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The sense of touch is considered as an essential feature for robots in order to improve the quality of
their physical and social interactions. For instance, tactile devices have to be fast enough to interact
in real-time, robust against noise to process rough sensory information as well as adaptive to represent
the structure and topography of a tactile sensor itself - i.e., the shape of the sensor surface and its
dynamic resolution. In this paper, we conduct experiments with a self-organizing map (SOM) neural
network that adapts to the structure of a tactile sheet and spatial resolution of the input tactile device;
this adaptation is faster and more robust against noise than image reconstruction techniques based
on Electrical Impedance Tomography (EIT). Other advantages of this bio-inspired reconstruction
algorithm are its simple mathematical formulation and the ability to self-calibrate its topographical
organization without any a priori information about the input dynamics. Our results show that the
spatial patterns of simple and multiple contact points can be acquired and localized with enough speed
and precision for pattern recognition tasks during physical contact.

Keywords: tactile sensor; artificial skin; piezo-resistive material; Electrical Impedance Tomography;
neural networks; self-organizing maps.

1. Introduction

One great function of the brain is its ability to adapt dynamically to any structural changes
observed in the incoming sensory signals. For instance, considering tactile perception, the brain
represents the body in a plastic manner, constantly readjusting the body image based on its
incoming sensory information: e.g., in situations of abrupt changes occurring during tactile illu-
sions or when one limb is missing or when the brain is injured, it has been observed the more
or less rapid re-adaptation of the somatosensory neurons to the new spatial configuration of the
body [1–3]. These results show the importance of learning within the lifespan.

Having robots capable of developing such tactile capabilities with the extra possibility of
an adaptive body image would provide them with human-like features of self-calibration (by
learning the physical extents of the body), of robustness and adaptability (when dealing with
unexpected changes in tasks or in the environment). For instance, many robotic researchers use
tactile devices to calibrate the body physical limits [4, 5] in order to detect the contact area when
grasping and manipulating objects [6–8], or to estimate the robot spatial location in order to
avoid self-contact or collisions with the environment, or to induce the compliance control based
on the robot external tactile feedback [9]. But in these tasks, the tactile perception is tailored
to the robotic device and it is difficult to make its structure plastic enough with respect to the
changes in the task or in the body. In tactile devices, the information is processed mainly by
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means of static parametrical models which are configured once during the initialization setup
and which require the computation of nonlinear equations for every time cycle. Despite these
problems, they are often more accurate in terms of precision than machine learning algorithms,
although they are weaker estimators in presence of external noise or external perturbations and
changes (e.g., modification of the sensor properties). In comparison, machine learning algorithms
are capable of overcoming the problem of changes in sensory inputs when the body evolves in
time. We can cite the work of Bongard and colleagues, for example, who use the evolutionary
algorithms to adapt the motor control to the new body image [10].

In the context of haptic devices, various types of sensors have been proposed to transform
tactile information into electrical signals [11–13], but not all of them are good for dynamic adap-
tation when the structure of the sensory information changes. Most of the proposed techniques
use an array of isolated unitary devices, piezo-resistive or piezo-capacitive, that covers a surface
with small receptive fields [14–16]. The advantage of using grids is to have a look-up table of
isolated tactile points with the same precision for each unit that can be mounted quite easily on
a specified surface but in order to have an appreciable spatial resolution, it is necessary to cover
the surface with very small devices, like MEMS [17]. One practical disadvantage is that as the
number of units grows within the structure, the design of the electronic circuits becomes more
complex. This implies that it is necessary to connect the units with a large number of wires
and also to multiplex them, which can result to bigger power consumption and to possible heat
problems that can perturb the device measurement accuracy.

The opposite strategy is to consider a uniform material whose physical properties can be used
to process the information; a design principle known as a morphological or physical compu-
tation [18]. This material can be seen as a tactile sheet similar to an artificial skin that can
transform a density distribution of pressure forces into an ohmic density distribution in the
electrical field. The advantage of the second method over the former is that it involves covering
large areas of a robot surface various in shape with a flexible and stretchable material similar to
the human skin fitting the curves of the robot surfaces with a good ratio between the electronics
mounted and the surface size. Its main disadvantages come from (i) its processing time using
classical methods which require computing the whole electrical field on a robot surface with
the help of parametric equations, which can be quite time consuming, and (ii) the dynamic
resolution of the sensor, which may have a poor resolution in comparison to unitary devices.

Although taxel-based sensors can distribute the contact over many taxels and have large
receptive fields due to a compliant skin that they are covered, tactile sheets can instead balance
the difficult tradeoff between surface/precision/cost/speed in comparison to unit-based devices.
Thus, we can categorize devices in three cases: taxel-based sensors with narrow receptive field
that use no morphological computation; taxel-based sensors with wider receptive fields, which
use morphological computation combined with the grid layout [19]; and tactile sensors where
the sensing is due purely to deformation of the sensor surface.

