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Abstract

The generalization of mathematical morphology to multivariate vector spaces is addressed in this paper. The proposed approach
is fully unsupervised and consists in learning a complete lattice from an image as a nonlinear bijective mapping, interpreted in the
form of a learned rank transformation together with an ordering of vectors. This unsupervised ordering of vectors relies on three
steps: dictionary learning, manifold learning and out of sample extension. In addition to providing an efficient way to construct
a vectorial ordering, the proposed approach can become a supervised ordering by the integration of pairwise constraints. The
performance of the approach is illustrated with color image processing examples.

Keywords: Mathematical Morphology, Complete Lattice, Rank Transform, Manifold Learning, Multivariate, Quantization, Out of
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1. Introduction

Mathematical Morphology (MM) is a nonlinear approach to
image processing based on the application of lattice theory to
spatial structures in images. The construction of morphological
operators requires the definition of a complete lattice structure,
i.e., an ordering between the elements to be processed. With
the acceptance of complete lattice theory, it is possible to de-
fine morphological operators for any type of multivariate im-
age data once a proper ordering is established [1]. However,
if MM is well defined for binary and gray scale images, there
exists no general admitted extension that permits to perform
morphological operations on multivariate data since there is no
natural ordering on vectors. Indeed, it is difficult to define an
effective ranking of vectors in arbitrary vector spaces as well
as determining the infimum and the supremum between vec-
tors of more than one dimension. Therefore, the extension of
Mathematical Morphology to multivariate images is a very ac-
tive field. We refer the reader to [2, 3, 1] for a comprehensive
review of vector morphology. Several recent approaches have
been proposed in literature for e.g., color and hyperspectral im-
ages [4, 5, 6, 7, 8, 9, 10].

This paper introduces a systematic approach towards the con-
struction of complete lattices for any kind of multivariate data.
Following recent approaches [8, 9], we propose to learn, in
an unsupervised manner, the construction of a complete lattice
from the values of an image. To do so, we rely on the theoreti-
cal framework of h-orderings [11], suitable for the definition of
complete lattices. This framework requires the definition of a
bijective mapping operator, and we propose to define the latter
by nonlinear manifold learning directly from the set of vectors
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of the image under consideration. This problem being practi-
cally too computationally demanding, we propose a three-step
strategy towards the construction of the mapping.

The paper is organized as follows. In Section 2, we explain
in details the difficulty of the definition of complete lattices in
vectors spaces. The properties of orderings and the associated
taxonomy [12] are recalled, and the concept of complete lattices
is introduced as well as how mathematical morphology opera-
tors operate on the latter. We detail what orderings are relevant
for morphological processing of multivariate vectors and why
the framework of h-ordering is a very appealing approach. Then
we show different interpretations of this framework and inter-
pret it as a rank transform. Section 3 presents our approach for
the learning of a complete lattice. First, a reduced lattice is con-
structed with the computation of a dictionary. Second, this dic-
tionary is used to construct an unsupervised ordering by nonlin-
ear dimensionality reduction. Third, this ordering is extended
to all the points of the initial lattice by the Nyström extension,
and the complete lattice is obtained. In Section 4 and 5 we show
how the proposed approach can be modified to either construct
supervised orderings or adapt the ordering to several images.
Section 6 considers the case of associating patches vectors to
pixels and shows how our approach can be naturally used to
obtain an innovative patch-based formulation of morphological
operators. Last section concludes. The interest of the approach
is illustrated all throughout the paper with various experiments
and comparisons with state-of-the-art approaches.

2. Complete lattices in Rn

Mathematical Morphology is a nonlinear approach to image
processing that relies on a fundamental structure, the complete
lattice (L,≤) [13]. The complete lattice theory is widely ac-
cepted as the appropriate algebraic basis for MM. If this has
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the advantage of unifying previous approaches developed for
binary and grayscale morphology, complete lattices also make
it possible to generalize the fundamental concepts of morpho-
logical operators to a wider variety of image types.

2.1. Orderings
Since in complete lattices the concept of order plays a central

role, we begin by recalling its key properties. Given x, y, z ∈ A,
a binary relation R on a setA is:
• reflexive if xRx;
• antisymmetric if xRy and yRx⇒ x = y;
• transitive if xRy and yRz⇒ xRz;
• total if xRy or yRx.

The binary relation R is a pre-ordering if R is reflexive and
transitive. R is a partial ordering if R is an antisymmetric pre-
ordering. Finally, R is a total ordering if it is a total partial or-
dering. Barnett [12] has proposed to classify ordering relations
that operates on general vectors v = (v1, . . . , vn)T (i.e., the set
A is Rn) into four groups: marginal (M-ordering), conditional
(C-ordering), partial (P-ordering) and reduced (R-ordering).

M-orderings. Orderings are performed on every component of
the given vectors leading to a component-wise ordering:

∀v, v′ ∈ Rn, v ≤M v′ ⇔ ∀i ∈ {1, . . . , n}, vi ≤ v′i . (1)

Such an ordering is a partial ordering.

C-orderings. Vectors are ordered by means of their marginal
components:

∀v, v′ ∈ Rn, v ≤C v′ ⇔ ∃i ∈ {1, . . . , n},
(∀ j < i, v j = v′j) ∧ (vi ≤ v′i) . (2)

The most well-known C-ordering is the lexicographic ordering
that is a total ordering [14].

P-orderings. The ordering partitions the given vectors into
equivalence classes with respect to rank or extremeness [12].
The most popular is the aggregated distance ordering that con-
sists in associating each vector with the sum of its distances
from the other vectors of a family {v1, . . . , vn}:

∀v, v′ ∈ Rn, v ≤P v′ ⇔
n∑

k=1

d(v, vk) ≤
n∑

k=1

d(v′, vk) . (3)

Such an ordering is a total pre-ordering.

R-orderings. Vectors are first reduced to scalar values using a
mapping h : Rn → R. Vectors are then ordered with respect to
the scalar order of their projection:

∀v, v′ ∈ Rn, v ≤R v′ ⇔ h(v) ≤ h(v′) (4)

Two main families of mappings h can be defined wether they are
based on distances or projections [2]. According to the chosen
transformation it is possible to obtain a total pre-ordering (h
non-injective) or even a total ordering (h injective) [15].

Now that we have presented the concept of orderings, we can
introduce the concept of complete lattices.

