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Abstract An unresolved issue in patient-specific models
of cardiac mechanics is the choice of an appropriate consti-
tutive law, able to accurately capture the passive behavior
of the myocardium, while still having uniquely identifiable
parameters tunable from available clinical data. In this paper,
we aim to facilitate this choice by examining the practical
identifiability and model fidelity of constitutive laws often
used in cardiac mechanics. Our analysis focuses on the use
of novel 3D tagged MRI, providing detailed displacement
information in three dimensions. The practical identifiabil-
ity of each law is examined by generating synthetic 3D tags
from in silico simulations, allowing mapping of the objec-
tive function landscape over parameter space and compar-
ison of minimizing parameter values with original ground
truth values. Model fidelity was tested by comparing these
laws with the more complex transversely isotropic Guccione
law, by characterizing their passive end-diastolic pressure–
volume relation behavior, as well as by considering the in
vivo case of a healthy volunteer. These results show that a
reduced form of the Holzapfel–Ogden law provides the best
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1 Introduction

Cardiac imaging provides a powerful tool for assessing car-
diac function and pathology, offering valuable insight into
the kinematics and tissue characteristics of the heart. Its joint
use with multiscale mathematical models of the heart (Costa
et al. 2001; Guccione et al. 1995; Nash and Hunter 2000;
Holzapfel and Ogden 2009; Chapelle et al. 2011) enables the
quantification of model constitutive parameters, which can
be used as clinical biomarkers of disease (Wang et al. 2009;
Xi et al. 2011b; Sermesant et al. 2006; Chabiniok et al. 2012;
Imperiale et al. 2011). As a result, there is a strong need
for reliable parameter estimates, an issue which depends on
both the underlying cardiac constitutive model as well as the
available clinical data.

A variety of noninvasive cardiac imaging techniques have
been developed, which offer a powerful set of tools for per-
sonalization of mechanical parameters. Imaging methods
such as echocardiography, computed tomography (CT), car-
diac magnetic resonance imaging (MRI) have been success-
fully employed to accurately capture epicardial and endo-
cardial motion, thus providing important bulk metrics such
as ejection fraction and cavity volumes. In addition, the
development of speckle tracking echocardiography (Meunier
1998; Craene et al. 2012) and cardiac MR tagging [SPA-
tial Modulation of Magnetization, SPAMM (Zerhouni et al.
1988; Axel and Dougherty 1989; Reichek 1999)] has enabled
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the quantification of regional cardiac motion in vivo (Young
et al. 1995; Osman et al. 1999; Arts et al. 2010), by reveal-
ing local characteristics such as wall thickening, torsion and
shear effects. The translation from 2D to 3D tagging tech-
niques (Rutz et al. 2008) has enabled a direct extraction of
the full 3D displacement field in the myocardium, leading
to simultaneous quantification of radial, circumferential and
longitudinal motion (Shi et al. 2012; Pan et al. 2005). This
accurate “whole-ventricle” 3D deformation field creates an
ideal setting for estimation of model-based parameters using
tissue displacement observations.

The wealth and quality of information on myocardial
motion has enabled patient-specific applications, where pas-
sive cardiac constitutive laws of varying complexity have
been employed, ranging from simplified isotropic (Cheng
et al. 2005) and transversely isotropic (Guccione et al. 1991)
laws to orthotropic models accounting for the fiber anisotropy
of the tissue (Holzapfel and Ogden 2009; Costa et al. 2001;
Nash and Hunter 2000). However, as the model complex-
ity and number of parameters increase to better approximate
the tissue’s complex behavior, estimating model parameters
uniquely and accurately becomes an increasingly challeng-
ing task (Xi et al. 2011b). This raises the important question
of structural identifiability for the various constitutive laws,
i.e., whether it is possible to uniquely determine parameter
values, given infinite well-defined noise-free data (Chis et al.
2011; Raue et al. 2009). Structural identifiability—a prop-
erty of the model itself which does not depend on the avail-
able data—can be compromised by coupling between model
parameters as in the case of the Guccione model (Wang et
al. 2009; Xi et al. 2011a, b; Augenstein et al. 2005) and non-
linear dependence of the model on the parameters. Lack of
structural identifiability hinders the ability of any data assim-
ilation method—mainly categorized into variational (Sun et
al. 2009; Augenstein et al. 2005; Wang et al. 2009; Ser-
mesant et al. 2006) and sequential (Moireau et al. 2008,
2009; Chabiniok et al. 2012; Xi et al. 2011b; Wong et al.
2007; Liu and Shi 2009)—to accurately estimate parameter
values.

In a clinical scenario, the estimation process is further
compromised by limited data and measurement noise, lead-
ing to the issue of practical identifiability, i.e., whether we
can determine unique parameter estimates given the limited
amount and quality of data (Saccomani 2013). Absence of
structural or practical identifiability in a cardiac law given
a set of data leads to unreliable parameters, which can no
longer provide clinically relevant information. The choice of
an appropriate cardiac constitutive law should therefore bal-
ance the need for model fidelity, i.e., the ability of the model
to accurately represent cardiac function, with the requirement
for reliable identifiable parameters.

In this work, we aim to assist the choice of an appropri-
ate constitutive law when the available data are 3D tagged

MRI, by examining the practical identifiability and model
fidelity of different cardiac mechanics models. Specifically,
we look to compare progressively complex models to assess
their capacity to both represent cardiac motion and be used
reliably for parameterization. In order to gain insight into the
parameter estimation process for these models, we investi-
gate the behavior of a minimization criterion (J ) over the
parameter space. This is first tested using synthetic 3D tags
extracted from in silico simulations and performing para-
meter sweeps to obtain the parameter estimates. Following
the work-flow described in Fig. 1, we characterize J and
assess the error between estimated and actual parameters.
The various models are further compared with respect to
their ability to represent physiological cardiac deformation
(model fidelity) and end-diastolic pressure–volume relation
(EDPVR), in order to identify a constitutive law that would
balance between practical identifiability and adequate repre-
sentation of cardiac behavior. Our conclusions are then veri-
fied in an in vivo case, validating our in silico framework for
characterizing practical identifiability using 3D tags.

Below, we expand on our approach to investigate prac-
tical identifiability and how it is influenced by the choice
of constitutive law. The process for characterizing practi-
cal identifiability for each one of the considered models is
reviewed in Sect. 2 and employed for in silico tests of dias-
tolic filling using an idealized left ventricle (Sect. 3). The
study is then extended to an in vivo case of a healthy volun-
teer, enabling the characterization of practical identifiability
and model fidelity in a real-world scenario.

2 Methods

In this section, we describe the process followed in this work
in order to assess the practical identifiability of various laws,
focusing on the creation of synthetic tags, the motion extrac-
tion algorithm used, and the parameter sweeps performed
(Sect. 2.1). We then present the cardiac model of LV dias-
tolic filling used, as well as the various cardiac constitutive
laws considered (Sect. 2.2). Finally, we review a general
theoretical framework for the inverse problem of parame-
ter estimation using 3D tags (Sect. 2.3), focusing on the con-
cepts of structural and practical identifiability, and the factors
that influence them (observations, constitutive laws, objec-
tive function).

2.1 In silico tagging and assessment protocol

A primary goal of this study was to assess the potential of
using 3D tagged MRI in parameter estimation applications.
Even though 3D tagged MRI offers a rich dataset for parame-
trization, the process may be compromised by low-resolution
or noisy data and error introduced during the motion-tracking
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Fig. 1 Workflow followed for the study of practical identifiability using 3D tags. The in silico testing protocol is presented in blue, while in red is
the pipeline followed in the in vivo case

procedure. In order to investigate this issue, we have created
synthetic 3D tagged images directly from simulation results.
Within this controlled environment, the actual parameters
of the heart model are known, allowing for an assessment
of the error between actual and estimated parameters. Fur-
ther, as the synthetic tags approximate real 3D tagged images
(see Fig. 2), within this framework, we can quantify the error
associated with various aspects of 3D tags such as resolution,
number of tag lines, noise in the data, and error introduced
by the tracking algorithm.

Initially, we ran a simulation of LV diastolic filling,
choosing parameters that produce a physiological end-
diastolic volume. Synthetic 3D tags were then generated from
the resulting deformation, and the myocardial motion was
extracted and propagated on a mesh. These deformed meshes
were then treated as data and were used directly for com-
parisons with simulation results. By performing parameter
sweeps, computing and minimizing J over a bounded para-
meter space, we obtained parameter estimates and quantified
the behavior of J .