Despite the drawbacks of tactile sheets in comparison with single tactile units, we propose
to use the advantages of machine learning techniques to tackle their recurrent problems. We
propose to model in robots touch perception similar to humans by means of a tactile surface like
an artificial skin from which we build up an artificial neural network (ANN). ANNs are capable
of learning in a self-organized manner the electrical activity on the tactile surface in real time
by adapting (1) their neural organization to the spatial topology of the sensory inputs and (2)
their neural activity to the precision range of the sensors. Although some of these properties
can be retrieved by classical parametrical methods, ANNs are more adaptable to learning the
device topology and can compute tactile outputs more rapidly and sometimes more precise. Some
ANNs (e.g., like self-organizing maps) can even follow the topographic organization of sensory
areas with a higher spatial resolution to represent finely some receptive fields [20]. Machine
Learning algorithms have been used in grid-like devices with perceptrons and support vector
machines have been employed in surface-based tactile devices [21]. But to our knowledge, it is
the first time that neural networks are employed in surface-based tactile devices for learning
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the spatial topography. Meanwhile, there have been some studies using SOMs with taxel-based
sensors [22, 23] but only to categorize objects or types of interactive touch, not the spatial
topography of the sensory device and the weight information of object on it.

In our experiments, we compare the neural network method with classical parametric solving
methods and we show that neural networks provide greater robustness and greater adaptability to
spatial localization as well as faster responses to estimate the resistance distribution on the tissue
surface. In case of surfaces of different shapes – square, circular or asymmetric – self-organizing
maps can learn easily the spatial topology of the tactile device. Once the topology learned, the
neurons compute the relation between the pressure sensitivity and the spatial location at the
contact point, which permits to detect multi-touches activity and also discriminate one object
shape on its surface (a triangle, a square or a circle).

The paper is organized as follows. The second section describes the generalized parametric
method known as Electrical Impedance Tomography (EIT) to estimate the pressure density
distribution on the material surface. The third section describes the pressure sensitivity and
spatial resolution of the material. The fourth section explains our approach based on neural
networks (self-organizing maps) to learn the pressure density distribution. Section five represents
the experimental setup and findings (1) in learning different tactile surface shapes: a square, a
circle and (2) in detecting objects with different geometrical shapes on the surface: a cube, a
cylinder, a prism and an oblong object and (3) in estimating the weights and quantity of objects
on the surface: up to 3 objects from 20g up to 100g. We show that self-organizing maps are able
to replicate the properties of classical imaging reconstruction methods and go beyond. Finally,
in the sixth section, we draw the conclusion and outline our future investigations.

2. Electrical Impedance Tomography

In order to estimate the conductivity and permittivity distribution in an electrically conductive
material, one popular technique is the electrical impedance tomography (EIT). This non-invasive
technique is particularly used in medical imagery to measure the voltage change on the skin sur-
face around the chest with a small current applied at the electrodes. EIT aims at reconstructing a
tomographic image of the conductivity distribution within an object from electrical stimulations
by injecting currents and measurements at electrodes placed on the surface of the investigated
object. The advantage of this technique over more traditional imaging modalities (CT, MRI,
PET, ECT) is that it is considered safer by merits of the small currents injected and more
affordable by merits of the simplicity of its design, which can be constructed at low-cost and in
a very portable size [24, 25].

If the material’s conductivity has the property to vary locally, the EIT method can be used
to sense touch pression and its spatial location. Kato et al. [26], Yao et Soleimani [27] realized
a fabric sensors and Nagakubo et al. [28] and Alirezaei et al. [29, 30], Tawil et al. [31] realized a
skin-like device for robots based on this principle: by injecting currents and measuring voltages
from electrodes connected on the borders of a conductive fabric, they reconstructed the local
resistivity changes response from any pressure applied to the material. Nagakubo and Alirezaei
concentrated on the development the flexibility and stretch tactile sensor for an integration in
robotics as an artificial skin which can be implemented over complex 3D surfaces and also highly
stretching areas. Tawil et al. [31] placed emphasis on classification the modality of different types
of touch on an experimental EIT-based skin for human-robot interaction.

2.1 EIT acquisition using the neighboring method

One popular technique for EIT reconstruction is the neighboring method [32]. Its principle is as
follows: an electrical current is injected to neighboring electrodes and voltage is measured from
other pairs of electrodes. Once all the pairs have been scanned, it is possible to estimate the
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Figure 1. Neighboring method of data collection for EIT showed for a volume conductor and 16 spaced symmetrically
electrodes. The voltage is measured 13 times for 16 different injection current, which correspod to the input matrix U of
13 × 16 = 208 elements.

impedance between the equipotential lines by inverse methods.
We explain the idea of this method for a cylindrical volume conductor with 16 electrodes

placed symmetrically on its surface as displayed in Figure 1. The first step is to inject the
current between electrodes 1 and 2, which induces an increase of the current density in this
particular portion of the material; in other portions, the current density decreases rapidly with
respect to the distance to the two electrodes.

To estimate the impedance between the equipotential lines that intersect the two electrodes,
the voltage difference is measured 13 times between the other pairs of electrodes (i.e., between
electrodes 3−4, then 4−5, then 5−6, etc...). Once the cycle is finished, the next step is to inject
the current from the next pair of electrodes 2−3 and to measure again the 13 potential differences
till the end of the sequence, which means 16 times for the current injected between electrodes
4− 5, 5− 6, 6− 7 and etc... We obtain then the voltage matrix of dimension 13× 16 = 208 cells
corresponding to 13 measurements of the voltage drop for each current injection between the 16
pairs.