2.2. Complete Lattices
A partially order set A is a set associated with a binary re-

lation R that is reflexive, antisymmetric and transitive. To sim-
plify the further notations, we will replace R by ≤.

In a partially ordered set A, the least majorant ∨X (called
supremum) of a subset X ⊆ A is defined as an element v0 ∈ A,
such that: 1) vi ≤ v0,∀vi ∈ X, and, 2)

if ∀vi, v j ∈ X, such that vi ≤ v j ≤ v0, then v j = v0.
One defines the greatest minorant ∧A (called infimum) of X

dually.
Additional information can be found in [16, 17].
A partially ordered set A is an inf semi-lattice (resp. sup

semi-lattice) if every two-element subset {X1,X2} in A has an
infimum X1 ∧ X2 (resp. a supremum X1 ∨ X2) in A. If A is
both an inf and a sup lattice, then it is called a lattice.

Finally, a lattice is called a complete lattice when every non-
empty subset X ⊆ A has an infimum ∧X and a supremum ∨X.

2.3. MM and Complete Lattices
It has been shown in [13] that any mathematical morphology

operator must operate into the complete lattice structure of the
object space. A spaceL endowed with a (partial or total) order-
ing relation ≤ is called a complete lattice [18], and is denoted by
(L,≤). As this was exposed in the previous section, this means
that every non-empty subset P ⊆ L has both an infimum ∧P
and a supremum ∨P. Following the notation of [7], we say that
the smallest element (minimum) vk ∈ L is an element contained
in all others elements of L, that is, vl ∈ L ⇒ vk ≤ vl. We de-
note the minimum of L by ⊥. Equivalently, the largest element
(maximum) vk ∈ L is an element that contains every element
of L, that is, vl ∈ L ⇒ vl ≤ vk. We denote the maximum of L
by ⊥.

In this context, functions are modeled by mapping their do-
main space Ω, into a complete lattice L, i.e., f : Ω → L.
Within this model, morphological operators are represented
as mappings between complete lattices in combination with
matching patterns called structuring elements that are subsets
of Ω.

We call a dilation an operator δ : L → L that commutes with
the supremum and preserves ⊥ the lowest element of L, i.e., δ
is a dilation iff for every collection {vi}i∈I of elements of L:

δ(∨i∈Ivi) = ∨i∈Iδ(vi) , (5)

and δ(⊥) =⊥.
Similarly, we call erosion an operator ε : L → L that com-

mutes with the infimum and preserves ⊥, the maximum of L,
i.e., ε is an erosion iff for every collection {vi}i∈I of elements of
L:

ε(∧i∈Ivi) = ∧i∈Iε(vi) , (6)

and ε( ⊥) =

⊥. As quoted in [19], dilation and erosion basically
rely on three concepts: a ranking scheme, the extrema derived
from this ranking and finally the possibility of admitting an in-
finity of operands (i.e., the two first are the ingredients of a
complete lattice).

For any erosion ε, we can find a unique dilation δ such that
∀vi, vj ∈ L: δ(vj) ≤ vi ⇔ vj ≤ ε(vi). A pair of erosion and
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dilation satisfying the above relation is called an adjunction.
Given an adjunction (ε, δ) on a complete lattice, the following
results can be easily proven [20]: 1) εδ ≥ I and δε ≤ I, 2)
εδε = ε and δεδ = δ, 3) φ = εδ is an opening, 4) γ = δε is a
closing.

To conclude, if one want to perform morphological opera-
tors on some data, one has first to look for a complete lattice
for the set of values of the data since the ordering of the lattice
enables to compare its elements. For example, if we consider
the classical case of gray-level images f : Ω → R, the corre-
sponding complete lattice is (R,≤) with ≤ the usual comparison
operator in R. However, if we now consider multivalued images
f : Ω → Rn, n > 1, it becomes problematic to find an ordering
relation for the vectors of Rn, due to the fact that there is no
universal method for ordering multivariate data [1].

2.4. Complete Lattices in Rn

As we have seen in the previous section, the construction
of morphological operators needs a complete lattice structure
[13], i.e., the definition of an ordering relationship between all
the data to be processed that belong to the lattice. From a the-
oretical point of view, a partial ordering is sufficient, but it is
preferable to dispose of a total ordering [1]. Indeed, once one
wants to consider complete Lattices in Rn, the data to be pro-
cessed are vectors and we have to ensure that the output vectors
of any morphological operator still belong to the input lattice
[21]. This is a well-known problem encountered with partial M-
orderings that lack vector preservation (also known as the prob-
lem of false colors when dealing with color images [15, 1, 21]).
Therefore, as stated in [21], the only proper way to consider
morphological operators without the introduction of new vec-
tors, that do not belong to the input lattice, is to dispose of ei-
ther a total pre-ordering or a total ordering. This tells us that the
only possible orderings to be considered are C-, P- or R- order-
ings, according to the classification of Barnett [12] (see section
2.1). However, pre-orderings lack the anti-symmetry constraint
and distinct vectors can be considered as equivalent. This can
lead to the obtention of not unique extrema. Therefore, it is
necessary to consider only total orderings and we can only end
up with C- or R- orderings. We now provide a short review of
the main approaches for the definition of complete lattices in
Rn with such total orderings (see [14, 10] for more complete
reviews)

C-orderings. Most of the attempts on defining complete Lat-
tices in Rn make use of C-orderings and in particular of the
lexicographic ordering. This has been extensively considered
for the morphological processing of color images and many
color-specific lexicographic orderings have been proposed (see
[14, 1] for reviews). Their main known drawback consists of
the excessive priority attributed to the first vector dimension.
However the attempts to cope with this problem (e.g., the α-
modulus lexicographical ordering [22] or the α-trimmed lexi-
cographic ordering [23]) cannot be considered once the number
of components of the vector becomes very high. In addition, the
quantization they apply on the vectors cancels the property of
being a total ordering [23]. So even if lexicographic orderings

are the natural total orderings considered for color morphol-
ogy [5, 3], they are not well suited for the processing of high-
dimensional vectors spaces since it is very difficult to establish
a prioritization of the components.

