Contagions in random networks with overlapping communities - Archive ouverte HAL
Article Dans Une Revue Advances in Applied Probability Année : 2015

Contagions in random networks with overlapping communities

Résumé

We consider a threshold epidemic model on a clustered random graph model obtained from local transformations in an alternating branching process that approximates a bipartite graph. In other words, our epidemic model is such that an individual becomes infected as soon as the proportion of his/her infected neighbors exceeds the threshold q of the epidemic. In our random graph model, each individual can belong to several communities. The distributions for the community sizes and the number of communities an individual belongs to are arbitrary. We consider the case where the epidemic starts from a single individual, and we prove a phase transition (when the parameter q of the model varies) for the appearance of a cascade, i.e. when the epidemic can be propagated to an infinite part of the population. More precisely, we show that our epidemic is entirely described by a multi-type (and alternating) branching process, and then we apply Sevastyanov's theorem about the phase transition of multi-type Galton-Watson branching processes. In addition, we compute the entries of the mean progeny matrix corresponding to the epidemic. The phase transition for the contagion is given in terms of the largest eigenvalue of this matrix.

Dates et versions

hal-01254908 , version 1 (12-01-2016)

Identifiants

Citer

Emilie Coupechoux, Marc Lelarge. Contagions in random networks with overlapping communities. Advances in Applied Probability, 2015, 47 (4), pp.973-988. ⟨10.1239/aap/1449859796⟩. ⟨hal-01254908⟩
124 Consultations
0 Téléchargements

Altmetric

Partager

More