2.2 Inverse model for EIT reconstruction

Once the voltage matrix is obtained, we can compute the resistance distribution with the New-
ton’s method for example. This method minimizes the error between the potential difference Vi
obtained by forward modeling and the Vm measured from the conductive sensor. The forward
model (∇ · σ∇φ = 0) is obtained from the Maxwell’s equation where σ is the conductivity dis-
tribution, φ is the electrical potential and from a finite element method (FEM) model of the
sensors body (see [33] for more details):

Vi = F (γi, q) (1)

where γi is the actual resistance distribution and q is the current stimulation pattern.
The effect on the boundary voltages for a small change in the resistivity of the FEM elements

is represented by a Jacobian matrix Ji from which we can calculate the actual resistance distri-
bution γi. An iterative process, starting from an initial resistance distribution, converges towards
the real resistance distribution. Equations for one step of the method correspond to:

min
{
||Vm − Vi||2 + α2||Rγi||2

}
(2)
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where

γi+1 = γi + δγi (3)

and

δγi = (JTi Ji + α2RTR)−1JTi (Vm − Vi). (4)

The term Ji = ∂Vi

∂γi
is the gradient of the forward model, with respect to the resistance distri-

bution. The introduced term α2||Rγ||2 is a regularization term to stabilize the response. The pa-
rameter α describes the regularity of the calculated resistance distribution. The hyper-parameter
α describes the smoothness of the calculated resistance distribution and R is a regularization
matrix. We have used the Laplace type prior for R [34], but many other prior matrices could
also be used. The regularization parameter α has been selected empirically to be 10−3 as the,
providing the best possible result.

The mathematical aspect of the EIT reconstruction is an ill-posed non-linear inverse problem.
The main drawback is that the reconstructed image is not necessarily a unique and stable
solution, but the small changes in the data (e.g. electrical noise) cause large changes or ruin
the entire estimation results. This ill-posed problem can to be solved by regularization [35]. In
section 4 we propose to analyze a neural method for solving the inverse model and how it can
help to avoid the problem described above.

3. Material properties of the tactile polymer

3.1 Piezo-resistive sensitivity

The piezo-resistive material used in our experiments is the Velostat film (3M). It is made
of opaque, volume-conductive, carbon-impregnated polyolefin whose resistance decreases when
pressured; its volume resistivity is around 500 Ω·cm. Figure 2 shows the response of a small
rectangular conductive layer of dimension 80 × 35mm connected to 4 electrodes, with one pair
for current injection and the other for voltage measurement. The experiments were performed
with conductive objects and non-conductive objects in Figure 2 (a) and (b) for the same weight
100g applied. Moreover, the surface of the contact area is circular with a diameter of 25mm.

Following data collection for different values of the weight (i.e. 100g, 300g, 500g, 800 g), Fig-
ure 3 shows the relation between the pressure on the sensor surface and the resistance variation.
We established this relation for both conductive and non-conductive objects. The contact with
the conductive objects provokes a significant variation of the resistance ∆Rcond in comparison to
initial value (i.e. from 1.2kΩ to 4kΩ for the chosen pressure range). The non-conductive objects
induce a lower variation of the resistance ∆Rnon−cond to the sensor surface (i.e. from 50Ω to
150Ω for the chosen pressure range).

The conductive material varies weakly its resistance value in case of non-conductive objects,
but the type of change of resistance is the same as when you press with the conductive objects.
Its resistance changes slighty in reaction to different pressure values and no clear discrimination
is possible. Therefore, we can assume that the Velostat film works in a quasi-linear regime with
the capability to discriminate the pressure applied by conductive objects. For the case of non-
conductive objects, the conductive polymer possesses a high hysteresis which does not make it
the most suitable material to use since its resistance does not return correctly to its initial value
after pressing on it [36].

Finally, one conductive layer (for example conductive aluminum laminated fabric) was added
between a nonconductive object and rubber, and the same type of the characteristics (Figure 3)
as in the interaction with a conductive object was obtained.
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(a) conductive weight (b) non-conductive weight

Figure 2. Comparison of the piezo-resistive properties of the conductive material to conductive and non-conductive objects;
resp. (a) and (b) for the same weight 100g. On the top chart, the pressure value in Pa at the contact point and the ohmic
value of the resistive material. On the bottom chart: Phase plot of the dependence of the material resistance on the pressure.
The conductive pressure point shows no hysteresis with respect to the non-conductive pressure point. The ohmic variations
also reveal more amplitude for the conductive pressure point (several hundreds of ohms) than the non-conductive one
(several dozens of ohms).

Figure 3. Comparison of the variational resistance ∆R of the conductive material in its contact point for conductive and
non-conductive objects of various weights; resp. the continuous and dashed lines. The results are similar to those in Figure 2,
so the fabric is more sensitive to conductive objects put on its surface than non-conductive ones for which the ohmic variation
∆R is smaller but still can be detected.

3.1.1 Pressure estimation vs spatial distance to electrodes

Our previous experiment was conducted on a small rectangular conductive fabric (80×35mm)
to measure the relationship between the surface resistance of the conductive fabric and the pres-
sure at the contact point. The purpose of the current experiment is to measure the variation in
resistance of the conductive fabric with respect to spatial positions. We conducted our experi-
ment on a larger surface, a disc of diameter 200mm. Sixteen electrodes were placed uniformly on
its circumference and a constant DC current (200µA) was iteratively injected into electrode pairs
while potential differences were measured for each current injection. The chosen measurement
strategy is again the EIT’s neighboring method and due to the larger surface of the conductive
fabric, the current flow is lower in the central region than in the periphery.
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Figure 4. Comparison of the variational resistance ∆R of the conductive material with respect to spatial distance from
the center for conductive and non-conductive objects of various weights. For large surface above 10cm radius, there is a
nonlinear relationship between the object position on the tactile sensor, its actual weight and the variational resistance ∆R
of the conductive material, which give an overall imprecision up to several centimeters in the location of the contact point
on the tactile surface.