R-orderings. With complete lattices to be defined in Rn, and C-
orderings not being adapted for high dimensional spaces, there
has been a recent interest in the theoretical framework of h-
orderings introduced in [11]. A multivariate image can be rep-
resented by the mapping f : Ω ⊂ Zl → T ⊂ Rn where l
is the image dimension, n the number of channels, and T is a
non-empty set. One way to define an ordering relation between
vectors of T is to use the framework of h-orderings [11]. This
corresponds to defining a surjective transform h from T to L
where L is a complete lattice equipped with the conditional to-
tal ordering [11]. We refer to ≤h as the h-ordering given by:

h : T → L and v→ h(v),∀(vi, v j) ∈ T × T

vi ≤h v j ⇔ h(vi) ≤ h(v j) . (7)

Then, T is no longer required to be a complete lattice, since the
ordering of T can be induced upon L by means of h [1]. When
h is bijective, this corresponds to defining a space filling curve
[15] that goes through each point of the set T just once and
thus induces a total ordering. Therefore, there is an equivalence
[15, 1]:

(total ordering on T )⇔
(bijective application h : T → L)⇔

(space filling curve in T ).

When h is bijective, there exist only one mapping h−1 : L → T
such that h−1 ◦ h(v) = v. The framework of h-ordering is un-
doubtedly the most flexible and general way to define a com-
plete lattice in Rn. The first approach relying on such a map-
ping was the bit-mixing approach [15] that employs a transfor-
mation exploiting the binary representation of each component.
This approach cannot be easily extended to high-dimensional
spaces and recent works towards this have considered either
distance-based [7, 10] or projection-based [8, 6, 9] h-orderings.
Given a mapping h, one can then define h-erosion and h-dilation
[9, 7, 10].

2.5. The rank transform: another interpretation of the com-
plete lattice

Finally, another equivalence for total orderings can be con-
sidered [24]:

(total ordering on T )⇔
(rank transformation on T ).

Indeed, since a total ordering orders all the vectors of the a lat-
tice T , it is possible to sort all these vectors according to the
ordering and to obtain their rank in the ordering, creating ex-
plicitly the complete lattice (T ,≤) [24]. This corresponds to
say that to create a total order for building the complete lattice
structure for MM operators, the values the lattice of are in fact
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(a) f : Ω ⊂ Z2 → T ⊂ R3 (b) Space Filling curve in T

(c) Total ordering of T (d) Rank of each pixel.

Figure 1: Illustration of the principle of the rank transform. Given an original
multivariate color image (a) of 9 distinct color vectors, a space filling curve (b)
is constructed on the set T of 9 vectors of the image. This space-filling curve
provides the total ordering (c) of the vectors of T and shows the complete
lattice (T ,≤). Given the rank of each color in the complete lattice (T ,≤), one
can associate a rank (d) to each pixel according to its color (depicted here with
gray values from black to white that corresponds to low to high ranks).

not important, only the rank position on the lattice structure is
relevant [21, 25, 26, 27]. Once the complete lattice is created,
each element of the initial set can be replaced by its rank. This
scalar rank is the lattice representation of the multivalued im-
age according to the considered total ordering strategy ≤, and
corresponds to a transformation h from T to N.

Definition 1. A rank transformation r : T → N is a function
that associates to a vector x ∈ T the value r(x) ∈ N where r(x)
is the rank position of x on the complete lattice (T ,≤).

This is illustrated in Figure 1 with a color image. Obviously
the rank transform can be defined only if the order used to sort
the vectors x ∈ T is a total ordering and there exist no ties in
the comparison. This view of a complete lattice through a rank
transform is interesting to compare different total orderings. To
illustrate this, we consider a color image that contains exactly
256 different color values (the vectors of the initial lattice T ).
Then, we consider different total ordering strategies to sort the
color vectors and we present an image of the ranks. Figure
2 presents the results. We considered five different orderings:
lexicographic ordering ≤C [14], α-trimmed lexicographic or-
dering ≤αC [23], bit-mixing ordering ≤bm [15], h-ordering based
on projections ≤h (this paper), and majority ordering ≤MJ [26].
We present for each ordering: the induced complete lattice and
the associated rank image (projection of the order on the im-
age support). Ideally two colors visually close should be close
in the complete lattice, and the rank image should look smooth
and preserve the level lines of the initial image. This was used
in [24] to compare different orderings. We can see directly that
this is absolutely not the case with with majority ordering ≤MJ

[26], which is not a total ordering. For the other orderings, a
visual comparison is difficult but we can see that ≤αC and ≤h

better preserve the level lines of the original image.

3. Complete Lattice Learning

Following our previous conclusions, the best complete lat-
tice candidate for high-dimensional spaces relies on the use of
the framework of h-orderings. The framework of h-ordering
presents another advantage: the complete lattice can be induced
directly from the data to be processed. This is not the com-
mon way to define complete lattices. Indeed, usual approaches
towards complete lattices do not explicitly construct the com-
plete lattice: they first define a total ordering relation (e.g., the
lexicographic ordering) that induces a complete lattice by defi-
nition. In this paper, we take an opposite approach that consists
in explicitly constructing the complete lattice, i.e., ordering the
values of the available data T (and not Rn the whole space of
definition of these data). Our approach is based on projections
to define unsupervised h-orderings. This mapping is an adap-
tive mapping since the mapping will depend on the set T of
values of the original image (i.e., a subset of the whole set of
possible vectors). Consequently the correct notation should be
hT for the deduced MM operators. However, to keep the no-
tation more readable, we will use only h for designing such
an adaptive mapping. Before giving a detailed explanation of
our approach, we provide a review of the actual state-of-the-art
methods on complete lattice learning.

3.1. Literature review
Two types of learned h-ordering have been considered so

far in literature [10]: unsupervised and supervised. In [6, 9]
Velasco-Forero and Angulo have proposed a P-ordering to pro-
duce an ordering by using statistical depth functions. We
can call such h-orderings unsupervised h-orderings. Statistical
depth functions provide, from the ”deepest” point, a ”center-
outward ordering” of multidimensional data. Therefore, the as-
sumption of the existence of background/foreground represen-
tation is required. The interpretation of max and min operation
in this learned lattice is known a priori, because max values
can be associated with ”outlier” pixels in the high-dimensional
space and min are ”central” pixels in Rn. Since projection
depth require high computation time for an exact solution, an
approximate computation is done by stochastic sampling. In
[4, 7] Velasco-Forero and Angulo have proposed a supervised
method to construct the ordering mapping. These approaches
are supervised ones and require the providing of two subsets B
and F (for Background and Foreground) such that B ∩ F = ∅

with h(x) =⊥, if x ∈ B, and h(x) =

⊥, if x ∈ F . We can call
such h-orderings supervised h-orderings. Two particular cases
of learning techniques have been considered: kriging [4] and
support vector machines learned vector ordering [7]. In this pa-
per, we propose a different approach that can be considered as
an unsupervised h-ordering, but without the need of any back-
ground/foreground assumption. In addition the approach can be
easily modified to become a supervised h-ordering.

