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configuration space is necessary for modelling the Kirchhoff rod (the centroid curve position vector and the torsional
angle) [1,2]. In the literature this kind of manifold is also known as ribbon, see [3].

Kirchhoff rod models have the advantage, with respect to shear deformable models, that shear locking is automati-
cally avoided. Furthermore, it is used for modelling particular spatial structures, like cables with bending and torsional
stiffness; for instance, in [4] the authors present a bending-stabilized cable model, while in [5,6] the authors consider
the effect of torsional stiffness in aeroelastic analysis.

In [1] a geometrically exact formulation of space rods based on a Lagrangian description was presented, that does
not depend on the particular geometry of the centroid curve (differently from what has been done for instance in
[7–10]). An orthogonal frame was introduced on the rod axis, that can be different from the natural frame (Bishop
frame) used by Langer and Singer [11]. A pull-back of the strain along the directors was used to define the deformation
of the cross section, analogously to what is done in non local and second gradient theory, i.e. [12–17].

Since high continuity is required for the interpolation of the displacements in a Kirchhoff–Love rod model, the
B-spline interpolation used in isogeometric analysis appears to be a natural choice for the development of numerical
approximations of thin structural models. A first example of isogeometric interpolation for non polar rods can be
found in [18] in which the authors have considered the polar formulation of rods developed in [19]. Many others
numerical isogeometric formulations for rods have been proposed since (see, e.g., [20–25]).

When multiple elements are used for discretizing the model, C0 continuity for the end rotations of the element is
needed, that for the Kirchhoff rod model means a G1 continuity constraint on the deformation of the centroid curve,
i.e., the unit tangent vectors have to coincide at the ends of adjacent elements; from an incremental point of view this
means that the velocity of rotation at the ends of adjacent elements must be equal.

In [26,27] G1 continuity for space rods was obtained by means of a change of basis, generalizing Hermite’s inter-
polation. The required geometric continuity was thus achieved without introducing Lagrangian or penalty terms in the
formulation, as done for instance by the bending strip method [28]. An alternative strategy of a multi-patch approach
for non polar shells can be found in [29].

Although it has been claimed that sufficiently high degrees of interpolation avoid locking phenomena, isogeometric
models, like all displacement based formulations, suffer from this pathology, that arises from the coupling terms
appearing in the strain energy. Membrane and shear locking were observed in plane beam models [30–33] and
membrane and flexural locking in space rod models [10,34–36]. In [1,36] severe locking due to these interactions was
found, even for high order interpolations. Raising the degree of the interpolating functions, locking was only slightly
reduced but did not disappear. The same phenomenon had been observed by other researchers, who proposed different
remedies. The discrete strain gap method and its extension to the isogeometric analysis by means of a collocation of
the discrete strain gaps have been presented in [37,30], consistent interpolation and collocation method are presented
in [31,38,39], reduced integration was used in [32] and B-bar formulations in [40,32–34,41].

In [26] it was shown that the implicit G1 continuous formulation yields much better results with respect to the
locking pathologies, even though the phenomenon is still present, especially with reference to flexural locking.
Furthermore, instabilities in the internal force distributions were observed, that reduced the accuracy of the solution.
The aim of this work is to investigate the ability of a mixed formulation based on a B-bar L2 projection method for
a G1 continuous space rod model to prevent the occurrence of locking, and consequently to improve the accuracy of
the solution.

In [32] the authors compare several numerical strategies for the treatment of locking in plane rods, namely reduced
integration, discrete strain gap, and B-bar strain projection method. They show that for coarse meshes the B-bar strain
projection method produces solutions with greater accuracy than the other considered methods. From a numerical
point of view both discrete strain gap and B-bar strain projection method produce a full stiffness matrix, for this
reason in [42] a strategy for reducing the band-width of the modified stiffness matrix by means of a local least-square
procedure has been proposed.