To facilitate visualization, several measurement were taken for five weight values (2.3g, 6.3g,
20.3g, 52.3g and 102.3g) which all had the same circular contact area of diameter 16,25mm in
order not to influence the electrical field. The change in resistance was measured in 9 positions
spaced uniformly by 20mm. All the measurements started from the same initial position, the
disc center.

Figure 4 shows the variation of resistance as a function of spatial position for five weight
values. Each variation of the tactile resistance value ∆R is averaged from 208 values measured.
Indeed, for each current injection, 13 measures of electrical potential between pairs of electrodes
are made and so for a total of 16 current injections (13×16 = 208 measurements). The observed
resistance changes ∆R have a convex parabolic profile for each weight value. In addition, the
variation of the resistance is greater in the vicinity of the electrodes at the center of the fabric.
For example, for the weight of 102.3g, the amplitude variation of the fabric resistance at its
boundary is about seven times higher than at the center. The further away we are from the
center, the higher the fabric sensitivity increases because the flow of the injected current is
higher in the periphery than in the center. The fabric sensitivity in the center can be improved
by placing an electrode in the center as proposed in the works [37, 38]. A problem arises from
these observations: for different weights, the change in resistance can be the same depending on
the position of the contact point. Thus, it may be non-trivial to find the value of a weight from
the single measurement of ∆R.

3.1.2 Spatial resolution

We assessed the sensitivity of the touch sensor for different spatial positions in the previous
experiment. This time, we study the spatial resolution of artificial skin under the same experi-
mental conditions. The purpose is to check experimentally how precise is the detection of ohmic
variation with respect to a displacement of the order of only few millimeters. For this purpose, a
weight of 102.3g is used which is moved back and forth from the center to the perimeter with a
displacement about 2.5mm per measurement. In comparison to the results obtained in Figure 4,
it is seen that the sensitivity varies depending on the position of the contact point. In order to
facilitate the visualization of ∆R, the weight is placed on the fabric before data acquisition, thus
establishing the reference value. Then, the weight is moved manually twice by 2.5mm.

Figure 5 (a) and (b) show the results of moving the weight in both directions. In these plots,
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the peak variations indicate the transitional phases when we move the weight. In Figure 5 (a),
the ohmic change between two positions, the distance between which is 2.5mm, is of the order
of a hundred ohms and the artificial skin finely detects this change.

(a)

(b)

Figure 5. Time series of the ohmic variation ∆R of the conductive material with respect to spatial displacement (in mm)
of a weight of 100g forward and backward; resp. (a) and (b).

Similarly, Figure 5 (b) shows ohmic variations of the order of several tens of ohms when the
displacement is from the center of the circular tactile fabric to the edge. The results of these
experiments indicate that a 2.5mm displacement is detected by the tactile sensor regardless of
the 102.3g weight position and there is no hysteresis effect.

3.1.3 Pressure resolution

Pressure resolution corresponds to the lowest weight which can be detected by the artificial
skin. Figure 4 shows the variation of resistance for a displacement of five different weights along
the sensor surface. For the lightest weight (2.3g, which corresponds to 1 cent euro coin), we can
observe a non-zero ∆R, especially at the center of the touch sensor (∆R ≈ 51.6Ω), which is the
least sensitive area indicated by the value 0 in abscissa. To extend these observations, we plot
the ohmic variations at the center of the artificial skin for five different weights, see Figure 6. As
shown in the figure, the profile of the curves is logarithmic but still linearly proportional with
respect to the weights.
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Figure 6. Relation of the variational resistance ∆R of the conductive material with respect to Pressure (Pa) and the weight
of objects (same contact point).

4. Proposed method

4.1 State of art in neural network technique for image reconstruction

Artificial neural networks are well-known optimization methods, highly parallel and distributed
with a significant level of learning capability. They have several advantages over classical signal
processing methods such as nonlinear regression, rapid adaptability to the input space, fault
tolerance to noisy inputs. In previous research, different types of NN were used to solve the inverse
problem in EIT such as Bayesian neural networks [39] or Radial Basis Function Neural Networks
(RBFNN) [40–42]. Adler and Guardo [43] presented a reconstruction algorithm using neural
network techniques, which computed a linear approximation of the inverse problem directly
from finite element simulations of the forward problem. NN adapted to the geometry of the
medium and to the signal-to-noise ratio (SNR) used during network training.

Table 1 compiles the different tasks where NN were used for image reconstruction on the basis
of the EIT method.