3.2. Learning Complete Lattices from images
We propose to explicitly learn the complete lattice from a

multivariate image f : Ω → Rn using unsupervised h-ordering
h : T ⊂ Rn → L. Since we rely on projections, h can be
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Initial image The lattice T rC (T ,≤C) rαC (T ,≤αC)

rbm (T ,≤bm) rh (T ,≤h) rMJ (T ,≤MJ)

Figure 2: Comparison of vector orderings for complete lattice creation through the induced rank transform. From top to bottom, left to right: the two first images are
the original image and the (unordered) set of 256 colors used in the original image. The next pairs of images provide for each ordering: the obtained rank transform
and the ordering of the vectors (shown line by line from the top-left to the bottom-right pixel). The ordering of the vectors can be seen as a Look-Up-Table.

seen as a dimensionality reduction operator. It is now well-
known from the Manifold Learning literature [28] that the pro-
jection h cannot be linear since a distortion of the space topol-
ogy is inevitable. So, linear projection such as PCA are not
good candidates for the construction of a complete lattice. As
a consequence, we choose to focus our developments on man-
ifold learning to construct h. In addition, the lattice T begin
a subset of Rn, we will not try to construct a complete lattice
from Rn, but from T : the values available in the original im-
age. Given this, we will therefore look for the best complete
lattice given a specific image. The first advantage is that the
size of the set to be ordered if decreased (the set of values in T
is finite). The second advantage is that this will enable to find
an ordering of the pixel that is much more regular. As specified
in [15], the construction of h has to rely on one principle: if
two vectors are close in the initial lattice T , their projections
with the unsupervised h-ordering also have to remain close. We
will use that principle to optimize the projection h and have a
complete lattice that corresponds to the underlying manifold of
the data. In some specific cases, the underlying manifold of
the data is known beforehand and it much more suited to rely
on that. For instance, with real positive symmetric matrices the
data lies on a Riemannian manifold, specific orderings can be
used [29, 30, 31]. For general manifolds this is not the case.
However, constructing the complete lattice of an image with
non-linear dimensionality reduction directly from all its values
is computationally unfeasible.

Therefore, we propose a three-step strategy towards con-
structing the h-ordering, that is resumed in Figure 3. A re-
duced lattice is constructed with the computation of a dictio-
nary D. This dictionary is used to construct the unsupervised
hD-ordering by nonlinear dimensionality reduction. This or-
dering is then extended to all the points of the initial lattice
T by Nyström extension of hD on T , and the complete lattice
(T ,≤h) is obtained. We detail all these ingredients in the se-
quel. For each step we will present examples for color images,
but the proposed method is by far more general for any high-

Initial Image
f : Ω → T ⊂ Rn

Computation
of dictionary
D by Vector
Quantization

on T

Construction of
hD by nonlinear
dimensionality
reduction on D

Construction
of (T ,≤h)

by Nyström
extension

of hD on T

Figure 3: Overview of the whole approach for complete lattice learning.

dimensionality vector spaces.

3.3. Data Quantization

Since the complexity of manifold learning is highly depen-
dent on the number of input data, we first reduce the amount of
data of a multivariate image by Vector Quantization (VQ). VQ
maps a vector x to another vector x′ that belongs to p prototype
vectors, the set of which is named a dictionary. A dictionary
D is built from a training set T of size m (m � p). A VQ al-
gorithm has to produce a setD of prototypes x′ that minimizes
the distortion defined by

1
m

m∑
i=1

min
1≤ j≤p

‖xi − x′j‖2 . (8)

LBG [32] is one algorithm that can build such a dictionary. It
is an iterative algorithm that produces p = 2k prototypes after k
iterates. Given a multivariate image of m vectors, VQ is applied
to construct a dictionaryD = {x′1, . . . , x

′
p} where x′i ∈ R

n.
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3.4. Manifold learning

Once the dictionary D is obtained, we construct the trans-
formation h on D with manifold learning. Manifold learning
is the counterpart to Principal Component Analysis which aims
at finding a low dimensional parametrization for data sets that
lie on nonlinear manifolds in a high-dimensional space [28].
In the last few years, many manifold learning algorithms have
been proposed that share the use of an eigen-decomposition for
obtaining a lower-dimensional embedding of the data. In this
paper, we choose to use Laplacian Eigenmaps [33]. The choice
of this method is motivated by the fact that we want that vectors
close in the initial space remain close in the projection space (as
specified in [15] as a requirement for the construction of a map-
ping h). Laplacian Eigenmaps exactly consider an energy based
on this principle. Let {x′1, · · · , x

′
p} with x′i ∈ R

n be the p vectors
of the dictionary D. Manifold learning consists in searching
for a new representation {y1, · · · , yp} with yi ∈ Rp. One starts
by computing a similarity matrix W that contains the pairwise
similarities between all the input vectors x′i :

Wi j = k(x′i , x
′
j) = exp

−‖x′i − x′j‖
2
2

σ2

 . (9)

To have a parameter-free algorithm, σ is set to the maxi-
mum distance between the vectors of the dictionary: σ =

max
(x′i ,x

′
j)∈D
‖x′i − x′j‖

2
2. The degree diagonal matrix is denoted by

D with Dii =
∑

j Wi j, L = D −W is the Laplacian matrix and L̃
is the normalized Laplacian defined by

L̃ = D−
1
2 LD−

1
2 = I − D−

1
2 WD−

1
2 . (10)

Laplacian Eigenmaps manifold learning consists in searching
for a new representation obtained by minimizing

1
2

∑
i j

∥∥∥yi − y j

∥∥∥
2 Wi j = Tr(YT L̃Y) , (11)

under the constraint
YT DY = I (12)

with Y = [y1, · · · , yp]. This cost function encourages nearby
sample vectors to be mapped to nearby outputs. One can
show that this can be achieved by finding the eigenvectors
y1 = φ1, · · · , yp = φp of matrix L̃.