2.1.1 LV diastolic filling

Several constitutive laws (see Sect. 2.2.2) were employed to
model the passive behavior of the tissue (step “SIMULA-
TION” in Fig. 1), and the simulated diastolic deformation in
each case was compared with diastolic data to provide para-
meter estimates. The LV was modeled as a thick-walled trun-
cated ellipsoid of typical cardiac dimensions. The domain
was discretized using a mesh composed of 56 hexahedral ele-

ments, with two elements transmurally, and a quadratic lin-
ear interpolation scheme was employed for the displacement
and pressure variables, respectively. A generic heterogeneous
fiber field was applied, with the fiber angle varying linearly
between 60◦ and −60◦ from endocardium to epicardium. A
zero traction condition was enforced on the epicardial sur-
face, while the base plane was fully fixed. Finally, the endo-
cardial surface of the LV model was passively inflated to a
typical end-diastolic pressure of 1.5 kPa, using 50 uniform
loading steps.

2.1.2 In silico assessment protocol

As we are interested in the passive cardiac parameters, we
have generated synthetic tags (step “SYNTHETIC TMRI”
in Fig. 1) from a passive inflation simulation of a model
left ventricle (LV) (see Sect. 2.1.1) using the various con-
stitutive laws, which will be described in Sect. 2.2.2. Using
rasterization, a binary mask of the mesh was created, and
tag planes were generated within the image (Sermesant et al.
2003; Duan et al. 2007), resulting in a final 3D tagged image
of resolution 1×1×1 mm. Simulated deformations were then
mapped and interpolated within the image, producing a 3D-
tagged representation of our passive inflation simulation. For
the remaining steps of the parameter estimation study, these
synthetic tags served as our data and were treated as real 3D
tags.

In order to assess the effect of data noise, Gaussian noise
was added to the simulation results, prior to the in silico tag-
ging (step “UNBIASED NOISE” in Fig. 1). The mean value
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Fig. 2 Comparison between
synthetic (left) and real (right)
3D tags at beginning of diastole,
short-axis view on top figures,
long-axis view on bottom figures

of the added Gaussian noise was zero, and the variance was
a percentage (usually 5–20 %) of the maximum deformation
of the diastolic simulation.

2.1.3 3D tagged MRI/in silico tagged motion extraction

Myocardial motion was extracted from 3D tagged and in- sil-
ico tagged images (step “MOTION TRACKING” in Fig. 1)
using the Image Registration Toolkit.1 This software uses a
nonrigid registration technique proposed by Rueckert et al.
(1999); Schnabel et al. (2001) and subsequently extended to
tracking of cardiac motion (Chandrashekara et al. 2004; Shi et
al. 2012). The registration algorithm which is based on free-
form deformations and optimizing the similarity between
two subsequent images allows tracking any point within the
myocardium throughout the cardiac cycle and provides the
deformation field with respect to the beginning of systole.
The obtained deformation fields were then applied on an ini-
tial mesh and propagated through time, resulting in a set of
deformed meshes, which were used as the “observations”
within our parameter estimation process.

1 http://www.doc.ic.ac.uk/~dr/software.

2.1.4 Mechanical simulations and J characterization

The parameter estimates for the constitutive laws considered
were obtained by parameter sweeps (step “PARAMETER
SWEEP” in Fig. 1). Specifically, for each law, we performed
passive inflation simulations ( see Sect. 2.1.1) for parameter
combinations within a neighborhood of the actual parame-
ters. The parameter estimates were then obtained as the set
of values that minimized the objective function J over the
parameter space. Within this process, 10 synthetic tagged
frames were used as observations. The objective function
employed—defined and discussed in Sect. 2.3.2—is discern-
ing and thus able to provide a unique minimum, assuming
that the constitutive law is practically identifiable. Note that
as the same constitutive law is used for the generated data
and simulations, the estimation process does not suffer from
model fidelity issues, leading to safe conclusions about prac-
tical identifiability.

2.1.5 In vivo J characterization

The study was then extended to an in vivo case of a healthy
volunteer, to allow for the assessment of practical identifia-
bility and model fidelity in a real-world setting.
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The data used in this study were acquired from a healthy
28-year old male volunteer with a normal heart function.
The geometry and cardiac motion were characterized using
cine MRI images in retrospective ECG gating (short-axis
view, acquired spatial resolution 2 × 2 × 8 mm, temporal
resolution ∼20 ms), and 3D tagged MRI images in prospec-
tive ECG triggering (acquired in 3 breath-holds and recon-
structed to spatial resolution of 1×1×1 mm, temporal reso-
lution ∼30 ms). The myocardial motion was extracted from
the 3D tagged MRI images using the algorithm described in
Sect. 2.1.3.

The cubic Lagrange hexahedral mesh used for the simula-
tions was based on the end-systolic frame of the data (Wang
et al. 2009) and was composed of 72 elements, with two
elements transmurally. This mesh was created by first con-
structing a cubic hexahedral end-diastolic mesh (Lamata et
al. 2011) from a short-axis CINE MRI stack registered to
the 3D tagged MRI images using the IRTK imaging toolkit
(see Sect. 2.1.3). The mesh was then uniformly refined into
a linear end-diastolic (ED) mesh consisting of 96,768 hexa-
hedral elements. Nodes of the linear ED mesh were then
tracked through the cardiac cycle, providing the deformed
LV geometry at end systole. This deformed ED mesh was
used as a template for the coarser 72 element end-systolic
(ES) cubic mesh, which was generated by least-square fit-
ting. Observations—in this case displacements from end
systole—were then required to compute the objective func-
tion (see Eq. 15). These were extracted from the linear ED
mesh by subtracting the displacements observed at the end-
systolic frame from the diastolic displacements. These com-
puted displacements at the linear ED mesh nodes were then
mapped onto a linear version of the ES mesh by doing
a nearest point search (mean point search error 0.8 mm).
A large number of elements were used in the linear ED
mesh to minimize potential errors due to the mapping of
data. The final projected displacements on the linear ES
mesh served as observations within our parameter estima-
tion process.

The cubic end-systolic mesh was inflated by prescribing
the data-derived cavity volume at each time step, instead of
inflating by pressure as used in the in silico tests. This was
due to the lack of cavity pressure measurements for this
in vivo test. The volume constraint was enforced weakly
through a Lagrange multiplier. The base motion was pre-
scribed directly from the observations—13 diastolic frames
based on increasing cavity volume—and zero traction was
applied on the epicardial surface. The myocardial model was
assumed to be incompressible (see Sect. 2.2.1), even though
potential compressibility of the extracted myocardial motion
was not examined. This is due to the fact that a possible degree
of compressibility [2–12 % (Iwasaki et al. 1984)] would be
within the level of noise of the tagged MRI data. Running the
described simulation with parameter sweeps and comparing

with observations, we could then characterize the behavior
of J in a real-world scenario.

2.2 Cardiac mechanics

2.2.1 Finite elasticity

The passive diastolic filling of the LV considered in this work
was simulated within the finite elasticity framework due to
the large deformation of the myocardium during the cardiac
cycle (Holzapfel and Ogden 2009).

We consider here a body defined over a reference domain
Ω0, which deforms under the action of a traction t (such as the
endocardial pressure) on a subset Γ N of the boundary ∂Ω ,
whereΩ is the current configuration. Given a set of parame-
ters θ related to the employed constitutive law, the mechanics
problem can be written as: Find the deformation and hydro-
static pressure pair x = (uθ , pθ ) in W0 = H1

0(Ω)× L2(Ω)

such that

F(θ; x, y) = 0, ∀y ∈ W0, (1)

where

F(θ; x, y) =
∫
Ω

(σ (θ; u)+ p I): ∇v dv

−
∫
Γ N

t · v da +
∫
Ω0

q(J − 1) dV .

In the finite elasticity framework considered here, σ
denotes the deviatoric Cauchy stress tensor. In this setting,
x = (u, p) and y = (v, q) represent the state solutions and
test functions, respectively.

The Cauchy stress tensor introduced in Eq. 1 depends on
the passive behavior of the material and the constitutive law
chosen to describe it. As the myocardium is most typically
modeled as a hyperelastic material, the mechanical behavior
is expressed using a strain energy function, whose deviatoric
component is denoted here by Ψ . The deviatoric component
of the Cauchy stress tensor can then be obtained through the
expression

σ = 2

J
F
∂Ψ

∂C
FT . (2)

Here F denotes the deformation gradient defined as

Fi, j = ∂xi

∂X j
, (3)

which relates a point in the deformed state x ∈ Ω to its ref-
erence configuration X ∈ Ω0 (Bonet and Wood 2008). For
volume-preserving materials, incompressibility is enforced
using the determinant of F through the constraint J =
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det(F) = 1. Additionally, C represents the right Cauchy-
Green deformation tensor, defined as C = FT F.