4.2 Self-Organizing Maps

Self-organizing maps (SOMs), especially Kohonen maps, are a powerful mechanism for analyzing
and visualizing multidimensional data [54, 55]. SOMs are an unsupervised learning method that
is applied successfully to various tasks. In image processing, for example, SOMs are used for image
compression, feature extraction, segmentation (pixel-based or feature-based), object recognition
(pixel-based, feature-based) as well as image understanding [56]. In comparison to the supervised
neural networks presented in the previous section, SOMs are a model-free technique, which does
not require knowledge about the structure of the input space (e.g., a finite element model of
the tactile surface). Another advantage is that they are also bio-inspired methods mimicking the
topographical organization of the brain to represent the sensory signals [2, 57]. One disadvantage
is that they can produce a generalization error higher than for the model-based techniques if the
input database is not well defined.
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Table 1. A review of Neural Network approach to image reconstruction in EIT

Explorers
Technic || Electrodes ||

Methods
Detection success NN || Learning

Pandey and Clausen
(2011) [42]

EIT || 16 ||
opposite method

1.5% limit errors
RBFNN is constructed and trained by
orthogonal least square (OLS) algorithm

Nejatali and Ciric
(1997) [44]

EIT || 16 2.6% - 14.7%
BPNN (back-propagation) and Forward
problem solving module

Stasiak et al.
(2007) [45]

EIT || 28 3-8% relative errors MLP

Wang et al.
(2009) [46]

EIT || 32 1.64 - 2.94% RBFNN trained by PSO optimization algorithm

Lampinen et al.
(1999) [39]

EIT

6.7% classification errors
8.7% relative errors in void fraction

5.9% classification errors
8.1% relative errors in void fraction

3.4% relative errors in void fraction

Multilayer Perceptron (MLP) neural network
MLP ESC

Bayesian MLP

Bayesian MLP, direct void fraction

Vehtari and Lampinen
(2000) [47]

EIT

4.7% classification errors
16.2% errorsin void fraction

4.5% classification errors
15.7% error in void fraction

3.8% classification errors
6.0% error in void fraction

MLP ESC
(NNTB3 def)

MLP ESC (decent def)

Bayesian MLP

Peng and Mo
(2003) [48]

EIT || 32 ||
neighboring method

10-4 mean squared
error (MSE) of networks

Multilevel BP neural network
(MBPNN) (three levels)

Minhas and Reddy
(2005) [40]

EIT || 16 8% limit error
Four different RBFNNs, corresponding to four
different classifiers, was trained by applying
OLSA

Adler and Guardo
(1994) [43]

EIT || 16 0.49-1.38% ADALINE network (Adaptive Linear Element)

Ghasemazar and Vahdat
(2007) [49]

EIT 1.4x10-5 - 6.2x10-5 MSE of networks Several Multilayer Perceptron (MLP)

Miller et al.
(1992) [50]

EIT 5% Back-projection network

Ratajewicz-Mikolajczak et al.
(1998) [51]

EIT || 16 3-8% relative errors
ANN learning using Cascade Correlation
Learning Algorithm (CASCOR)

Takeuchi and Kosugi
(1994) [52]

EIT || 18 ||
opposite method

Error induced by noise appeared about 20%
Fletcher-Reeves conjugate gradient method
for BP learning

Teague et al.
(2001) [53]

EIT

5.6 - 12% void fraction errors

6.15 - 11.2% void fraction errors

Single-layer feed-forward NN was trained using
gradient descent

Double-layer feed-forward NN was trained using
resilient back-propagation

4.2.1 Structure of self-organizing maps

SOMs consist of elements called ’nodes’ or neurons connected topologically, see Figure 7. Each
node i ∈ N , with N the dimension of the neural network, is connected to the input vector j ∈M ,
with M the dimension of the input vector, and to the vector of weights wij with i, j ∈ N ×M
and each node has a local influence on their direct neighbours.

Learning takes place iteratively as follows. At each cycle, the distance di between all weights
and the input vector is computed; see eq. 5. The neuron with the smallest distance is called the
winning neuron. Its weights and those of its direct neighbours are modified to reduce the distance
to the input vector; see eq. 6, and their output is computed as the inverse of the distance; see
eq. 7. The position of the neurons on a 2-dimensional grid determines the Kohonen map topology.

4.2.2 The learning algorithm of a SOM

During the training stage, a distance d (usually an Euclidian or L1 distance) between the
input vector x and the neurons’ weights w are associated to each output neuron y as in eq. 7:

di =

√√√√ M∑
j=1

(xj − wij)2 (5)
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where xj is the j-th component of the input vector x and M is the dimension of the input
vector x; di the distance associated to i-th neuron within a population of N neurons. The smaller
d is, the closer is the receptive field of the neuron to that input vector.

The output neuron with the smallest distance d∗i = argmin(di) is written i∗ and is then
considered as the winner neuron. Its weights are updated following eq. 6 as well as the neurons
within a certain neighborhood radius hci∗ [58]:

wij(t+ 1) = wij(t) + εhci(xj(t)− wij(t)) (6)

where ε is the learning rate, for iteration time t. The Kohonen rule changes the weights of the
winner neuron and of its neighbors [59, 60], which get closer to the input vector and cause the
decreasing of the distance to it. As a result, the Kohonen network learns to classify topologically
similar vectors. The output value yi of the neuron i is the inverse of the distance di measured in
eq. 5:

yi =
1

1 + di
(7)

5. Imaging reconstruction with Kohonen Neural Networks

5.1 Experimental setup

Figure 7 represents a schematic diagram of the overall experimental setup for reconstructing
the spatial location of the conductive weights by a Kohonen map from the distribution of the
resistance density. A small constant DC current of 200µA is applied to the surface (input vector
size of 16 bins), the voltages are measured using the neighboring method of EIT (output vector
size of 16× 13 bins) and a Kohonen map of 32× 32 neurons is used to solve the inverse problem
of EIT; the electronic hardware is detailed in [36].