Accounting for these results, in this work a mixed approach is introduced in the G1 formulation, analogous to the
one adopted in [33,34], leading to a B-bar type formulation. Using the multi patch approach with G1 continuity a full
stiffness matrix is obtained only at the level of the patch while the global stiffness matrix has the same band-width of
the stiffness matrix of a single patch, with great improvement in the computational cost.

In Section 2 the space rod model is briefly presented; in Section 3 the implicit G1 continuous model is summarized.
The B-bar type formulation is implemented in Section 4, and it is used in the subsequent applications. Examples
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presenting different forms of energy coupling are finally discussed, in order to investigate the performance of the
formulation and its ability to avoid locking and to improve accuracy.

2. The Kirchhoff rod model

The model of a space Kirchhoff rod has been presented in [1,26]. In this section we will only recall the essential
results useful for understanding the subsequent developments. The full derivation of the model can be found in the
cited papers.

The geometry of the rod is defined by the couple (Γ , E), where Γ is a curve of R3 having parametric equations
p(S) : A → R3, A =]0, L0[. In this way S is the arc length of the reference Lagrangian configuration; E = {t̂, n̂, ν̂}

is an orthogonal triad, with t̂ =
dp
d S

1
∥t∥ , t =

dp
d S , and n̂(S), ν̂(S) are two director vectors orthogonal to t̂(S).

The reference configuration, at time t = 0, is denoted by the index ‘0’. A generic configuration of the rod
is defined by the centreline position p(S) = p0(S) + u(S), and by the rotation operator Ω of the internal triad,

t̂, n̂, ν̂


= Ω


t̂0, n̂0, ν̂0


.

Kirchhoff hypotheses require that, at any instant, the cross sectional axes be orthogonal to the tangent vector to the
centreline, i.e.,

n̂ · t = 0 ν̂ · t = 0, ∀(t, S). (1)

From Eq. (1) it follows that the velocity of rotation ω̇ of the intrinsic triad is given by

ω̇n = ˙̂ν · t̂ = −ν̂ ·
˙̂t = −ν̂ ·

du̇
d S

1
∥t∥

ω̇ν = −˙̂n · t̂ = n̂ ·
˙̂t = n̂ ·

du̇
d S

1
∥t∥

(2)

while the torsional velocity of rotation is

ω̇t = ˙̂n · ν̂ = φ̇. (3)

Therefore the bending velocities of rotation are obtained as derivatives of the velocity of displacement.
Denoting by ε the axial strain, by χn, χν the bending curvatures and by χt the torsional curvature, the compatibility

equations for the velocities of the strains are given by the following expressions:

ε̇ =
du̇
d S

· t

χ̇n =


−

d2u̇
d S2 + φ̇


t̂ ×

dt
d S


· ν̂

χ̇ν = −


−

d2u̇
d S2 + φ̇


t̂ ×

dt
d S


· n̂

χ̇t =
dφ̇

d S
+

1

∥t∥2

du̇
d S

·


t̂ ×

dt
d S


(4)

with d2u̇
d S2 = ∥t∥ d

d S


1

∥t∥
du̇
d S


, while


t̂ ×

dt
d S


=

1
∥t∥


χn n̂ + χν ν̂


is the curvature of the centreline.

In this work we restrict ourselves to infinitesimal deformations, so that the expressions (4) can be formally used for
the infinitesimal strain measures, using as geometry of the rod the reference initial configuration. For the infinitesimal
strains the same symbols as in (4) will be adopted, removing the dots.