In cardiac mechanics, the finite elasticity problem (1) is
commonly solved using the finite element method (FEM)
due to the nonlinearities introduced by the constitutive laws
and cardiac geometry. The FEM framework is based on dis-
cretization of the continuous domain and function spaces
(Hadjicharalambous et al. 2014).

2.2.2 Constitutive laws

We begin with the Neo-Hookean law, a well-known isotropic
hyperelastic law, which has also been employed in cardiac
models (Cheng et al. 2005). The strain energy functionΨ for
the Neo-Hookean law is defined as

Ψ = μ

2
(IĈ − 3), (4)

where μ is the stiffness of the material, Ĉ = J− 2
3 C is the

isochoric component of C and IĈ is the first invariant of Ĉ

(IĈ = Ĉ: I). The deviatoric stress can then be expressed as

σ = μ

J
5
3

(
b − IC

3
I
)
, (5)

where b = F FT denotes the left Cauchy-Green deformation
tensor.

A more structurally accurate model is then examined, by
augmenting the Neo-Hookean law with a fiber-dependent
component (Humphrey 2002). This enhanced version which
we will refer to as the Neo-fiber law is defined with respect
to a fiber coordinate system, where the axes are aligned with
the fiber f0, sheet s0 and sheet-normal n0 unit vectors. The
strain energy function for the Neo-fiber law is defined as

Ψ = 1

2(a + 1)
(C1 − C2)(IĈ f

− 1)a+1 + C2

2
(IĈ − 3),

where a = 1 or 2. C1 and C2 are material parameters of
the Neo-fiber law, corresponding to the fiber-dependent and
isotropic terms, respectively. In this definition, IĈ f

represents

the first invariant of Ĉ in the fiber direction, defined as

IĈ f
= Ĉ: f0 ⊗ f0. (6)

The deviatoric Cauchy stress for the Neo-fiber law is then
expressed as

σ = J− 5
3

[
C2b + (C1 − C2)(IĈ f

− 1)a f ⊗ f

− 1

3

(
C2 IC + (C1 − C2)(IĈ f

− 1)a IĈ f

)
I
]

where f = F f0. To better capture the exponential response
of the myocardial tissue, our study is then extended to the

structurally based orthotropic law by Holzapfel and Ogden
(2009). The deviatoric form of the strain energy function for
a 3-dimensional body is defined as

Ψ = a

2b
{exp[b(IĈ − 3)] − 1}

+ a f

2b f
{exp[b f (IĈ f

− 1)2] − 1}

+ as

2bs
{exp[bs(IĈs

− 1)2] − 1}

+ a f s

2b f s
[exp(b f s I 2

Ĉ f s
)− 1]. (7)

In this definition IĈs
= Ĉ: s0 ⊗ s0 and IĈ f s

= Ĉ: f0 ⊗ s0

denote invariants associated with the sheet and cross-fiber
directions.

In what follows, we use a reduced version of the
Holzapfel–Ogden law, where as and a f s are set to zero and
the exponents b and b f are kept constant, as we are restricting
this study to constitutive laws with a small number of parame-
ters to allow for better identifiability. A similar formulation
has also been applied in (Caruel et al. 2014) in 0D and 1D
models, demonstrating its ability to fit experimental data and
thus reproduce physiological cardiac behavior. The values of
the exponents (b = 5 and b f = 5) are chosen so that the
model is able to provide a physiological EDPVR (see Sect.
3.3 and Fig. 12), as we note that for several combinations of
b and b f a physiological EDPVR could not be produced for
any values of the scaling parameters α and α f . Nevertheless,
there is a range of values that would be appropriate for this
choice, as we can assume interdependence between the expo-
nents and scaling constants similar to that of the Guccione
law (Xi et al. 2011a). The added value of this formulation
over the Guccione law is that due to its structure as a sum of
individual exponential terms, it can be reduced into a form
with more than one uncoupled parameters. For this reduced
version, the deviatoric Cauchy stress is derived as follows:

σ = J− 5
3
[
a exp[b(IĈ − 3)]b

+ 2a f (IĈ f
− 1) exp[b f (IĈ f

− 1)2] f ⊗ f

− 1

3

(
a exp[b(IĈ − 3)]IC

+ 2a f (IĈ f
− 1) exp[b f (IĈ f

− 1)2]IĈ f

)
I
]
. (8)

Finally, we examine the well-known transversely isotropic
exponential law by Guccione et al. The strain energy function
Ψ is defined with respect to a fiber-oriented Green–Lagrange
strain tensor EF

EF = QT E Q =
⎛
⎝ E f f E f s E f n

Es f Ess Esn

En f Ens Enn

⎞
⎠ , (9)

123



Analysis of passive cardiac constitutive laws

where the rotation tensor Q is defined as Q = [ f0, s0, n0].
The strain energy function is then defined as

Ψ = 1

2
C(eQ − 1), Q = (a ◦ EF ): EF ,

where a is a matrix of constants describing the degree of
anisotropy in each component:

a =
⎛
⎝ b f b f s b f s

b f s bt bt

b f s bt bt

⎞
⎠ .

The Cauchy stress tensor can then be expressed as

σ = J−1 FCeQ Q(a ◦ EF )QT FT . (10)

2.3 Parameter estimation

In patient-specific mechanics simulations, we often wish to
tune or parameterize our models based on measurement data
(observations). Supposing we have N parameters which gov-
ern the material behavior, it is a common approach to try and
parameterize based on objective function minimization. For
example, we aim to find a set of N parameters θmin which
satisfies, for an objective function Jθ ,

Jθ (θmin) < min
θ∈P\θmin

Jθ (θ) (11)

where P ⊆ R
N is a subset of vectors of real numbers which

constitute the admissible parameters for the problem. The
behavior of the model, the observations (or data) over which
the behavior is considered, and the objective function itself all
play an important role in the behavior of the minimization
problem and uniqueness of the minimizer. This is particu-
larly important in clinical contexts where the obtained set of
parameters θmin is used to, in some sense, provide an indi-
cator of the health/state of the myocardium. In this section,
we examine how these factors—the model, observations and
objective—can influence the identifiability of θmin.

2.3.1 Model identifiability

To understand the behavior of the minimization problem, we
first aim to better understand the behavior of the model and
its parameters. Suppose we consider Ns loading conditions
imposed on our model (shown in Eq. 1). In this case, we can
write the total model problem using the operator Fs where
we sum each quasi-static equilibrium state defined in Eq. 1,

Fs(θ; X,Y ) =
Ns∑

k=1

∫
Ωk

σ (θ; uk) : ∇vk dx

+
∫
Ωk

pk∇ · vk dx

+
∫
Ω0

qk(J (uk)− 1)d X

−
∫
Γ N

k

tk · vk dx. (12)

In this notation {t1, . . . tNs } denotes the set of Ns loading
conditions (boundary tractions) and

X = {u1, . . . uNs } × {p1, . . . pNs }
Y = {v1, . . . vNs } × {q1, . . . qNs }

denote the set of state solutions and test functions for each
load state k. We can also compose the solution spaces set-

ting X,Y ∈ W s
0, where the space W s

0 = [
H1

0(Ω)
]Ns ×[

L2(Ω)
]Ns is an extension of space W0 accounting for

the multiple loading states. Additionally, in what follows,
W s

0 = W d
0 × W p, where spaces W d

0 and W p correspond to
displacement and pressure variables, respectively.

Using this notation, our quasi-static mechanics problem
is (given a set of parameters θ ): find an Xθ ∈ W s

0 such that,

(P1) Fs(θ; Xθ ,Y ) = 0, ∀Y ∈ W s
0.

Here Xθ constitutes the state solution composed of dis-
placements and pressures at each of the Ns loading condi-
tions. We can further collect all solutions to (P1) and con-
struct a space of solutions V ⊂ W s

0, i.e.,

V = {X ∈ W s
0| ∃θ ∈ P s.t. (X, θ) satisfy (P1)}.

From the definition of V , we observe that we can identify
pairings between a subset of PV ⊆ P and the space of state
solutions V . These pairings, in general, have no well-defined
properties. Indeed, V and PV may be empty. Here we sup-
pose that (P1) induces a surjective mapping on the parameter
space P to the space of state solutions V (see Fig. 3), i.e.,

ϕ: P �→ V, ϕ(θ) = Xθ , (θ, Xθ ) ∈ P × V
This assumption is equivalent to assuming that there exists

a unique Xθ ∈ V for every θ ∈ P . If ϕ: P �→ V , it implies
that for any θ ∈ P there is an Xθ ∈ V . In other words, it
implies there exists a (Xθ , θ) satisfying (P1). Moreover, non-
uniqueness of solutions would imply that for some θ ∈ P ,
the best we could do to write the mapping ϕ is to write

ϕ(θ) = {X1
θ , X2

θ , . . .} ⊆ V .
This possibility is precluded, however, by the surjective

assumption (implying uniqueness). Though it is not proven
for general cardiac mechanics boundary value problems, it is
often assumed in these applications that, given the admissible
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Fig. 3 Schematic representation of the objective function J over the
solution space W0 for a given parameter set θ . The bijectivity of mapping
ϕ between parameter space (P) and space of solutions (V) ensures
practical identifiability

set of loading states and parameters, the solution Xθ to (P1)
exists and is unique.