The Kohonen network is part of the simulated annealing algorithms which require an ex-
ploration/exploitation period to converge. The learning stage is therefore done in two phases,
the ordering phase and the tuning phase that control respectively the network plasticity and
stability. This is applied here by selecting the number of examples fed to the neurons and the
population of neuron to be fed. On the one hand, during the ordering phase, the training set is
initialized with a given quantity of the data set and the radius of the neighborhood begins with
an initial distance value that decreases to the unit value. This first mechanism allows the weights
of neurons to self-organize in the input space consistent with their positions. On the other hand,
during the tuning phase, the remaining samples of the data set are used to update the weights of
the winner neuron only. This second mechanism allows the weights to change relatively evenly
in the input space while maintaining the topology found in the ordering phase.

Output layer of NN

Input vector 

I (1 х 16)

Output vector

U (13 х 16)

Wij

Input layer of NN

N (32 x 32)

Xj

Yi

M (208)

Figure 7. Schematic diagram to estimate the resistivity distribution on the tactile sheet by a Kohonen map based on the
EIT method. The input current I is injected at 16 different locations, which give the voltage matrix U , the input of the
Kohonen map of 32 × 32 units.
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Figure 8. Convergence rate of the Kohonen network during the learning stage based on the mean value of the weights and
for different learning steps ε = 0.01, 0.005 and 0.001. Although the convergence rate is faster for the bigger ε, the networks
that slowly adapt to the input matrices are also more finely tuned, as it can be seen in the evolution of the entropy value
over the weights, which is also a measure of information or complexity within the network.

Simultaneously, we make the learning rate ε to decrease during the learning period from
0.01 to 0.001. The neighborhood function hci, a Gaussian function, goes from high values of
neighborhood weights (strong local influence) to low values of neighborhood weights (weak local
influence). The average values of the weights of the Kohonen Network during the learning period
and for different learning rate are depicted in Figure 8.

Figure 8 (top chart) allows us to see properly the evolution of the average weight of the neural
network for three ε values (0.01, 0.005 and 0.001). Indeed, it appears that the mean value of
the weight tends to stabilize at an average weight of 0.1479. Furthermore, no overshoot of the
final value is found. Therefore, the curves obtained can remind the step response of a low-pass
filter of the first order. This is why in Figure 8 (bottom chart) the tangents at the origin are
drawn leading to construction of time constants τ1, τ2 and τ3. The results obtained for each time
constant are the following: τ1 = 4.2s, τ2 = 7.7s and τ3 = 19.6s. In fact, the average network
weights stabilizes around a duration of 5τ .

5.2 Experimental Results

The spatial location of the object and the resistance density distribution were reconstructed
with the Kohonen neural network learnt in the previous section. Figure 9 shows the test results
of the neural network with 32× 32 neurons in the output layer when an object of 100g is moved
continuously on the tactile surface. The location of higher neural activity corresponds to the
cluster receptive field where the weight is set. The neurons receptive field is large as it englobes
many neurons within the field, the cluster moves smoothly and linearly with respect to the
spatial displacement of the weight on the tactile sensor. The reconstruction time is about 20ms
at each iteration.

5.3 Experiment 2 – EIT vs Neural Networks

Figure 10 represents the spatial location of the object (weight of 100g) and the resistance density
distribution was reconstructed with the MATLAB toolbox EIDORS (Electrical Impedance and
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(a) step 1 (b) step 2

(c) step 3 (d) step 4

Figure 9. Position of the object (weight = 100g) on the conductive material and the SOM reconstruction (network size 32
× 32 neurons)

Diffused Optical Reconstruction Software) [61]. This software implements three tools for the
mesh generation, the forward problem and the inverse problem [62]. The reconstruction time
with EIDORS takes 260ms to complete each matrix of tension measurements, which is ten times
longer than for the SOM method (20ms).

(a) step 1 (b) step 2

(c) step 3 (d) step 4

Figure 10. 2 dimensional image reconstruction using EIDORS of a FEM model with 1024 elements. The hyper parameter
α (regularization weight) is set to 10−3. Blue and reds areas are the areas with higher and lower resistivity respectively.

Initially, we have estimated the no-load resistance distribution of the conductive fabric and we
have used it as a reference for calibration. This approach allows to measure the relative change in
the resistance distribution compared to the reference state and it is known as difference imaging
or dynamic imaging [34]. It consists on the estimation of time-varying changes in resistance
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(a) EIDORS (b) Kohonen map (c) Probability density

Figure 11. Relative error (in %) of the determination of the position of the object on the conductive material: (a) classi-
cal approach reconstruction (Matlab toolbox EIDORS); (b) neural network image reconstruction (Kohonen Map 32 x 32
neurons). (c) probability density of the relative error on the surface of the tactile sensor.

between 2 particular points. If we suppose that the variation in the impedance is low, a linearized
algorithm can be used to solve the problem in only one step, which will be close to real-time
operations. Thus, there is no iterative computation involved and the real resistance distribution
does not need to be computed. This type of image reconstruction in EIT is considered more
robust to noise and to electrode positioning errors compared to static imaging.

We present in Figure 11 (a) and (b) the relative position error of an object (100g) on the
conductive material for the classical reconstruction approach (Matlab toolbox EIDORS) and for
the neural network image reconstruction approach (the Kohonen Map). Other metric measures
were proposed in [25], such as ’point localization’.

