain information about files stored on the
untrusted servers.

B. Security and Privacy Discussion

We describe the security of SHoPS, using a game that
captures the data correctness property. In fact, this game
consists in a lazy storage server, as an adversary, that attempts
to construct a valid proof without processing the original data
block as follows. When the verifier wants to check the server’s
possession of a data block, he sends a random query (cg, kg)
to the adversary.
• Challenge – the verifier requests the adversary to provide

a valid proof of the requested data block, determined by
a random challenge cg and the index kg .

• ForgeProof – without processing on the original data
file, the adversary tries to compute a proof (σ∗1 , σ

∗
2), the

challenge cg , and the public credentials params.
The adversary wins the data possession game, if the vrf

procedure returns 1.
According to the standard definition of proof systems, SHoPS
has to fulfill two security requirements: completeness and
soundness of verification.
– Soundness of Verification – The soundness means that it
is infeasible to confound the verifier to accept false proofs
(σ∗1 , σ

∗
2). That is, even if a collusion is attempted, the CSP

cannot prove its possession.
The soundness of our proposition is relatively close to the Data
Possession Game. Hence, the soundness meets the correctness
of verification (Equation 4 and Equation 5), while considering
the non singularity of the pairing functions. This property
prevents from forging the soundness of verification of our
protocol. In order to prove the nonexistence of a fraudulent
server prover, we assume that there is a knowledge extractor
algorithm Ψ, which gets the public parameters as input, and
then attempts to break the CDH assumption in G2. The Ψ
algorithm interacts as follows:
Learning 1– the first learning only relies on the data owner
public key pk = gsk as input. Ψ tries to get knowledge of the
client secret key sk. That is, the extractor algorithm Ψ picks
at random ri ∈R [0, R[, where i ∈ Zp and computes gri . For
each ri, Ψ checks whether the comparison holds between pk
and gri . Based on our assumption, Ψ cannot extract the secret
key of the client with noticeable probability.
Learning 2– the input of the second learning is the tuple
(pk, p̂k, g). The algorithm attempts to extract the secret key
sk by performing following steps:

1) ê(pk, p̂k) = ê(gs, gq+1
s) = gq+1

s2

2) ê(g, pk) = ê(g, gs) = gs

3) ê(g, gq+1
s) = gq+1

s

This learning cannot hold, because of the DDH assumption.
In [4], Boneh demonstrates that the DDH assumption is far
stronger than the CDH.
– Completeness of Verification – In our scheme, the com-
pleteness property implies public verifiability property, which
allows any entity, not just the client (data owner), to challenge
the cloud server for data possession or data integrity without
the need for any secret information. That is, public verifica-
tion elements, needed in the verification process are publicly
known. Thereby, any authorized user may challenge the server
storage and efficiently verifies the proof of data possession.
Hence, SHoPS is a public verifiable protocol.

Lemma 5.1: Completeness of verification Given the tuple
of public elements (pk, p̂k, σ1, σ2, params) and Bi = B̂i, the
completeness of verification condition implies that Equation 4
holds in G2.

C. Resistance to attacks

In the following analysis, we discuss the resistance of
SHoPS to data leakage attacks, when only considering the
vulnerabilities over the data file. As such, we suppose a
malicious verifier. He attempts to gain knowledge about the
outsourced data, based on the public elements of the data
owner and multiple interactions with the legitimate storage
server. We suppose that the challenger is not considered to
perform preservation of computation resources by reusing the
same random challenge η from one possession proof session
to another. The verifier is assumed to renew the random scalar
η to calculate the challenge p̂k

η
for each session.

We suppose that the goal of the fraudulent verifier is to obtain
information about the outsourced data file. That is, the attacker
may request the same position index challenge k. As such,
using two different sessions ((α), (β)), the attacker computes
Equation13 and Equation 14 as follows:

σ1
(α) ? σ1

(β) = p̂k
πi,kη(α)

? p̂k
πi,kη(β)

= p̂k
πi,k(η(α)+η(β))

(13)
σ1

(α) ? σ1
(β)−1 = p̂k

πi,kη(α)
? p̂k

−πi,kη(β)
= p̂k

πi,k(η(α)−η(β))

(14)
Knowing the challenge k, the attacker cannot reconstruct
pieces of the file data, based on the CDH assumption. The
prover sends only the pair (σ1, σ2) to the verifier. Hence, it
is likely impossible to extract information {πi,j}j∈[1,q] from
the server response. Thus, the randomness property is also
necessary for the non triviality of the proof.

VI. PERFORMANCE EVALUATION

In this section, we present a theoretical performance eval-
uation in terms of computation, communication and storage
costs