However, this condition is insufficient to guarantee unique
parameter identifiability in Eq. 11. A stronger condition,
which we show can ensure unique parameter identifiabil-
ity, occurs when the mapping ϕ is in fact bijective, i.e., there
exists a ϕ−1 where

ϕ−1: V �→ P, ϕ−1(Xθ ) = θ .

In the case where ϕ is bijective, we can ensure that the
transition from state to parameters is well defined.

Two important determinants of the properties of ϕ stem
from the behavior of the constitutive law itself and the set
of loading states. The parameter dependence of the consti-
tutive law—whether it be linear or nonlinear—can signifi-
cantly influence a model’s ability to uniquely identify para-
meters. It may also influence the range of loading states
(and, as a result, deformations) which must occur to elu-
cidate parameter dependencies. The final set of Ns loading
states {t1, . . . tNs } then defines this scope of deformations.
For example, in the case of pure tension of the orthotropic
Costa law, while fiber, sheet and sheet-normal parameters
influence the end solution, the non-diagonal strain terms have
no influence.

These considerations lead to a basic property required of
a model referred to as structural identifiability (Raue et al.
2009, 2011). A model is said to be structurally identifiable
if there exists an arbitrarily large set of NT loading states
{t1, . . . tNT } such that the mapping ϕ: P �→ V is bijective.
As we show below (see Theorem 2 and Appendix 1), this
property is easily proven for constitutive laws with linear
parameter dependence, but becomes more complex when this
dependence is nonlinear.

However, in most in vivo scenarios, model parameteriza-
tion is limited to a given set of loading states which cannot be
arbitrarily selected, leading to the concept of practical iden-
tifiability. A model is said to be practically identifiable if,

for a given set of Ns loading states {t1, . . . tNs }, the mapping
ϕ: P �→ V is bijective. The key difference here is that lim-
ited observations comprise a set of loading states that ensure
identifiability of all parameters, θ . In our case, these repre-
sent the in vivo states observed through the cardiac cycle
which must be sufficient to yield practical identifiability of
all parameters of the law.

For general nonlinear cardiac models, practical identifi-
ability of passive parameters is difficult to prove a priori
as it fundamentally depends on the structural identifiability
of the model and the set of loading states and observations
provided by the data. However, these considerations dictate
the choice of model best suited for a given set of material
deformations.

In general, bijectivity can be ensured by a coercivity
assumption, i.e.,

Theorem 1 Suppose ϕ: P �→ V is a surjection (i.e., the
solution to (P1) exists and is unique). Then if for any X ∈ V
a pair θ1, θ2 ∈ P,

α‖θ1 − θ2‖P ≤
sup

Y∈Wu
0,Div

|Fs(θ1; X,Y )− Fs(θ2; X,Y )|
‖Y‖Wu

0

then ϕ is bijective.

Proof The proof follows from contradiction. Suppose that
θ1, θ2 ∈ P both happen to satisfy (P1) when paired with the
solution states X . Then by (P1),

0 = Fs(θ1; X,Y )− Fs(θ2; X,Y ), ∀Y ∈ Wu
0 .

Dividing both sides by ‖Y‖Wu
0

and taking the absolute value
and supremum, the coercivity assumption ensures,

0 ≥ ‖θ1 − θ2‖P

or that the parameters θ1 and θ2 are, in fact, the same. Hence,
any solution X has a single pair θ ∈ P . ��

A much simpler case occurs when the model depends lin-
early on Np parameters, the properties of ϕ are easier to
decipher. In this case, the model may be written as:

σ (θ; u) =
Np∑

n=1

θnσ n(u), (13)

where σ n is the stress tensor (which may nonlinearly depend
on u) scaled by the nth parameter. In this case, the bijectivity
of ϕ can be ensured by guaranteeing that it is possible to
construct N -constraints by using different Y ’s in (P1). Due
to the linear parameter dependence, the constraints may then
be written as a matrix system, where the invertibility of the
matrix ensures ϕ is bijective (see Theorem 2).
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Theorem 2 Suppose ϕ: P �→ V is a surjection (i.e., the
solution to (P1) exists and is unique). If there exists a set of
functions {Y1, . . . YN }, Yi ∈ Wu

0,Div with

Yi = {vi
1, . . . v

i
Ns

}
such that the matrix A with entries

Ai j =
Ns∑

k=1

∫
Ωk

σ j (uk): ∇vi
k dx

is invertible, then ϕ is bijective.

Proof The proof may be shown, again, by contradiction.
Suppose there are two sets of nonidentical parameters θ ,ψ ∈
P which result in the same state X . Then, by (P1),

0 = Fs(θ; X,Y )− Fs(ψ; X,Y )

=
Np∑

n=1

(θn − ψn)

Ns∑
k=1

∫
Ω

σ n(uk): ∇vk dv (14)

for any Y ∈ Wu
0,Div × (W p ∩ 0). Hence, choosing

{Y1, . . . YNp }, Eq. 14 may be rewritten as

A(θ − ψ) = 0 ⇒ θ = ψ

due to the invertibility of A. ��
Theorem 2 depends on a sufficient number of deformation

states such that A gains linearly independent rows. We then
rely on any test functions in Wu

0,Div to further accentuate
differences in material response, providing a flexible source
from which to select constraints. Using this theorem, we can
prove the structural identifiability for the Neo-Hookean, Neo-
fiber and reduced Holzapfel–Ogden law which have a linear
dependence on their parameters (see Appendix 1).

2.3.2 Objective function-based minimization

In data-based parameter estimation procedures, we often rely
on some objective function to guide the choice of parameters.
Since the parameters are not observed in most cases, we rely
instead on comparing states with observations. In these cases,
it is necessary that the objective function J :V → R obtains
a unique minimum (a discerning objective).

Using 3D tagged data where the states are usually dis-
placements, the natural choice of objective function is to use
the L2 norm over all states, i.e.,

J (X) = |||X − Xd |||
|||Xd ||| (15)

where Xd = {u1, . . . uNs } are observations on the displace-
ments in the myocardium and we divide through by the over-
all scale of displacements so that J gives a percentage error.
In this case, ||| · ||| is a norm on Wd

0 defined as,

|||X ||| = ((X, X))1/2, ((X,Y )) =
Ns∑

k=1

(uk, vk)

where (·, ·) is the L2−inner product on the reference domain
Ω0. We then look to minimize the objective, finding Xmin ∈
V where

J (Xmin) < min
X∈V\Xmin

J (X). (16)

As |||·||| acts as a norm on displacements in V (and a semi-
norm on the entire space), if the observed displacements in
the state Xd constitute a set of displacements X̃ ∈ V , then
J is automatically a discerning objective as the norm has a
unique zero by definition (and is strictly nonnegative).

This is, however, unlikely to occur in a real context due to
two dominant factors: (1) data noise and resolution, (2) model
fidelity. The introduction of noise, or degradation in data
due to image resolution, introduces offsets which make the
likelihood of Xd being a member of V minimal. In addition,
the fidelity of the model can strongly influence whether or
not the model can capture the behavior observed in the data,
making it possible that one or more than one minima exist.

Supposing that the model is a good representation of the
tissue in vivo, we can then write Xd = X̃ + ε. In this case,
if we assume that ε is, in fact, some random unbiased noise
which satisfies

((X, ε)) ≈ 0, ∀X ∈ V, (17)

then we observe that the noise does not bias our minima, but
instead introduces a constant offset in J , i.e.,

J (X) = |||X − Xd |||
|||Xd ||| =

(|||X − X̃ |||2 + |||ε|||2)1/2

|||Xd ||| . (18)

The assumed relation in Eq. 17 is a reasonable assumption
when the noise fluctuations occur over a small spatial scale
compared with the change of the state solutions X near the
minima.

The offset in Eq. 18 does not influence the minimization on
V and, as a result, J remains a discerning objective. Obtain-
ing a unique minimum in V is essential as even if a model
is practically identifiable based on loading constraints, mul-
tiple minima for J guarantee multiple minima in parameter
space. However, with a discerning objective, we then rely on
the bijectivity (or practical identifiability) of ϕ so that the
objective formed through composition,

Jθ (θ) = J ◦ ϕ(θ) (19)

also obtains a unique minimum

Jθ (θmin) < min
θ∈P\θmin

Jθ (θ). (20)

In practice, we can see that a discerning objective and
a set of load states giving practical identifiability are suffi-
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cient conditions to ensure that the set of parameters θmin are
uniquely identifiable.