One can see that the relative error does not exceed 1.5% for these two approaches and the
largest error occurs at the center of the conductive material for both.This is due to the decreased
sensitivity of the skin as the function of the distance from the electrodes. Along the edges of the
conductive fabric of the Kohonen network can determine the position of the object with a greater
accuracy by the classical method (within the area of up to 5cm from the edges the error is below
0.5%). On the edges the error decreases to less than 1mm. When the Kohonen network increases
in size (13 × 16, 32 × 32, 64 × 64), the maximum relative error is reduced. Nevertheless, the
maximum localization error on the artificial skin is less than 1.5% at the center position, which
means that the software EIDORS and NN have a high accuracy with approximately a distance
error of 7mm. Analysis of the error probability density (see Figure 11 (c)) shows that the classical
method using EIDORS produces an relative error that is always distributed uniformly, whereas
the proposed method with Kohonen map produces more common errors for values less than
0.25% and less in range up to 1.5%.

5.4 Experiment 3 with neural networks

5.4.1 touch and multitouch

In this experiment, we investigate the ability of our neural architecture to discriminate the
spatial location of multiple contact points, up to three with various weights, see Figure 12.
Our circular tactile sensor is represented again with a Kohonen network of 1024 neurons (32
by 32 neurons). We display in Figure 12 (a) the experimental setup for a weight of 100g with
the corresponding neural activity of the Kohonen map where the location zone can be clearly
identified by the high activity level above 0.8. The neural map activity for two weights held
on the tactile surface is shown in Figure 12 (b) for which two clusters are found. The activity
level of the second cluster, which corresponds to the second object added, is slightly lower than
the activity of the first one as it has a smaller weight of 50g. The overall neural activity is also
reduced as having two objects instead of one diminishes the voltage value. The activity values
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(a) Single contact point (weigth of 100g).

(b) Two contact points (weigths of 100g and 50g).

(c) Three contact points (weigths of 100g, 50g and 20g).

Figure 12. Neural activity of the Kohonen map for multi-touch task for one, two or three weights of 100g, 50g and 20g; resp
(a), (b) and (c). The neurons are able to estimate correctly and simultaneously objects of different location and weights.

of neural clusters are around 0.6 in the two areas. Finally, we add a third object of 20g on the
surface and the Kohonen network is capable to identify its spatial location with a third cluster
of lower intensity with respect to the others of about 0.48; see Figure 12 (c). Although any
new object held on the surface increases the total pressure on it and decreases proportionally
the sensor’s impedance, the neural network is able to adapt to this change and to be robust to
multi-touch. Thus, for the first object with a constant weight of 100g, its location is computed
for a neural activity up to 0.8, then for the second object up to 0.6 and for the third object, up
to 0.55.

5.4.2 with different material shapes

We verified in the previous experiment that the Kohonen map self-organized effectively to
preserve the topology of the input structure for the spatial location of objects on the conductive
surface. This is another advantage of the Kohonen map over parametric methods, which can
adapt dynamically to the topology of the incoming structure. The spatial location of a contact
point cannot be determined using the parametric methods if the shape of the tactile surface is
unknown or modified, the same is true for the neural networks that do not have any topology
like RBF or multi-layer perceptrons.
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(a) Round-shaped surface (b) Square-shaped surface

Figure 13. Topological reconstruction from the Kohonen neurons’ synaptic weights using the graphical display based on
the Fruchterman-Reingold algorithm for two different type of conductive surface, a round in (a) and a square in (b).

Figure 13 shows the topology of two reconstructed Kohonen map using the Fruchterman-
Reingold layout algorithm [63] from a square tactile surface and a round tactile surface, respec-
tively (a) and (b). This algorithm is a visualization technique used in graph theory and in neural
networks for analyzing a network’s topology. Although very caricatural, the FR algorithm has
been used for molecular placement simulations and can serve here to determine the topology
of the Kohonen map. It is based on the physical modeling of a springs-masses network with
repulsive and attractive forces. The forces are computed from a distance between the neurons
weights, for which neighboring neurons with similar weights see their dynamics tightened by
attractive forces. We use the jet color layout discretized to 1024 colors associated with each
neuron of the Kohonen maps with respect to their index.

As one can see from the graphs, the nodes attempt to reconstruct the topology of the tactile
surface with a round-like shape in (a) and a square-like map in (b), respecting the nonlinearities
of the corners.

5.4.3 with different objects

One extension from detecting multiple contact points on the tactile surface is to identify spa-
tially ordered contact points as it is in the visual pattern recognition of objects. Four archetypal
shapes are used to test the effectiveness of the SOM to perceive the actual stimulated profile
from the neural activity on the active sensor area: a triangular prism (three sharp angles), a cube
(four blunt angles), a ruler (two blunt angles) and a cylinder. Figure 14 shows the activity of the
Kohonen neurons for four different shapes with the topology found by the Fruchterman-Reingold
layout algorithm in Figure 13 (a), red color reflects the neuron activity above a certain threshold
(the same for the four shapes).