The eigen-decomposition of the normalized Laplacian is de-
noted as L̃ = ΦΠΦT with eigenvectors Φ = [φ1, · · · ,φp] and
eigenvalues Π = diag[λ1, · · · , λp]. The new

representation is obtained by considering these eigenvectors
and is defined by the following operator:

hD : x′i → (φi
1, · · · ,φ

i
p)T , (13)

where
φi

k denotes the ith coordinate of eigenvector φk. We will use
the notation φk(x′i) = φi

k in the sequel to emphasize the fact that
this ith coordinate corresponds to one dimension of the obtained
mapping of the vector x′i to the new representation. Finally, this

obtained projection operator corresponds to constructing a hD-
ordering from the data of the dictionaryD. In practice, the first
eigenvector, being constant, can be discarded but we will omit
this point for the sake of clarity.

3.5. Out of sample extension

To dispose of a complete lattice, we have to define the projec-
tion h of all the vectors of the image and not only its dictionary
with hD. Indeed for the moment we have only the complete
lattice (D,≤hD ) and we need (T ,≤h). The dictionary D be-
ing a sub-manifold of the complete lattice, we need to extend
eigenfunctions computed on the dictionary to new unexplored
vectors from the original image. This can be achieved by the
Nyström method [34, 35] that interpolates the value of eigen-
vectors computed on p sample vectors x′i to m novel vectors
xi. This was recently used for image denoising together with
a sampling approach [36]. To extrapolate a new vector x j, the
Nyström estimator with p samples for the k-th eigenvector is
[35]

φ̃k(x j) =
1
λk

p∑
i=1

φk(x′i)k(x j, x′i) (14)

where λk is the k-th eigenvalue of the similarity matrix W and
φk(x′i) is the i-th element of its k-th eigenvector. The similarity
between the initial vectors of D and the ones of T is given by
k(x j, x′i). This can be denoted as Φ̃ = KTΦΠ−1 in matrix form,
with Π the diagonal matrix of eigenvalues.
Let us instantiate Equation (14) in the context of the normal-
ized Laplacian. First, note that if λk is an eigenvalue of L̃, then
1 − λk is an eigenvalue of D−

1
2 WD−

1
2 . Applying the Nyström

extension to compute the extrapolated eigenvectors of the nor-
malized Laplacian L̃Φ̃k = λkΦ̃k, we get

φ̃k(x j) =
1

1 − λk

p∑
i=1

φk(x′i)
k(x j, x′i)√

dT (x j)dD(x′i)
(15)

where dD(x) =
p∑

i=1
k(x, x′i) and dT (x) =

m∑
i=1

k(x, xi). This can

be denoted as Φ̃ = D−
1
2
T

KT D−
1
2
D
ΦΠ−1 in matrix form. Matrices

DD and DT are the diagonal degree matrices computed from the
setsD and T . With this formulation, we are now in position to
compute the projection h for any pixel of the image.

3.6. The learned complete lattice

With these three sequential ingredients, we can now con-
struct a rank transformation that expresses explicitly the com-
plete lattice of the vectors of a multivariate image. Given a
multivariate image f : Ω → T ⊂ Rn that provides a set T =

{x1, · · · , xm} of m vectors in Rn, a dictionary D = {x′1, · · · , x
′
p}

of p vectors in Rn is computed. This can be done directly from
the set T or a subset of it. Manifold learning is performed on
the dictionary and a new representation hD(x′i) is obtained for
each element x′i of the dictionary. This new representation is
interpolated to all the pixels of the image with the Nyström out
of sample extension, defining h : T ⊂ Rn → L ⊂ Rp as
h(x) = (φ̃1(x), · · · , φ̃p(x))T . This is shown in Figure 4, where an
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original image f is first quantized into a dictionaryD of p = 64
colors and manifold learning is performed on this dictionary to
obtain a new representation hD. The latter is extended to all the
original colors of f to construct the global manifold learning
representation h. Once this representation is obtained, the com-
plete lattice (T ,≤h) can be explicitly constructed as well as the
rank transformation. First, we sort all vectors of f according to

f : Ω→ T ⊂ R3 D

hD : D ⊂ Rn → Rp h : T ⊂ Rn → Rp

Figure 4: Illustration of the proposed approach. From top to bottom, left to
right: the standard Barbara Image f , the dictionary D with p = 64 colors,
the mapping hD (projection shown on the three first eigenvectors) learned from
the dictionary D (dilated 5 times for visualization purposes), the mapping h
(projection shown on the three first eigenvectors) interpolated to all the vectors
of f .

≤h (the conditional total ordering on h(x)) and obtain a sorted
image fh. This sorted image fh : [1,m] → Rn defines the or-
dering of the vectors of f . This corresponds to a view of the
learned complete lattice (T ,≤h). From this ordering, we can
deduce the rank of a vector on the complete lattice L defined as
r : Rp → [1,m], and construct a rank image as

fr : Ω→ [1,m], with
fr(pi) = (r ◦ h ◦ f )(pi),∀pi ∈ Ω . (16)

In addition, we have also the definition of the inverse

h−1(pi) = ( fh ◦ r)(pi),∀pi ∈ Ω (17)

which is unique. With these elements, the original image f is
now represented by the rank image fr and the ordering of the
pixels’ vectors fh. The original image f is recovered exactly
since

f (pi) = ( fh ◦ fr)(pi),∀pi ∈ Ω . (18)

This shows that each pixel pi vector is recovered by getting its
corresponding vector in the Look-Up-Table fh with the index
fr(pi).

The rank image is a grayscale image of m levels that can
be directly used for any classical morphological processing.
Therefore, given a specific morphological processing g, the cor-
responding processed multivariate image is obtained by

g( f (pi)) = ( fh ◦ g ◦ fr)(pi),∀pi ∈ Ω . (19)

We provide in Figure 5 an illustration of the obtained total
ordering with respect to three state-of-the-art total ordering ap-
proaches for color images: RGB Lexicographic ordering (≤C)
[14], the LS H Lexicographic ordering (≤CLS H ) [37] and the bit-
mixing ordering (≤bm) [15]. It is important to note that even
if this illustration is provided for a color image, our approach
can be applied to any kind of multivariate images (this will be
investigated with patches vectors in Section 6).

If one compares the learned complete lattice (T ,≤h) with
the three state-of-art approaches, the following remarks can be
done. The order provided by ≤bm does not well preserve the
level lines in the original image and introduces strong artifacts.
The order provided by ≤C is better but still, one can easily see
on the lattice has privileged the first Red component for the or-
dering construction and this gives a lot of visual discontinuities.
A much better ordering is obtained by using the order ≤CLS H that
uses a more appropriate color representation in the HS L color
space. It can be seen that the order ≤h that we have constructed
by learning presents very comparable results, but without the
need of any color space change, neither any specific prioritiza-
tion of the components: the best ordering adapted to the image
(according to the minimized criterion (11)) is automatically de-
termined in an unsupervised manner.