2.3.3 Parameter coupling

Characterizing the behavior of the objective function J over
the parameter space is critical for the performance of the
parameter estimation process. The behavior of J around the
minimum value (a distinct localized minimum instead of a
wide valley) indicates a discerning objective function, which
would allow data assimilation methods to retrieve the para-
meter estimate. Further, the landscape of J over the para-
meter space provides important information regarding the
practical identifiability of the constitutive law, revealing the
presence of a unique or multiple minima or possible inter-
parameter coupling.

Coupling can also be deduced by the Hessian matrix of
the objective function at the obtained minimum. Using the
Taylor expansion of J around the obtained minimum θmin,

J (θmin + ε) = J (θmin)+ ∇θJ (θmin)
T ε

+ 1

2
εT ∇θ

(∇θJ (θmin)
)
ε + O(||ε||3).

Due to the gradient being zero at the minimum θmin,

J (θmin + ε) = J (θmin)+ 1

2
εT Hε + O(||ε||3) (21)

where H denotes the Hessian matrix. As can be deduced by
this expression, the Hessian matrix can provide important
information as it allows one to relate growth in J locally
to local perturbations in the parameters. Further, to allow
comparison between laws with varying parameters’ scale,
we use a scaled Hessian H̃ defined as

H̃i j = Hi jθiθ j , (22)

where θi and θ j correspond to the i-th and j-th components
of θmin. Then using ε = ε̃ ◦ θmin, Eq. 21 can be expressed as

J (θmin + ε) = J (θmin)+ 1

2
ε̃T H̃ ε̃ + O(||ε||3),

where now we are dealing with parameter percentages, which
enables comparison between the different laws. The scaled
Hessian H̃ can then characterize the sensitivity of J to the
parameters and demonstrate possible inter-parameter cou-
pling. Specifically, the minimum diagonal value of H̃ indi-
cates that J is least sensitive to the corresponding parameter
as a large error in the parameter can result in an insignificant
change in J . Similarly, the minimum eigenvalue of H̃ indi-
cates the parameter combination that J is least sensitive to.
Accordingly, the ratio of the minimum diagonal value of H̃
over the minimum eigenvalue λ(H̃)

R = min{diag(H̃)}
min{λ(H̃)} (23)

demonstrates the degree of coupling between parameters.
Specifically, large values indicate that there is a parame-
ter combination whose possible error will cause a smaller
change in J than error in each parameter separately, sug-
gesting inter-parameter coupling. Similarly, coupling ratios
close to 1 suggest that there is no significant coupling between
parameters.

3 Results and discussion

3.1 Comparison of practical identifiability using 3D tags

For each of the considered constitutive laws, the behavior
of J over the parameter space is examined and the error
between actual and estimated parameters is quantified. For
each law we select a ground truth set of parameters which
gives physiologically reasonable end-diastolic volume and
pressure and generate synthetic 3D tags from an LV infla-
tion simulation. The extracted myocardial motion applied on
meshes is then used as our data and compared with simu-
lations with varying parameter combinations to provide the
landscape of the objective function and assess the error in
the parameter estimates. Through this process we are able
to characterize the practical identifiability of each law and
assess its potential use in patient-specific applications.

All tests under consideration were implemented in
CHeart—a multi-physics software tool based on (Nord-
sletten 2009; Nordsletten et al. 2010) and expanded by the
CHeart team at KCL. The problems were solved on a Dell
OPTIPLEX 990, quad-core (Intel� CoreTM i7-2600 CPU @
3.40 GHz), on a quad-core (Intel� 4th Generation CoreTM i7-
4790 CPU @ 3.60 GHz) and on an 2.1 GHz AMD OpteronTM

Interlagos 32 processor.

3.1.1 J characterization of the Neo-Hookean law

We begin by investigating the practical identifiability of the
Neo-Hookean law, by examining the behavior of J over a
range of stiffness values. Due to the simple structure of the
law and its linear parameter dependence, we expect that given
some deformation, we should be able to get good identifiabil-
ity characteristics. Specifically, we expect J to have a unique
and distinct minimum, and we anticipate that the incorpora-
tion of unbiased noise should not affect the behavior of J
and the estimated parameter, but only cause a shift toward
larger J values.

Indeed, as illustrated in Fig. 4a, the objective function J
has a unique and distinct minimum at the initial stiffness
value (μ = 10 kPa). Further, the actual stiffness value is
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Fig. 4 a J over Neo-Hookean stiffness μ, for different data noise lev-
els. The original stiffness value (μ = 10 kPa) is marked with a red
asterisk. The minimum was obtained among 100 simulations with dif-

ferent stiffness values. b:J over scaled μ for four different original
stiffness values. 100 simulations were performed for each parameter
sweep, with an average computational time of 20.518 s
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Fig. 5 Landscape of objective function J of Neo-fiber (a = 1) over
parameter space. The actual parameters (C1 = 30 kPa, C2 = 5 kPa)
used in the simulation are shown by a yellow cross and estimated para-
meters by a red star. Figures on the right show a “zoom-in” near the
estimated values, where a denser grid of parameters was used. 20 %

Gaussian noise was added in the data, in the bottom right figure. 10 ×
10 and 11 × 11 simulations were performed for the initial and refined
parameter sweeps, respectively, with an average computational time of
51.120 s

retrieved even in the case of noisy data (5 and 20 % Gaussian
noise), and the overall behavior of J remains the same, with
just a small shift toward bigger values. These results suggest
that using 3D tags we can uniquely and accurately estimate
the stiffness value.

The Neo-Hookean in silico test was extended to study
the influence of the actual parameter value on the estima-
tion process. Using the same inflating pressure, increased
stiffness would result in smaller deformation that might be
insufficient to allow for parameter estimation. We therefore
performed four passive inflation simulations, where in each
case the inflating pressure was adjusted to provide the same

end-diastolic volume. We note that as can be observed in Eq. 1
(where the inflating pressure is introduced through traction
as the product of pressure and deformed surface normal vec-
tor), due to the linear dependence of the law on the para-
meter the inflating pressure required to produce the same
deformation was simply scaled by the ratio between the stiff-
ness values. Figure 4b presents the behavior of the objective
function J over scaled stiffness (μ over the initial stiffness
for each case), showing consistent behavior for any initial
stiffness value. This fact confirms practical identifiability
of the Neo-Hookean law using 3D tags for any initial stiff-
ness.
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Fig. 6 Landscape of objective function J of Neo-fiber (a = 2) over
parameter space. The actual parameters (C1 = 50 kPa, C2 = 5 kPa)
used in the simulation are shown by a yellow cross and estimated para-
meters by a red star. Figure on the right shows a “zoom-in” near the

estimated values, where a denser grid of parameters was used. 10 ×
10 and 11 × 14 simulations were performed for the initial and refined
parameter sweeps, respectively, with an average computational time of
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Fig. 7 Neo-fiber J over a the isotropic parameter C2 and b fiber parameter C1, for a = 1 and a = 2. The actual parameters used are marked by
the blue and red circles, for α = 1 and α = 2, respectively

3.1.2 J characterization of the Neo-fiber law

Figures 5 and 6 illustrate the behavior of the objective func-
tion J over the parameter space of the Neo-fiber law, for
a = 1 and a = 2, respectively. As can be deduced from Fig. 5,
the Neo-fiber law (a = 1) maintains the practical identi-
fiability of the Neo-Hookean law (distinct minimum) and
provides accurate parameter estimates. Even in the case of
noisy data, the landscape of J remains similar and maintains
a clear distinct minimum, with a small error (3.3 %) in the
fiber parameter.

When the exponent, a, is increased to 2 (see Fig. 6) how-
ever, the practical identifiability of the Neo-fiber law is com-
promised (valley) and the error between actual and esti-
mated parameters increases significantly (2 and 16 % for the
isotropic and fiber parameters, respectively). Note that as no

noise is added in this case, this error is created during the
tagging process due to the combination of limited resolution
of the tags and higher nonlinearity of the law.