The weak form of the equilibrium equations is given by the principle of virtual power, that is, for any admissible
velocity field u̇, φ̇ the following equality must hold:

L0


N ε̇(u̇, φ̇) + Mn χ̇n(u̇, φ̇) + Mν χ̇ν(u̇, φ̇) + Mt χ̇t (u̇, φ̇)


d S

=


L0

l · u̇ d S + F0 · u̇0 + FL · u̇L + M0 · ω̇0 + ML · ω̇L . (5)
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In (5) l(S) is the external load vector and F0, FL , M0, ML are point forces and couples applied at the ends of the rod.
For small strains the internal forces are linearly related to the strains:

N = E A ε Mt = G Jt (χt − χt0)

Mn = E In (χn − χn0) Mν = E Iν (χν − χν0) ,
(6)

where χn0, χν0, χt0 are the initial curvatures of the rod axis.
The present formulation applies to a generic incremental step if the geometric stiffness matrix is disregarded. The

general formulation for non linear Kirchhoff rods can be found in [2] (see also [43,44] for planar beams).

3. The implicit G1 continuous numerical model

A B-spline interpolation of the variables (u, φ) is introduced, so that

p(λ) =

n
i=1

bp
i Pi

φ(λ) =

n
i=1

bp
i Φi

λ ∈ (0, 1). (7)

Here bp
i (λ) are n B-spline basis functions of degree p, with n = p + 1 + k, with k the number of internal knots in

the knot span vector

Ξ = {0, . . . , 0  
p+1

, λ1, . . . , λk  
k

, 1, . . . , 1  
p+1

} (8)

that globally defines a patch in the parametric domain. The interval (λi , λi+1) is called a section or an element. If
there is no internal knot, the basis functions reduce to the Bernstein basis polynomials.

Pi are the position vectors of the control points of the rod axis, that control the shape of the curve. Similarly Φi are
the control points for the interpolation of the torsion angle.

Collecting the degrees of freedom in the vector q

q = {P1,Φ1, P2,Φ2  
q1,2

, . . . , Pn−1,Φn−1Pn,Φn  
qn−1,n

} (9)

the configuration of the rod is given by the interpolation

{p(λ), φ(λ)} = Mq (10)

with

M =


bp

1 0 0 0
0 bp

1 0 0
0 0 bp

1 0
0 0 0 bp

1

. . .

bp
n 0 0 0
0 bp

n 0 0
0 0 bp

n 0
0 0 0 bp

n

 . (11)

Since an open knot vector has been used, the B-spline interpolation is not interpolatory except at the end points of
the patch. Therefore only C0 continuity is obtained, and in general additional constraints have to be added for the end
rotations in order to fulfil the boundary conditions.

Two curves meet with C1 parametric continuity if the parametric tangents, t =
dp
dλ

, are the same at the joint; so that,
under a generic re-parametrization of the curves the parametric continuity is destroyed. Conversely, two curves meet
with G1 geometric continuity if the unit tangents, are the same at the joint. The geometric continuity is independent
under a generic re-parametrization of the curves, for details see [45] and [46].

A G1 implicit formulation for space rods has been proposed in [26] and [35], introducing the end rotations as
degrees of freedom by means of a change of basis for the control variables of the B-spline interpolation of the centroid
curve, analogously to the Hermitian interpolation concept. For the convenience of the reader the method is summarized
in the following.
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Fig. 1. Geometric representation of the G1 continuity as implicit constraint on the rotations at the joints of the elements.

The coordinate transformation is performed mapping the second, P2, and the second-last, Pn−1, control points of
each patch by means of the spatial rotations and the deformation of the end control segments vectors t̃0,1 and t̃0,2 as
follows (see Fig. 1)

P2 = P1 + ρ1R̃1 t̃0,1, Pn−1 = Pn + ρ2R̃2 t̃0,2, (12)

where R̃1 and R̃2 are spatial rotation operators,

t̃0,1 = P0,2 − P0,1, t̃0,2 = P0,n−1 − P0,n, (13)

and the scalars ρ1 and ρ2 are the relative changes in the lengths of these vectors, i.e.