3.7. MM operators on a learned complete lattice
We can now formulate the corresponding unsupervised h-

erosion εh,B and h-dilation δh,B of an image f at pixel pi ∈ Ω

by the structuring element B ⊂ Ω as:

εh,B( f )(pi) = { fh(∧ fr(p j)), p j ∈ B(pi)} = { fh(εB( fr)(pi))} (20)

and

δh,B( f )(pi) = { fh(∨ fr(p j)), p j ∈ B(pi)} = { fh(δB( fr)(pi))} (21)

with εB and δB the classical erosion and dilation on scalar im-
ages. This shows that the MM operators operate on the ranks
fr, and the image is reconstructed through the sorted vectors fh
that represent the learned lattice. It is easy to see that these op-
erators inherit the standard algebraic properties of morphologi-
cal operators since they fit into the theory of h-adjunctions [6].
From these basic operators, we can obtain all the morphological
filters such as the unsupervised h-openings and h-closings:

γh,B( f ) = δh,B(εh,B( f )) = fh(δB(εB( fr))) (22)
φh,B( f ) = εh,B(δh,B( f )) = fh(εB(δB( fr)) (23)

To illustrate our approach, we consider a set of standard
color images f : Ω → T ⊂ R3. For each image, we learn
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(T ,≤C) f C
r : Ω→ [1,m] (T ,≤CLS H ) f CLS H

r : Ω→ [1,m]

(T ,≤bm) f bm
r : Ω→ [1,m] fh showing (T ,≤h) fr : Ω→ [1,m]

Figure 5: Comparison of the proposed approach with state-of-the-art ones. From top to bottom, left to right: the sorted vectors and the associated rank image for
the RGB Lexicographic ordering (≤C), the LS H Lexicographic ordering (≤CLS H ), the bit-mixing ordering (≤bm), and our approach (≤h).

the complete lattice and obtain both fr : Ω → [1,m] and
fh : [1,m] → R3. Then, we apply compute the following mor-
phological unsupervised operators: h-erosion εh,B, h-dilation
δh,B, h-morphological gradient ∇h,B = δh,B − εh,B, h-opening
γh,B and h-closing φh,B( f ). The number of elements of the
dictionaryD depends on the number of pixels from the original
image and it is automatically fixed to p = 2k with k the largest
integer value such that 2k ≤

√
m/8 with m the number of

pixels of the original image. Figure 7 presents the results.
As it can be seen, the erosion contracts the structures that
have a color far from the first color of the complete lattice.
Dilation provides the dual effect and extends the structures
that have a color close to the last color of the complete lattice.
If the first color of the lattice are dark ones, then the image
is darkened with an erosion and enlightened with a dilation.
This is the case for the four first color images of Figure 7. The
last color image presents exactly the opposite effect because
in its complete lattice bright pixels appear at the beginning.
This is due to the fact that the complete lattice is build in a
complete unsupervised manner and there is no a priori control
on which colors will be privileged by erosion or dilation. Last
rows of Figure 7 shows product operators. We can see that our
approach enables effectively the conception of these operators
with an order adapted to the image, and we recover their
usual behavior. In Figure 6 we provide a comparison with the
unsupervised ordering approach based on random projection
proposed in [6, 9], that we denote as hS D. The difference
between both approaches is easily visible: [9] assumes a back-
ground/foreground decomposition and therefore the ordering
privileges pixels that appear in the foreground of the image as
being close to the supremum of the lattice, whereas background
pixels do correspond to values close to the infimum of the

lattice. Our approach does not require such a prerequisite and
is much more unsupervised since no supposition is made on the
repartition of the pixels in the image. This difference is directly
assessed by the obtained rank image fr that is much more
contrasted in our approach and shows better the details of the
image. As a consequence, the obtained processing (see second
and third rows of Figure 6) presents much sharper results than
with the approach of [9].

In addition, we illustrate how the proposed framework can be
considered for general image processing and editing tasks. We
consider image deblurring and image sharpening. To perform
image deblurring we apply a contrast mapping morphological
operator defined as [3]:

κh,B( f )(pi) =

 δh,B( f )(pi) if ∆1
h,B( f )(pi) ≤ ∆2

h,B( f )(pi)

εh,B( f )(pi) if ∆1
h,B( f )(pi) > ∆2

h,B( f )(pi)
(24)

with ∆1
h,B( f )(pi) = ‖ f (pi) − δh,B( f )(pi)‖2 and ∆2

h,B( f )(pi) =

‖ f (pi) − εh,B( f )(pi)‖2 This morphological transformation en-
hances the local contrast of f by sharpening its edges. First
and second rows of Figure 8 show that the proposed framework
can be used for such a deblurring task (the structuring element
is a square of side 3 pixels). To perform image sharpening, we
apply the strategy of [38] that consists in decomposing an image
into a piecewise smooth base layer and a detail layer. We apply
only one level of decomposition and replace their decomposi-
tion filter by a morphological Open Close Close Open (OCCO)
filter defined as pixelwise average of open-close and close-open
[2]:

OCCOh,B( f ) =
γh,B(φh,B( f )) + φh,B(γh,B( f ))

2
(25)

The structuring element is a square of side 5 pixels. The detail
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Figure 7: Morphological processing of color images with a learned complete lattice. The structuring element is a circle of radius 5. See text for details.
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Original Image

fr (ours) fr with [6]

εh,B εhS D,B

δh,B δhS D,B

Figure 6: Comparison on an image (first row) of our approach (first column of
rows 2 to 4) with statistical depth ordering (second column of rows 2 to 4) [6].
The structuring element is a circle of radius 5.

layer is boosted with a factor 2 and the image is recomposed.
Last two rows of Figure 8 show that our framework can also be
advantageously used for such edge-aware image manipulation.

4. From unsupervised to supervised ordering

So far, the approach we have proposed proceeds in a totally
unsupervised manner. While this is a strong benefit towards
other approaches that require strong assumptions on the im-
age content [6, 9], it might be sometime desirable to have more
control on the complete lattice that is build. As we previously
mentioned it, there is no a priori control on which colors will
be privileged by erosion or dilation. This is not really a prob-
lem since the proposed unsupervised h erosion and dilation are
dual. However, as exposed in [7], it might be beneficial to dis-
pose of a supervised way to construct the complete lattice to
dispose of more adaptive morphological operators. Therefore,
to cope with this, we propose a way to modify our approach
to transform it from an unsupervised approach to a supervised
one.