A. Computation Cost Evaluation

As presented in Section III, our single data block proof is
made up 5 randomized algorithms: gen, stp, clg, prf and

vrf. Among these algorithms, gen and stp are performed by
the data owner. To generate the public parameters, the client
performs 2q + 1 exponentiations in G. In the stp procedure,
this latter executes q exponentiations and multiplications in
order to generate the accumulator $, which remains linearly
dependent on the data size. Note that, this gen algorithm is
one-time cost for the data owner and can be performed apart
the other procedures.
For each proof generation, the server computes the accumula-
tor of a given data block with respect to the position index k,
and performs q exponentiations and multiplications in order to
generate the couple (σ1, σ2). Upon receiving the server proof,
the verifier conducts 3 pairing computations. In Section II, we
presented a brief comparison between SHoPS and the most
closely-related schemes ([7], [1], [8], [14]). That is, Table I
states the computation cost comparison between our scheme
and previous works, at both client and server side.
On the server side, SHoPS distributes the processing overhead
over the multiple storing nodes. The cloud gate computes
only i multiplications, where i is the number of the requested
nodes, in an aggregated proof. Therefore, contrary to the other
approaches, SHoPS achieves a O(logn) server computation
complexity.
On the verifier side, we brought additional computation cost,
in order to perform a public verifiability. That is, the public
verification procedure can also be performed by authorized
challengers without the participation of the data owner. As
such, this concern can be handled in practical scenarios,
compared to the private scheme ([7], [8]) which have to
centralize all verification tasks to the data owner. In our
scheme, the authorized verifier has to generate two random
scalars c ∈]0, R[and k ∈ [1, q], in order to conduct his
challenge request. Then, he checks the received proof from
the cloud server, while performing three pairing computations,
regardless the number of data blocks. Thus, the public verifi-
ability introduces a O(nlogn) processing cost at the verifier
side.

B. Bandwidth Cost Evaluation

In SHoPS, the bandwidth cost comes from the generated
challenge message clg algorithm and the proof response
in each verification request. On one hand, the exchanging
challenge algorithm consists in transmitting one random po-
sition index k, where k ∈R Zq and one element p̂k

η
. For

a recommended security, we consider a security parameter
λ = 80 bits, thus, the total cost of the challenge message
is the double size of a group element of a multiplicative G.
On the other hand, the proof response consists only in two
elements (σ1, σ2) ∈ G2. Therefore, the total bandwidth
cost becomes constant and the bandwidth complexity of our
scheme is O(1). As shown in Table I, [7] and [14] present
O(l) bandwidth complexity, where l is the number of elements
in each encoded block of data. As a consequence, the band-
width cost of these algorithms is linear to l. Considering the
number of permitted challenges, [1] suffers from the problem
of pre-fixed number of challenges, which is considered as

an important requirement to the design of our construction.
Nevertheless, their scheme presents a constant bandwidth cost,
just like our proposed protocol.

C. Storage Cost Evaluation

On the client side, SHoPS only requires the data owner to
keep secret his private key sk. The public elements of a data
file consist in the different accumulators of each data block
$i{i ∈ [1, n]}, where n is the number of data blocks. Thus, the
storage size of each client is |sk|. We must note that |sk| is the
size of the secret key of a SHoPS client, which is dependent
on the security parameter λ. This storage overhead remains
acceptable and attractive for resource constrained devices,
mainly as it not dependent on the number of data blocks and
the size of data.

VII. CONCLUSION

The growing need for secure cloud storage services and the
attractive properties of an interactive proof system, lead us to
define an innovative solution for proof of possession.
In this paper, we define SHoPS supporting high security level
and low processing complexity. Hence, it is shown to resist
to data leakage attacks, while considering either a fraudulent
prover or a cheating verifier.
Additionally, our proposal is deliberately designed to support
public verifiability and constant communication and storage
cost.

REFERENCES

[1] G. Ateniese, R. Burns, and et al. Provable data possession at untrusted
stores. CCS ’07, NY, USA, 2007. ACM.

[2] G. Ateniese, R. Burns, and et al. Remote data checking using provable
data possession. ACM Trans. Inf. Syst. Secur., 14(1):12:1–12:34, 2011.

[3] G. Ateniese, S. Kamara, and et al. Proofs of storage from homomorphic
identification protocols. ASIACRYPT ’09, Tokyo, Japan, 2009.

[4] D. Boneh. The decision diffie-hellman problem. ANTS-III, 1998.
[5] D. Boneh, C. Gentry, and et al. Collusion resistant broadcast encryption

with short ciphertexts and private keys. CRYPTO’05, Santa Barbara,
CA, 2005.

[6] K. D. Bowers, van Dijk, and et al. How to tell if your cloud files are
vulnerable to drive crashes. CCS ’11, Chicago, Illinois, USA, 2011.

[7] Y. Dodis and e. a. Vadhan. Proofs of retrievability via hardness
amplification. TCC ’09, San Francisco, 2009.

[8] C. Erway and et al. Dynamic provable data possession. CCS ’09,
Chicago,Illinois, USA, 2009.

[9] B. J. Gantz and D. Reinsel. The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east. IDC iView,
2012.

[10] A. Juels and B. S. Kaliski. Pors: proofs of retrievability for large files.
Virginia, USA, CCS’07.

[11] T. P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. CRYPTO ’91, London, UK, 1991. Springer-Verlag.

[12] D. Ratna, B. Rana, and S. Palash. Pairing-based cryptographic protocols
: A survey. Cryptology ePrint Archive, Report 2004/064, 2004.

[13] K. W. Regan. Minimum-complexity pairing functions. 45:285 – 295,
1992.

[14] H. Shacham and B. Waters. Compact proofs of retrievability. ASI-
ACRYPT ’08, Melbourne, 2008.

[15] M. van Dijk, A. Juels, and et al. Hourglass schemes: how to prove that
cloud files are encrypted. CCS ’12, NY, USA, 2012.