ρ1 =
∥P2 − P1∥

∥P0,2 − P0,1∥
=

∥t̃1∥

∥t̃0,1∥
, ρ2 =

∥Pn−1 − Pn∥

∥P0,n−1 − P0,n∥
=

∥t̃2∥

∥t̃0,2∥
. (14)

The G1 parametric continuity is thus obtained equating the unit director ˆ̃t
k+1

1 at the first end of the k + 1 patch with

the unit director ˆ̃t
k

2 at the last end of the previous patch, i.e.

t̃k+1
1

∥t̃k+1
1 ∥

= −
t̃k
2

∥t̃k
2∥

. (15)

Recalling that ˆ̃t
k

i = R̃k
i t̂k

0,i , Eq. (15) means that R̃k+1
1

ˆ̃tk+1
0,1 = −R̃k

2
ˆ̃tk
0,2, and, since ˆ̃tk

0,2 = −
ˆ̃tk+1
0,1 the G1 parametric

continuity implies that R̃k+1
1 = R̃k

2.
In terms of velocity equality (15) leads to

˙̂
t̃k
2 = −

˙̂
t̃k+1
1 (16)

or, introducing the velocities of rotation of the two end points, ω̇k
2, ω̇

k+1
1

ω̇k+1
1 ×

ˆ̃tk+1
1 = −ω̇k

2 ×
ˆ̃tk
2 (17)

so that the constraint is fulfilled if the velocities of rotation of the ends of the patches, ω̇k+1
1 , ω̇k

2 are equal. In
the hypothesis of small deformations the same result holds for the infinitesimal rotations. The end rotations and
elongations are used as degrees of freedom and are collected in the vector y defined as

y = {P1, ω1, ρ1,Φ2  
y1,2

; P3,Φ3, . . . , Pn−2,Φn−2;Φn−1, ρ2, Pn, ω2  
yn−1,n

} (18)
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(a) Quadratic B-spline basis. (b) Modified quadratic G1 B-spline basis.

Fig. 2. Standard quadratic B-spline basis with one internal knot (on the left) and corresponding G1-transformed B-spline basis functions (on the
right).

that is related to the original degrees of freedom q through a linear transformation, that actually involves only the first
two and the last two control points. With the notations 03 = {0, 0, 0} and I3 = identity 3 × 3 matrix, it is:

q1,2 = E1y1,2, E1 = −


I3 03 ⊗ 03 0T

3 0T
3

03
ˆ̃t1· 0 0

I3 −t̃1×
t̃1

ρ1
0T

3

03 03 0 1

 , (19)

and

qn−1,n = E2yn−1,n, E2 = −


0T

3
t̃2

ρ2
I3 −t̃2×

1 0 03 03

0T
3 0T

3 I3 03 ⊗ 03

0 0 03
ˆ̃t2·

 . (20)

Fig. 2 presents the modified interpolation functions ˆb2
i for p = 2 obtained with the transformations (19), (20).

Notice that in the case p = 2 it is necessary to introduce at least one internal knot in the original B-spline basis in
order to have 4 control points.

In the case p = 3 the transformation leads to cubic Hermitian polynomials. Please be aware that the element so
obtained is not equivalent to a standard Hermitian element like the one proposed by Armero and Valverde [34], who
employ cubic interpolation for the bending deformation but linear interpolation for the axial displacement.

4. Mixed formulation

Displacement based formulation for thin structural models is known to present membrane and/or shear locking,
and locking due to bending and torsional interaction is present in curved space elements [10].

In [26] the rate of convergence of a single patch B-spline interpolation with increasing number of internal knots was
compared with the rate of convergence of the same problem modelled with a G1 continuous multi-patch approach. It
was found that the latter approach has the same rate of convergence as the single patch interpolation with k-refinement,
but a lower accuracy. However, it was also found that B-spline interpolations for a space Kirchhoff–Love rod suffer
from strain locking. Increasing the degree of the interpolation, locking decreases but does not disappear, since it is
intrinsically linked to the kinematic model. Similar conclusions hold for space rods modelled with G1 continuous
multi-patches. Locking was still present, although with reduced intensity, compare for instance figures 8 and 13
of [26].