As one can see, it is possible to discriminate to some extent the object shape from the neural
activity, although the spatial resolution is not fully respected and the topology slightly distorted.
The sharp angles of objects permit to discriminate each object more easily and to find their
orientation. These properties – to discriminate objects and find their orientation are not trivial
as the Kohonen map has learnt from individual tactile points; for instance, it is not clear if it
is possible to reduce the shape of objects to a linear combination of individual points: we do
not know whether or not the electrical field of one complex shape object can be easily reduced
to the electrical field of multiple points. This method shows therefore its limits and the need to
acquire other types of signals (visual, proprioceptive or other mechanoreceptors) to discriminate
better object shapes.
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(a) a prism (b) a cube

(c) a parallelipedic shape (d) an unfilled cylinder

Figure 14. Activity-level of the Kohonen neurons in presence of various shape and above a certain threshold.

6. Conclusion

The sense of touch is an important feature to provide in robots in order to represent their body
and to interact with the environment. It requires to discover the configuration of their sensors
and to learn the structure of sensorimotor information. Moreover, this feature should be adaptive
so that changes can be overcome as well: (i) in the sensor configuration, (ii) in the number of
contact points, (iii) in the pressure range or (iv) with the presence of noise.

In this paper, we present a bio-inspired solution for reconstructing the topology of a tactile
device and for sensing the external contact points on it. Neural networks can permit to avoid
for the experimenter to identify himself the sensor properties and to configure the important
parameters of the reconstruction method that can be different from the datasheet specification
and during its use due to the material deterioration and damage. In comparison to classical
methods, neural networks can generalize from a large range of sensory inputs off-the-shelf without
an a priori on the sensor structure. Our motivation is to develop in the long run a whole-body
artificial skin for humanoid robots with features emulating the human tactile perception such as
providing the spatial location of the physical contact point within the robot coordinate frame.
To our knowledge, we are the first to use neural networks for EIT image reconstruction of tactile
devices in the robotic domain and to use unsupervised techniques for EIT image reconstruction
in the literature. We did not compare our approach with other ANNs because advantages and
drawbacks of each family of ANN are already well documented [64].

The Kohonen network that we used has the advantages to model the topographic organization
in the somatopic area in the cortex similar to what is done in [57]. Its functioning is based on
a metric distance between the input vector and the neuron’s weights, which assumes that the
sensory inputs do have a topology and that a tiny displacement of a contact point on the material
surface will have an effect on the neurons’ activity and will be translated proportionally in term
of a neural distance to each neuron’s receptive field. This characteristic endows the Kohonen
map to be tolerant to noise and to emulate well multi-touch contact points and objects of
different shapes. Moreover, the Kohonen map showed advantages over the classical reconstruction
methods in terms of performance (good resolution accuracy) with the possibility to sense tactile
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inputs in real-time (in average 20ms versus 262ms for EIDORS using the difference imaging
of EIT). Although it has been reported that the difference EIT image reconstruction technique
can be very fast and can achieve 40 − 50Hz [65], the computational cost or complexity of EIT
reconstruction techniques has been shown to be a drawback when the matrix size augments [66].
The computational complexity of EIT methods requires to inverse one matrix of dimension n,
which costs computationally at least O(n2×m), where m is the number of finite elements of the
FEM, which means that as the matrix augments –, the size of the tactile sheet and the number
of electrodes,– the computational time for image reconstruction will increase asymptotically.
Instead, the computational cost of neural networks of m neurons and for the same input matrix
of dimension n is O(n × m), because the network output depends on the computation of all
the neurons within the neural network. In neural networks, the dimension m is often chosen
inferior to n, for generalization purpose but in our tests, we chose m = 1024 for both algorithms
in order to compare them. This means that the computational time for output approximation
is increasing linearly with the size of the neural network. Furthermore, we suggest that the
computation done by the NN is similar to the filtering process known as super-resolution in
image processing to enhance the spatial resolution and used recently with tactile devices [19]
using Bayesian techniques. NN interpolate several EIT samples acquired during the learning
period to enhance the spatial resolution of the tactile device.

Nonetheless, SOMs are part of the model-free and unsupervised techniques, which are known
to be less efficient than the supervised learning methods because the model of the desired state
is given in advance and exploited to minimize the error. Thus, we expect that multi-layer per-
ceptrons, deep networks, radial basis function, or support-vector machines to name a few will
give better performances in terms of convergence rate and accuracy than the Kohonen map that
we have employed. For these reasons, we believe that supervised neural networks can provide in
the future interesting and efficient solutions in terms of speed and error approximation to the
EIT image reconstruction problem.

SOMs have instead as advantages to learn online the topology of the input space (the geometry
of the tactile sheet) without any a priori knowledge. Furthermore, they are easy to interpret and
more plausible biologically. For instance, each neuron of the SOM map models a mechano-
receptor (e.g., the low-pass filter Merkel type) and each neuron learns its own position in the
tactile sheet as well as its own spatial resolution. The precision acquired depends on the learning
(or developmental) stage done, which is not the case for unit-based devices that have only a static
and uniform spatial distribution. ctually, we are working on the modeling of different types of
mechanoreceptors using our method.

Moreover, and as similar to the experience done in section 4.5.3 with the Kohonen map, we did
the blind-test to recognize the shape of objects on the surface of one arm’s skin and we could not
easily discriminate the different shapes by just pressing the object on it. This is in accordance
with research studies showing that the other senses –vision, proprioception, and audition– and
the combination of the mechano-receptors altogether contribute to tactile perception [67, 68].
Therefore, the aim of our future research will be to investigate the integration of other senses
like vision or proprioception towards the perception of ones own body and modeling of the sense
of ownership in a humanoid robot based on the tactile sense [69, 70].
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