Further, Fig. 7 examines the behavior of J over a range
of values for each parameter separately. The steeper slope
of J around the minimum value in the case of parameter C2

suggests that the isotropic parameter has better identifiability
than the fiber parameter. This issue is even more prominent
in the a = 2 case due to the increased nonlinearity in the
fiber dependence. Based on Theorem 2, the Neo-fiber law
is structurally identifiable due to its linear parameter depen-
dence, suggesting that the deterioration of the identifiability
of the fiber parameter is due to insufficient deformation in
the data. In fact, when the end-diastolic pressure is increased
to 3 kPa instead of 1.5 kPa, the error in the fiber parameter
decreases from 16 to 12 %.
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3.1.3 J characterization of the reduced Holzapfel–Ogden
law

The practical identifiability of the reduced Holzapfel–Ogden
model (see definition in Eq. 8) was tested setting the values
of the exponents (b = 5 and b f = 5) to provide a physio-
logical EDPVR (see Sect. 3.3 and Fig. 12). Figure 8 presents
the landscape of the objective function J over the parameter
space, indicating a clear and unique minimum for the objec-
tive function. Even though the fiber parameter α f presents
deteriorated identifiability characteristics compared with the
isotropic parameterα (as also observed in the Neo-fiber case),
we are still able to retrieve the parameter values with small

relative errors (2.5 and 1 % for the isotropic and fiber parame-
ters, respectively). Further, Fig. 9 which illustrates J over the
parameter ratio α f /α for varying α, indicates the presence
of a unique distinct minimum at the actual parameter. In this
case, the behavior of J is also examined when only the end-
diastolic frame is taken into account, illustrating that identi-
fiability is preserved even when only one diastolic frame is
used.

3.1.4 J characterization of the Guccione law

The practical identifiability of the transversely isotropic Guc-
cione law was tested by choosing the parameters to fit an
empirical end-diastolic pressure–volume relation (EDPVR),
proposed by Klotz et al. (Klotz et al. 2006) (see Fig. 12). In
order to assess the effect of noise in the data, 5 % Gaussian
error was added in the simulation results, prior to in silico
tagging.

Table 1 presents the 5 parameter combinations with small-
est J values, with and without 5 % Gaussian noise in the
data. These combinations vary significantly, suggesting the
presence of multiple minima. Indeed, the presence of 5 %
noise in the data results in a different estimate of parame-
ters compared with the non-noisy data. Note that this esti-
mate which has a larger difference from the actual simu-
lation parameters, compensates for the increase in C with
a decrease in b f , suggesting an inter-parameter depen-
dence.
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Table 1 The table presents the actual (in bold) and estimated parame-
ters (in italic) for the Guccione law

Actual C b f bt b f s J
180 27.75 5.37 2.445

No Gaussian error

150 35 6 3 0.0049312

250 25 4 3 0.0055157

250 25 4 5 0.0057497

200 35 4 3 0.0061345

300 25 4 2 0.0062534

5 % Gaussian error

250 25 4 3 0.0087839

150 35 6 3 0.0089282

250 25 4 5 0.0091885

200 35 4 3 0.0097995

300 25 4 2 0.010056

Further, Guccione parameter combinations with 5 smallest error values
are presented, with and without 5 % error in the data. Parameter sweeps
were performed over 6 different values for each of the four parameters,
resulting to 1,296 parameter combinations

In order to further examine this issue, we reformulate the
Guccione law as suggested by Xi et al. (2011a):

b f = αr1, bt = αr2, b f s = αr3, r1 + r2 + r3 = 1,

where parameter α denotes the sum of b f , bt , b f s . We per-
formed parameter sweeps over parameters C and α while
keeping the ratios between b f , bt , b f s and α constant
(r1 = 0.5, r2 = 0.3, r3 = 0.2). Figure 10 illustrates
the behavior of the objective function J over a range of
the parameters C and α. The exponential shape of the blue
valley representing model parameters resulting in small J
values, verifies coupling between C and α as previously
reported by Xi et al. Xi et al. (2011a, 2013). The presence
of inter-parameter dependence is also demonstrated in Table
2 which shows a significantly larger coupling ratio R (see
Sect. 2.3.3) for the Guccione law. Coupling may significantly
deteriorate the parameter estimation process, as any noise in
the data is likely to result in a large error in the estimated
parameters (in this case 5.6 % for both α and C). The cou-
pling in the Guccione law therefore suggests that we cannot
guarantee unique and reliable parameter estimates using 3D
tags.

3.1.5 Effect of noise in the 3D tagged data

The practical identifiability of the constitutive laws consid-
ered may be significantly compromised by the presence of
noise in the data. In order to assess this effect, we have
considered noisy data, where unbiased Gaussian noise was

added in the simulation results prior to in silico tagging.
Due to the limited resolution of the data, the addition of
noise is expected to deteriorate the behavior of J , espe-
cially for parameters with very low sensitivity. The pres-
ence of noise resulted in increased J values (see Figs. 4a,
5) and larger errors in the parameter estimates as indicated
in Tables 1 and 3. However, the landscape of J was not
significantly altered due to the uniform noise used, as indi-
cated by the representative case of Neo-fiber a = 1 in Fig.
5. Nonetheless, unbiased noise caused a minor change to the
topology of the objective function in parameter space as can
be deduced by the increase in the coupling ratio in Table
2.

3.2 Comparison of models’ fidelity

Keeping in mind that the choice of an appropriate con-
stitutive law should balance between parameter identifia-
bility and model fidelity, the constitutive laws described
in Sect. 2.2.2 are tested with respect to their ability to
represent physiological cardiac deformation. Further, the
behavior of the objective function for any constitutive law
is also influenced by model fidelity (see Sect. 2.3.2), as
a model which cannot provide a good approximation to
data can lead to unreliable parameters. We note that even
though model fidelity does not affect the in silico tests
in Sect. 3.1, where the same constitutive law is used for
generated data and simulations, it is an issue for in vivo
cases where the model should represent cardiac deforma-
tion.

For the purposes of this comparison, Guccione defor-
mations were considered as the ground truth for physi-
ological cardiac deformation. In order to cover a range
of possible deformation modes during the cardiac cycle,
18 widely varying parameter combinations were used. For
each of these combinations, a parameter sweep was per-
formed for each law to provide the parameter that mini-
mizes the difference between simulations and the ground
truth cardiac deformation. The comparison was performed
on simulations with the same end-diastolic volume through
volume-prescribed loading to reduce the parameter space by
1.

Figure 11 compares the minimum, maximum and aver-
age errors between the various laws considered and ground
truth deformation. The Neo-Hookean law exhibits a signif-
icant error compared with ground truth deformation. This
is mainly due to the inability of the Neo-Hookean law to
produce adequate elongation and twist, which are important
characteristics in cardiac deformation. On the other hand, the
added fiber dependence in the Neo-fiber law allows a more
accurate approximation to physiological cardiac motion, as
the lower average and maximum errors indicate that the
Neo-fiber can on average reproduce most of the deforma-
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Fig. 10 J over Guccione parameters C and α. The actual parameters
(α = 38, C = 180Pa) used in the simulation are shown by a yellow
cross and estimated parameters by a red star. Figure on the right shows
a “zoom-in” near the estimated values, where a denser grid of parame-

ters was used. 14 × 14 and 11 × 11 simulations were performed for
the initial and refined parameter sweeps, respectively, with an average
computational time of 66.158 s

Table 2 Gradients at the obtained minima, for the considered constitutive laws

Neo-Hookean Neo-fiber a = 1 Neo-fiber a = 2 r. Holzapfel–Ogden Guccione

Gradient −1.2516e−05 −2.6958e−07 4.8918e−08 −7.3606e−06 −2.7133e−04

−2.4444e−06 7.7456e−06 −4.4053e−07 −2.2966e−03

R 1.3962 1.1848 1.2586 16.596

R (20 % noise ) 1.4006 1.2019 1.3001 20.883

First row corresponds to the gradient with respect to the first parameter for each law. Coupling ratios R are also presented, for data with and without
20 % unbiased noise

Fig. 11 Neo-Hookean, Neo-fiber (a = 1 and a = 2) and reduced
Holzapfel–Ogden laws are compared in terms of their ability to approx-
imate physiological cardiac deformation. 18 Guccione parameter com-
binations are used as ground truth. Shown in black are the ground truth

deformations and in red the best fit over the specified models’ parame-
ter space. Plots show the worst match for all 18 Guccione parameter
combinations. The table presents minimum, maximum and average J
values over the 18 Guccione combinations for the various laws

tion modes considered. The approximation to cardiac motion
is further improved as the exponent α increases. Finally, the
reduced form of the Holzapfel–Ogden law presents the small-
est average and minimum error between the deformations
produced using a given constitutive law and the Guccione
law, confirming that the values used for the exponents b
and b f are appropriate and allow for physiological cardiac

deformation. This is also illustrated in the meshes in Fig.
11 which present the maximum difference from Guccione
combinations. For the Neo-fiber and reduced Holzapfel–
Ogden models, even the maximum difference from the
ground truth is still quite small as indicated by the close
match between model and ground truth cardiac deforma-
tion.
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Table 3 Percentage error (PE) between actual and estimated parameters for each law

Neo-Hookean (%) Neo-fiber a = 1 (%) Neo-fiber a = 2 (%) r. Holzapfel–Ogden (%) Guccione (%)