In the present section a formulation for a G1 continuous interpolation of Kirchhoff–Love space rods able to
suppress locking is presented. Since the bending curvatures depend on both the second derivatives of the displacements
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and the torsional rotation, and the torsional curvature depends on the first derivatives both of the displacements and of
the torsional rotation a consistent interpolation method is not applicable. Therefore a mixed formulation leading to a
B-bar method is used instead.

B-bar methods, commonly based on the Assumed Strain Method, for which the discrete strain measures are
modified, are derived from the mixed Hu–Washizu variational principle [33]. The discrete strains are projected onto
a basis of lower dimension in order to relax the kinematic constraints related to the mismatch introduced by the
displacement interpolations. A slightly different method is used here, that stems out from the Hellinger–Reissner
variational principle. Independent interpolations are introduced for the internal forces dual of the strain measures. An
L2 projection onto bases of lower dimensions than those used for interpolating the displacements is used. As it will
be shown, in the case of linear behaviour the present procedure is equivalent to the B-bar method based on Assumed
Strains. Equivalence between enhanced assumed strain method and assumed stress hybrid method was established by
Yeo and Lee [47].

The Assumed Strain Method (ASM) for isogeometric analysis was first proposed in [40] for the analysis of nearly
incompressible 2D elasticity (for avoiding volumetric locking). Recently Bouclier et al. [32] have examined membrane
and shear locking pathologies in 2D polar rods; they project the strain measures on a lower order polynomial space
letting unchanged the knot vector and show that this kind of B-bar approach is particularly convenient for the k-
refinement of isogeometric analysis.

However, due to the necessity of inverting a Gram matrix, a mixed formulation based on ASM in the isogeometric
framework with high order inter element continuity leads to a full modified global stiffness matrix, as highlighted
in [42,30]. On the contrary, in a multi-patch approach with low interpatch continuity, the effect of the inversion of the
Gram matrix is confined only to the patch level, so that the global stiffness matrix is not full. Therefore in this work we
propose a B-bar formulation for G1 multi-patch interpolations and investigate its ability to avoid locking phenomena
and its effect on the rate of convergence of the method under refinement operations.

The Hellinger–Reissner mixed functional for a linear elastic Kirchhoff rod is

Π (u, φ, N , Mn, Mν, Mt ) = −
1
2


L0


N 2

E A
+

M2
ν

E Iν
+

M2
n

E In
+

M2
t

G Jt


d S

+


L0

(Nε(u) + Mnχn(u, φ) + Mνχν(u, φ) + Mtχt (u, φ)) d S −


L0

l · ud S, (21)

where the strain measures are given as function of the degrees of freedom by expressions analogous to Eqs. (4) (small
strains are considered). For convenience only the distributed load has been considered. The variation with respect to
the internal forces gives the compatibility equations (a tilde indicates variations):

L0

Ñ


N

E A
− ε(u)


d S = 0 ∀Ñ

L0

M̃n


Mn

E In
− χn(u, φ)


d S = 0 ∀M̃n

L0

M̃ν


Mν

E Iν
− χν(u, φ)


d S = 0 ∀M̃ν

L0

M̃t


Mt

G Jt
− χt (u, φ)


d S = 0 ∀M̃t .

(22)

Introducing the interpolation (10) the strains are given by

ε = Bεy, χt = Bχt y, χn = Bχn y, χν = Bχν y. (23)

The expressions for the deformation matrices indicated in Eqs. (23) are reported in the Appendix. The following
interpolations are assumed for the stress resultants

N = (bp−1)T na Mt = (bp−1)T mt (24)
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and

Mn = (bp−2)T mn Mν = (bp−2)T mν (25)

where na, mt , mn, mν are vectors collecting the control values of the interpolation of the internal forces, and
(bp−1), (bp−2) are row matrices containing the B-spline basis functions of degree p − 1, p − 2 respectively. The
B-spline bases bp

i , bp−1
i , bp−2

i use the same element span, that is their knot vectors have the same internal knots.
Substituting the interpolations (24) and (25) in the compatibility equations (22), it is obtained 1