Figure 8: Application examples of our proposed framework for image deblur-
ring with contrast mapping (first two rows) and image editing (last two rows).
Each pair of rows shows the original and the processed image with a cropped
zoomed area in the bottom right corner.
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As in [7], we define a supervised h-ordering for a nonempty
setT based on two subsetsB and F such thatB∩F = ∅ and we
want to have the property that h(x) =⊥, if x ∈ B, and h(x) =

⊥,
if x ∈ F . Let fc : T → D be a function that assigns to a given
vector its closest element in the dictionaryD:

fc(x) = arg min
x′i∈D
‖x − x′i‖ (26)

Given the vectors of B and F and fc, we can deduce two sets
BD and FD that are subsets ofD:FD = { fc(xi) | xi ∈ F }

BD = { fc(xi) | xi ∈ B}
(27)

Then we modify the matrix W used for manifold learning on
the dictionary to account the similarities between the elements
of the two sets BD and FD. Indeed, since we want these sets to
be associated with the infimum and the supremum of the lattice
they have to be the farthest vectors of the lattice. To do so, we
interpret the sets BD and FD as pairwise constraints for semi-
supervised dimensionality reduction [39, 40]. Such constraints
are used to encourage mapping vectors of the same label close
to one another, and far if they are of different labels. In our
case, we consider that we have pairwise constraints between
elements of the same sets and as well as constraints between
elements of different sets. Therefore, in the computation of (9),
we modify the used distances between the vectors as follows: ‖x′i − x′j‖

2
2 = +∞ if x′i ∈ BD, x

′
j ∈ FD or x′i ∈ FD, x

′
j ∈ BD

‖x′i − x′j‖
2
2 = 0 if x′i ∈ BD, x

′
j ∈ BD or x′j ∈ FD, x

′
i ∈ FD

(28)
The rest of the approach remains unchanged. This modification
enables to take into account user constraints and to obtain a su-
pervised h-ordering with our approach. To distinguish between
our proposed supervised and unsupervised h-ordering, we will
denote by h+ a supervised ordering obtained with our approach.
Figure 9 presents an example. Given an original image, super-
vised constraints are added and some pixels are marked in two
sets B (in red) and F (in blue). From these two sets a super-
vised mapping h+ is computed. As it can be seen in Figure 9,
the constraints have enable to invert the ordering of the learned
complete lattice. With the supervised learned complete lattice,
pixels that have a color close the pixels selected in B will ex-
pand in an erosion and pixels that have a color close the pixels
selected in F will expand in an dilation. We show this behavior
in Figure 10 and we also provide a comparison with the super-
vised approach of [10], that we denote as hD. First row of Fig-
ure 10 shows the original image and the associated supervised
pairwise constraints (first and second columns). The two sets B
and F are shown in red and in blue. First row of Figure 10 also
shows a comparison (last three columns) between our unsuper-
vised ordering h, our unsupervised ordering from constraints
h+ and the supervised ordering hD [10] (using the same con-
straints). We can first see how the use of pairwise constraints
to supervise the complete lattice learning has strongly modified
the ordering of the color vectors. In addition our obtained su-
pervised ordering is much more efficient than the one of [10]:

Original Image Supervised constraints

Unsupervised (T ,≤h) Unsupervised fr : Ω→ [1,m]

Supervised (T ,≤h+ ) Supervised f +
r : Ω→ [1,m]

Figure 9: Illustration of the adding of constraints to the ordering to obtain a
supervised ordering.

pixels of blue color are all at the end of the ordering whereas
this is absolutely not the case with hD. This can be observed
in the results of the supervised erosion and dilation with either
h+ or hD (second row of Figure 10). With εh+,B the bird’s beak
is enlarged since it is close to the color pixels of B and white
areas shrink since they are closer to the color pixels of F . Sim-
ilar remarks can be made for the dilation. This shows that only
our proposed supervised ordering enables to obtain results in
accordance with the supervised constraints.

5. Adapting the order to several images

At this point, we are able to learn either an unsupervised or
a supervised complete lattice from one single image. As we
mentioned it, this means that the obtained ordering is image-
dependent and is adapted to only the image on which this total
ordering has been build. However, for some specific applica-
tions, the images under consideration share a lot of common
properties, including a reduced set of used colors. As a con-
sequence, it might seem more natural to dispose of an order-
ing that is much more controlled in order to guarantee that the
effect of morphological filters remains similar across the im-
ages. Indeed as we have seen, only the supervised version of
the complete lattice learning we have proposed enables to have
this kind of control over the vectors’ ordering. This however re-
quires to manually provide constraints for each image and this
can cannot be considered in an automatic processing of images.
We propose another way to deal with such a problem. Given
a reference set R = {I1, . . . , Il} of l representative images, we
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Original Image Supervised Constraints Unsupervised (T ,≤h) Supervised (T ,≤h+ ) Supervised (T ,≤hD )

εh+,B δh+,B εhD,B δhD,B

Figure 10: Supervised ordering comparison with the approach of [7, 10]. The structuring element is a square of side 3 pixels.

D1 D2 D3 Dg
Global dictionary
−→

Original image fr : Ω→ [1,m] (T ,≤h) εh,B δh,B

Figure 11: Constructing an order adapted to several images. The structuring element for the erosion and dilation is a circle of radius 5. See text for details.
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construct l dictionaries D1, . . . ,Dl, one from each image, with
the same number of p vectors. Then, a global dictionary Dg

is constructed from the whole set of vectors of the dictionar-
ies D1, . . . ,Dl. This global dictionary has the same number of
vectors and is representative of all the vectors that appear over
all the images of R. Then, each time one wants to infer a com-
plete lattice for a given image I, we apply our complete lattice
learning approach but this is done with the global dictionaryDg

instead of a dictionary constructed from I. By proceeding this
way, we ensure that the inferred ordering of vectors will remain
consistent among any new image of the same class. We illus-
trate this in Figure 11. We have considered microscopic color
images from serous cytology [41]. The set of colors used in
these images is reduced: white for the background, blue for nu-
clei, green for cytoplasms, and red for red blood corpuscles. We
consider the three first images as our reference set R and con-
struct three dictionariesD1,D2,D3 from which a global dictio-
nary Dg is build (first row of Figure 11). Then for each of the
provided four images, the complete lattice is learned from the
common global dictionaryDg. Rows 2 to 5 of Figure 11 present
for each image, the obtained rank image, the vectors’ ordering
and the result of an erosion and a dilation. As it can be seen, the
obtained ordering is consistent across all images: white colors
close to the infimum and blue colors to the supremum of the
lattice. Therefore, the effect of an erosion or a dilation is the
same among all the images: an erosion erodes the cells and a
dilation dilates them. With such an approach, it is much more
easy to develop a common morphological segmentation scheme
that will extract cells in the images.