PE 0 ± 10 0 ± 3.33 16 ± 2 2.5 ± 2.5 5.56 ± 5.56

2 ± 2 2 ± 2 2 ± 1 5.56 ± 5.56

PE (20 % noise) 0 ± 10 3.33 ± 3.33 16 ± 2 5 ± 2.5 5.56 ± 5.56

0 ± 2 0 ± 2 5 ± 1 0 ± 5.56

The interval used in each parameter sweep is used as the uncertainty in each case. First row corresponds to the error of the first parameter for each
law
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Fig. 12 Typical end-diastolic pressure–volume curves for the consti-
tutive laws considered and ground truth Klotz curve. While the reduced
Holzapfel–Ogden and Guccione laws are able to reproduce the Klotz
curve, the Neo-Hookean and Neo-fiber laws cannot produce a physio-
logical pressure–volume response

3.3 Comparison of models’ EDPVRs

End-diastolic pressure–volume relation (EDPVR) is an
important determinant of cardiac function; therefore, the
considered constitutive laws were compared with respect
to their ability to reproduce a physiological EDPVR. For
this comparison, the empirical EDPVR proposed by Klotz
et al. (2006) was chosen as the ground truth physiological
EDPVR, as it is considered capable to represent healthy and
diseased cases. The EDPVR is derived from a single set of
end-diastolic pressure (EDP) and volume (EDV) measure-
ments, which for the in silico tests were chosen as EDP = 11
mmHg, EDV = 140 ml.

Figure 12 illustrates typical EDPVRs for the various con-
stitutive laws considered. As indicated by the curve, the Neo-
Hookean and Neo-fiber laws were not able to reproduce a
physiological EDPVR, even though case a = 2 gives a bet-
ter approximation for the Neo-fiber law. On the contrary,
the exponential Guccione and the reduced Holzapfel–Ogden
laws were able to provide a physiological EDPVR as indi-
cated by the close match to the Klotz curve.

3.4 In vivo behavior of J

The in silico tests performed in Sects. 3.1, 3.2 and 3.3 suggest
that the reduced Holzapfel–Ogden law combines practical
identifiability with good representation of cardiac deforma-
tion and EDPVR. Therefore, the reduced Holzapfel–Ogden
is suitable for patient-specific applications as it is an accu-
rate cardiac model with reliable—thus potentially clinically
important parameters.

In this section the reduced Holzapfel–Ogden law is
employed in an in vivo case of a healthy volunteer. The behav-
ior of the objective function J is examined in this setting as
well, to allow for the characterization of practical identifi-
ability in a real-world scenario. Within this setting, we can
also assess the effect of model fidelity on the parameter esti-
mation process, as the simulations are now compared with
actual cardiac deformation data.

The extracted 3D displacement field was compared with
passive inflation simulation results to provide parameter esti-
mates for the reduced Holzapfel–Ogden law. As the LV pres-
sure trace was not part of the available data, we were not
able to obtain unique values for each parameter separately.
However, taking advantage of the linear dependence of the
law on the parameters and accordingly their proportionality
to inflating pressure, we were able to uniquely estimate the
ratio α f /α, which is independent of the inflating pressure.
Note that if the end-diastolic pressure is available, we can
retrieve the actual values of α f and α by multiplying by the
ratio between the actual pressure values and the values used
in the estimation process.

Figure 13 illustrates the behavior of J over a range of
ratios α f /α, where the fiber parameter α f was kept constant.
Even though in this in vivo case we cannot assess the error in
the parameter estimates, we can still infer that the practical
identifiability of the reduced Holzapfel–Ogden law observed
in in silico tests 3.1.3 is maintained when actual 3D tags are
used, based on the distinct and unique minimum. The identi-
fiability of the law using all or only the final diastolic frames
is examined as well, indicating that J presents distinct and
unique minima in both cases, with a 12 % difference between
the two estimated values.
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Fig. 13 a J over the ratio α f /α for the reduced Holzapfel–Ogden law, when 13 or only the final diastolic frames are considered within J . The
match between the model (volume and black lines) and data (red lines) at b early-, c mid- and d end-diastole is illustrated in a simulation with the
obtained minimum ratio

The similarity in behavior of J over the parameter ratio
between in silico and in vivo tests (see Figs. 9, 13) confirms
model validity for the reduced Holzapfel–Ogden law. Finally,
it offers a validation of our in silico testing protocol, thus
allowing for the conclusions for the considered constitutive
laws to be extrapolated to parameter estimation applications
with real 3D tags.

3.5 Study limitations

A relatively coarse, lower order mesh was used for the in
silico example. This choice was based on the small com-
putational time per simulation, which allowed for the large
number of simulations performed to provide the landscape
of the objective function over the parameter space. Neverthe-
less, as illustrated in Appendix 2, the mesh resolution used
was sufficient to examine parameter identifiability charac-
teristics in our models, for both the in silico and in vivo
tests.

Further, only one objective function has been considered,
even though other objective functions might be able to elu-
cidate other characteristics for the behavior of the various
laws. Other objective functions are not considered here, as
such a study would require proving that a potential objec-
tive function is discerning. If non-discerning, proving that
unique parameter identification is achievable becomes chal-
lenging as it then must rely on the observations not exposing
non-uniqueness of the objective function. Nevertheless, the
chosen J uses an L2 norm on the displacements, which is
generally considered a robust criterion and should be able
to provide adequate information and accurately describe the
identifiability characteristics of each law.

Ten diastolic frames were used as observations in the in
silico test. This choice was based on the number of diastolic
frames in the available 3D tagged MRI data (e.g., where
the cavity volume is increasing). However, the number of

diastolic image frames used in other studies is variable with
authors considering all or part of diastole. This variability
is due to assumptions on residual active tension, the pres-
ence of which is confirmed by decreasing cavity pressures
even after the opening of the mitral valve (Pasipoularides
et al. 1986). As a result, early diastolic frames do not con-
tain purely passive tissue behavior, but also contain residual
active stress. We observed that parameter identifiability for
the reduced Holzapfel–Ogden model was preserved in both
in silico and in vivo scenarios, using only the last diastolic
frame (see Figs. 9 and 13). J presented unique and distinct
minima for all cases, with a 12 % difference between the two
estimated values in the in vivo case. However, this robustness
is likely due to the single parameter (α f /α ratio) estimated
over the entire left ventricle. Incorporation of spatially vary-
ing parameters would increase sensitivity to noise and would
likely require additional passive diastolic frames to ensure
identifiability.

Even though the effect of unbiased noise is examined, sev-
eral aspects of the process or the data that may have a biased
influence are not considered. For instance, the resolution and
number of tagged lines in the data along with the tracking
algorithm used are likely to incorporate consistent error in the
parameter estimation process. The boundary conditions used
in the simulations are also likely to influence the identifiabil-
ity and model fidelity results. Understanding these attributes
is important for patient-specific personalization; therefore,
further work is required to clarify the influence of these fac-
tors on the landscape of the objective function and the esti-
mation process in general.

The reference configuration is assumed to be known
and correspond to a specific frame of diastole in the in
vivo example. Even though this is a common approach,
we have verified that the identifiability of model parame-
ters is not sensitive to the frame used as a reference con-
figuration for the in silico case (see Appendix 3). Inter-
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estingly, the parameter ratio is relatively consistent (20 %
maximum error between actual and estimated ratio) irre-
spective of the reference domain. We note, however, that
this might be an artifact of the idealized geometry used
or other simplifications inherent in the model produced
data.

Finally, only one in vivo case is considered; thus, further
work is needed to examine effects in vivo, such as noisy
or low-resolution data, or diseased cases where the cardiac
deformation is likely to differ significantly. However, the in
silico tests performed provide a standard, giving the “best
case scenario,” which can be anticipated when using real
data. Further, the in vivo and in silico model fidelity of the
reduced Holzapfel–Ogden law encourage the application of
the law to diseased cases as well.

4 Conclusions

In this paper, we examine the practical identifiability and
model fidelity of a range of cardiac constitutive laws using 3D
tagged MRI as the available data. In order to investigate the
practical identifiability of the laws considered and examine
the potential of using 3D tags in parameter estimation appli-
cations, we generate synthetic 3D tags directly from simu-
lation results and assess the behavior of the objective func-
tion over the parameter space through parameter sweeps. The
laws considered are also compared with respect to their abil-
ity to represent physiological cardiac motion and EDPVR,
elucidating the primary components that should guide the
choice of an appropriate cardiac constitutive law—namely
reliable parameters and adequate representation of cardiac
deformation and function.