D′ ⊂ R3w2
h′ : T ′ ⊂ R3w2

→ Rp

fh showing (T ,≤h) fr : Ω→ [1,m]

Figure 12: Patch-based complete lattice learning.

6. Patch-based Adaptive Morphological Operators

Recently, patch-based schemes for image processing have
received a lot of attention [42]. Rather than considering only
the vector associated to one pixel to compute pixel similarities,
patches around these pixels are considered. These patches cap-
ture the dependencies of neighboring pixels and thus can dis-
tinguish textural patterns. In previous works [43], we extended
PDEs-based morphology to perform patch-based processing on
images represented by proximity graphs. On the roots of our
works, [44] proposed some patch-based pseudo-morphological
operators that make use of a nearest neighbors graph. In [45],
nonlocal mathematical morphology operators are introduced as
a natural extension of nonlocal-means in the max-plus algebra.
All these approaches towards patch-based morphological pro-
cessing use adapted neighborhoods in the form of a graph. If
innovative, none of these works enables to extend the classical
flat algebraic morphological operators to general patch-based
configurations. On the opposite, our approach directly enables
it. We show now how to adapt our complete lattice learning ap-
proach to obtain patch-based adaptive morphological operators.
Given a color image f : Ω → T ⊂ R3, we associate a patch of
size w × w, represented as a vector of size 3w2, to each pixel.
This provides a new function f ′ : Ω → T ′ ⊂ R3w2

. On this
function, complete lattice learning is performed: a dictionary
D′ ⊂ R3w2

is constructed, a mapping h′
D′

: D′ ⊂ R3w2
→ Rp

is defined and extended to the whole patch lattice h′ : T ′ ⊂
R3w2

→ Rp. This enables to construct the rank image f ′r ac-
cording to the manifold where patches lives which is highly
nonlinear. Moreover, since the complete lattice is constructed
according to patch similarities and not single pixel colors, the
textured parts of the image are better captured and the complete
lattice has a smoother h-ordering. Given the obtained ordering
of patches f ′h , we can easily deduce the ordering of color vec-
tors fh for the original image (since one patch is associated to
one pixel), and for the rank image one has fr = f ′r . Figure 12
illustrates this with the same image than in Figure 5. As it can
be seen, the obtained ordering with the patch lattice is much
more regular than the one obtained with the color lattice. In
Figure 13, we show the benefit of ranking pixels’ colors from
their patch similarities. Given an original image, we applied
color and patch based opening and closing. With a patch-based
ordering, the simplification effect is less strong, texture is much
better preserved and sharper results are obtained. Meanwhile
the patch-based morphological processing still exhibits the dual
effect between both opening and closing filters. To show the in-
terest of a patch-based processing, we consider its application
for image segmentation. Figure 14 presents such results. Given
an original image, region seeds are superimposed interactively
(first row of Figure 14). From the original image, color based
and patch based gradients are computed with our approach.
Since seeds are provided, they are used to learn the complete
lattice in a supervised manner. One can see (second row of Fig-
ure 14) on the patch based gradient image that in areas of sim-
ilar textures no high gradient values are found whereas in the
color based gradient high gradient values are found at strong
color variations. Using these gradients and the seeds, a marker
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controlled watershed is computed on the gradient (last row of
Figure 14) and the patch based watershed enables to obtain a
smoother and more precise segmentation.

Original Image

γ
h,

B
φ

h,
B

Figure 13: Illustration of the benefit of the use of a patch-based ordering for
image processing. Second row presents a color (left) and a patch based opening
γh,B( f ). Third row presents a color (left) and a patch (right) based opening
φh,B( f ). Patch size is 3 × 3. The structuring element is a circle of radius 5.

7. Conclusion

This paper has detailed an approach towards the construc-
tion of complete lattices for multivariate images and conse-
quently a framework for unsupervised multivariate mathemati-
cal morphology. In contrast to usual approaches, no prior infor-
mation is required: neither component prioritization nor back-
ground/foreground assumption. The approach relies on dictio-
nary building, manifold learning and out of sample extension.
The approach can be easily transformed into a supervised vector
ordering by integrating pairwise constraints into the manifold
learning step. Results and comparison with the actual state-
of-art has shown the benefit of the proposed approach and its
superiority regarding reference methods. We have shown how
to adapt our vector ordering to several images to dispose of a
similar behavior of morphological filters on a given class of
images. Finally, we have demonstrated the interest of the ap-
proach towards the development of new patch-based flat alge-
braic morphological operators. Future works will deal with the
application of the proposed framework to hyperspectral images
and the development of patch-based granulometries for texture

Original Image with seeds

Color based Gradient Patch based Gradient

Color based Watershed Patch based watershed

Figure 14: Illustration of the benefit of the use of a patch-based ordering for
image segmentation. Patch size is 5 × 5. The structuring element is a square of
side 3 pixels.

classification. In addition, we plan to explore the benefit of the
proposed framework for specific applications, including com-
putational photography (as illustrated with sample promising
examples in Figure 10).
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ality reduction using pairwise equivalence constraints, in: International
Conference on Computer Vision Theory and Applications, 2008, pp. 489–
496.

[40] C. Chen, L. Zhang, J. Bu, C. Wang, W. Chen, Constrained laplacian
eigenmap for dimensionality reduction, Neurocomputing 73 (4–6) (2010)
951 – 958.

[41] O. Lezoray, H. Cardot, Cooperation of color pixel classification schemes
and color watershed : a study for microscopical images, IEEE Transac-
tions on Image Processing 11 (7) (2002) 783–789.

[42] A. Buades, B. Coll, J.-M. Morel, Image denoising methods. a new nonlo-
cal principle, SIAM Review 52 (1) (2010) 113–147.
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