Our results verify the reported coupling of the transversely
isotropic Guccione law, suggesting the need for a law with
better identifiability characteristics that would allow for reli-
able parameter estimates. The Neo-Hookean law is shown to
have good identifiability characteristics, due to linear para-
meter dependence. The stiffness parameter is identifiable,
provided adequate deformation is present in the available
data. However, due to its isotropy, Neo-Hookean deforma-
tion misses key characteristic deformation modes, mainly
long-axis elongation and twist. Further, it cannot reproduce
physiological pressure–volume response.

Building on the Neo-Hookean model, the Neo-fiber
law maintains the good identifiability characteristics, while
reproducing physiological cardiac deformation. Both para-
meters are identifiable, even though sufficient deformation
is required to allow identifiability of the fiber parameter due
to the structure of the constitutive law. However, using the
Neo-fiber law leads to inaccurate pressure–volume response,
which cannot match the empirical Klotz curve.

The reduced Holzapfel–Ogden law, however, combines all
important attributes considered, offering a balance between
practical identifiability and adequate representation of car-
diac deformation and EDPVR. Its use in an in vivo case
where good identifiability characteristics are maintained sup-
ports the conclusion that the reduced Holzapfel–Ogden law
offers a sensible choice in patient-specific applications with
3D tagged data.
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Appendix 1: Structural identifiability for cardiac laws

In this section, we examine an application of Theorem 2,
where we study the structural identifiability of the laws con-
sidered. Specifically, we consider a block of tissue (Fig. 14)
and show that for the Neohookean, Neo-fiber and reduced
Holzapfel–Ogden laws, which have a linear dependence on
their parameters, a single pure tension experiment is suffi-
cient to prove the bijectivity of theirϕmapping, thus ensuring
their structural identifiability.

We can consider a block of incompressible tissue (Fig. 14),
under pure tension in one of the three directions. The body
is fully constrained at (0, 0, 0) and is under the influence of
zero traction on the side boundaries.

Fig. 14 The block of tissue under consideration. The red lines show
the deformed configuration
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For the case of the Neohookean law, due to its isotropy,
pure tension in any of the three directions is sufficient to
ensure structural identifiability. Specifically, for elongation in
the X direction the deformation gradient F and left Cauchy-
Green deformation tensor can be expressed as

F =
⎡
⎢⎣
λ 0 0
0 1√

λ
0

0 0 1√
λ

⎤
⎥⎦ , b =

⎡
⎣λ

2 0 0
0 1

λ
0

0 0 1
λ

⎤
⎦ (24)

where λ denotes the stretch of the body in the X direction,
and the deformation in the Y and Z components is derived
from the symmetry and incompressibility of the body. As
the Neohookean law has only one parameter, expression 13
becomes σ = μσ 1, where using definition 4 and J = 1,

σ 1 =
(
λ2 − 1

λ

) ⎡
⎣

2
3 0 0
0 − 1

3 0
0 0 − 1

3

⎤
⎦ . (25)

If we choose the test function v = [ 1
2 x,− 1

4 y,− 1
4 z

]
, A in

Theorem 2 is now a nonzero scalar [A = 1
2 (λ

2 − 1
λ
)], for any

nonzero elongation (λ �= 1). This ensures that φ is bijective,
suggesting structural identifiability of the Neohookean law.

The Neo-fiber and reduced Holzapfel–Ogden law can also
be shown to be structurally identifiable through a pure tension
experiment, where the elongation is exerted in the cross-fiber
direction Y = 0 (note that for elongation in the fiber direc-
tion, the matrix A becomes singular for any choice of test
functions v ∈ Wu

0,Div). The deformation gradient and left
Cauchy-Green tensor in this case are described by

F =
⎡
⎢⎣

1√
λ

0 0

0 λ 0
0 0 1√

λ

⎤
⎥⎦ , b =

⎡
⎣

1
λ

0 0
0 λ2 0
0 0 1

λ

⎤
⎦ (26)

where λ represents stretch in the cross-fiber direction, and
f0 = [1 0 0]. According to 13, the stress tensors for the
Neo-fiber and reduced Holzapfel–Ogden law can be written
as σ = C2σ 1 + C ′

1σ 2 and σ = ασ 1 + 2α f σ 2, respectively,
where for simplicity C ′

1 = C1 − C2. Taking the specific
deformation mode into account, f = [ 1√

λ
0 0], IĈ f

= 1
λ

and
the two stress components for the Neo-fiber law are

σ 1 =
(
λ2 − 1

λ

)⎡
⎣− 1

3 0 0
0 2

3 0
0 0 − 1

3

⎤
⎦ (27)

σ 2 = 1

λ

(
1

λ
− 1

)α ⎡
⎣

2
3 0 0
0 − 1

3 0
0 0 − 1

3

⎤
⎦ . (28)

Similarly, the two stress component for the reduced
Holzapfel–Ogden law can be expressed as

σ 1 = exp

[
5

(
λ2 + 2

λ
− 3

)] (
λ2 − 1

λ

) ⎡
⎣− 1

3 0 0
0 2

3 0
0 0 − 1

3

⎤
⎦

(29)

σ 2 = exp

[
5

(
1

λ
− 1

)2
]

1

λ

(
1

λ
− 1

) ⎡
⎣

2
3 0 0
0 − 1

3 0
0 0 − 1

3

⎤
⎦ .

(30)

Clearly, the two components of the Neo-fiber and reduced
Holzapfel–Ogden law have the same matrix structure, which
can be represented as

σ 1 =
⎡
⎣α1 0 0

0 β1 0
0 0 α1

⎤
⎦ , σ 2 =

⎡
⎣α2 0 0

0 β2 0
0 0 β2

⎤
⎦ (31)

If we then choose our test functions to be v1 = [ 1
2 x,− 1

4 y,
− 1

4 z
]

and v2 = [ − 1
4 x, 1

2 y,− 1
4 z

]
, matrix A in Theorem 2

becomes

A =
[ 1

4 (α1 − β1)
1
2 (α2 − β2)

1
2 (β1 − α1)

1
4 (β2 − α2)

]
, (32)

whose determinant |A| = 3
16 (α1 − β1)(α2 − β2) is nonzero

due to the structure of σ 1 and σ 2. Based on Theorem 2, the
invertibility of A ensures the bijectivity of ϕ for the Neo-
fiber and reduced Holzapfel–Ogden laws, proving that they
are structurally identifiable.

Appendix 2: Effect of mesh resolution on J behavior

In order to investigate the effect of the mesh resolution
on the behavior of the objective function, some of the tests
presented are repeated on a finer mesh. Specifically, we
have repeated the in silico characterization of the reduced
Holzapfel–Ogden law presented in Sect. 3.1.3 on a uniformly
refined mesh (448 elements, instead of 56 elements used in
the initial test). As can be deduced by the similarity in both
the landscape of J and the estimated values between Figs. 8
and 15, the coarser mesh used for the in silico tests is able to
characterize the identifiability of the considered constitutive
laws.

Similarly, the in vivo test described in Sect. 3.4 was
repeated on a finer mesh consisting of 576 elements instead
of 72 elements used in the initial test. Comparing Figs. 13
and 16, we can deduce that the behavior of J is consistent
between the two meshes, suggesting that we can rely on the
conclusions deduced from the use of the coarser mesh. We
note that the small difference in the obtained ratio in the in
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Fig. 15 Landscape of objective function J of reduced Holzapfel–
Ogden law over parameter space, when a finer mesh consisting of 448
elements is used
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Fig. 16 J over the ratio α f /α for the reduced Holzapfel–Ogden law
in vivo, when a finer mesh consisting of 576 elements is used

vivo test could be justified by the fact the finer mesh was also
used to propagate the extracted myocardial motion, and its
cavity volume was used to drive the simulation.

Appendix 3: Effect of reference configuration on J
behavior

This section investigates the effect of choosing a different
diastolic frame as a reference configuration on the behavior of
the objective function. Specifically, we have used an in silico
test to examine the effect of the reference configuration on the
identifiability of the parameter ratio of the reduced Holzapfel-
Ogden law, in a volume-prescribed diastolic filling simula-
tion. Five different reference configurations were considered
for the simulations performed over parameter sweeps: the
initial reference mesh and meshes corresponding to loading
steps 10, 20, 30 and 40 of the simulation used for the creation
of the synthetic tags. In each case, the number of loading steps
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0

0.2

0.4

0.6
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1

Fig. 17 J over the parameter ratio α f /α for the reduced Holzapfel–
Ogden law. Five different reference configurations are used, which cor-
respond to different diastolic phases

and thus observations was adjusted, so that each observation
would correspond to 5 loading steps.

Figure 17 compares the behavior of the objective function
J when different diastolic phases are used as the reference
configuration. Based on the similar behavior of the curves,
we can deduce that the identifiability of the parameter ratio
is not affected by the assumed reference configuration.
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