E A


L0

(bp−1)T (bp−1)d S  
Ḡ

na −


L0

(bp−1)T Bεd S  
Eε

y

 · ña = 0, ∀ña

 1
G Jt


L0

(bp−1)T (bp−1)d S  
Ḡ

mt −


L0

(bp−1)T Bχt d S  
Eχt

y

 · m̃t = 0, ∀ña

 1
E In


L0

(bp−2)T (bp−2)d S  
¯̄G

mn −


L0

(bp−2)T Bχn d S  
Eχn

y

 · m̃n = 0, ∀m̃n

 1
E Iν


L0

(bp−2)T (bp−2)d S  
¯̄G

mν −


L0

(bp−2)T Bχν d S  
Eχν

y

 · m̃ν = 0, ∀m̃ν .

(26)

These equations are solved with respect to the stress control variables:

na = E A Ḡ−1Eε y,

mt = G Jt Ḡ−1Eχt y,

mn = E In
¯̄G−1Eχn y,

mν = E Iν
¯̄G−1Eχν y.

(27)

The variation of the functional (21) with respect to the displacement degrees of freedom gives the discrete
equilibrium equations

L0


BT

ε N + Bχn Mn + Bχν Mν + Bχt Mt


d S · ỹ −


L0

MT l d S · ỹ = 0, ∀ỹ. (28)

Using the stress interpolations (24) and (25) and the results (27) in the equilibrium equations one has the final form
E A


ET

ε Ḡ−1Eε


+ E Iν


ET

χν

¯̄G−1Eχν


+ E In


ET

χn
¯̄G−1Eχn


+ G Jt


ET

χt
Ḡ−1Eχt


y = F. (29)

The matrices Ḡ and ¯̄G are the Gram matrices for the reduced B-spline bases. In this way the stiffness operator is
obtained in terms of the configuration variables only. The quadrature is performed at level of each non null section
considering p + 1 Gauss–Lobatto points. Gauss–Legendre quadrature could be used equivalently, but the former has
been preferred in consideration of future extensions to material non-linearities.

The procedure illustrated is convenient for k-refinement, since adding internal knots does not alter the structure of
the stiffness matrix, see [32]. In Figs. 3 and 4 are illustrated the interpolating B-spline for the displacements and the
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(a) Second degree modified G1 B-spline basis functions, b̂2
j , with knot vector Ξ = {0, 0, 0, 1, 2, 2, 2}.

(b) First order B-spline basis functions, b1,i , used to interpolate the axial force and the
torsional moment, with knot vector Ξ = {0, 0, 0, 1, 2, 2, 2}.

(c) Zero order B-spline basis functions used to interpolate
the bending moments, with knot vector
Ξ = {0, 0, 0, 1, 2, 2, 2}.

Fig. 3. Second degree interpolating basis functions with one internal knot, (the knot vector Ξ = {0, 0, 0, 1, 2, 2, 2} is the same for all interpolating
spaces).

stress resultants, for a quadratic interpolation with knot vectors Ξ = {0, 0, 0, 1, 2, 2, 2} and Ξ = {0, 0, 0, 1, 2, 3, 3, 3}

respectively. In this case the Gram matrix ¯̄G reduces to the identity matrix.

5. Numerical investigation

The proposed G1 continuous formulation encourages the use of low order elements, therefore the numerical
applications are focused on second and third order interpolations. The proposed mixed formulation permits a strong
reduction of locking, without the need of increasing the order of the interpolation with the related computational
costs.

In the following simple academic examples are considered for testing the efficiency of the method. The first
example concerns a case that presents membrane locking; the second example considers an out of plane arch
deformation where flexural locking arises. Finally curved elements with discontinuities on the geometry or on the
internal forces are considered. The last examples will allow to investigate the ability of the proposed method to avoid
instabilities in the internal forces when sharp discontinuities are present.

In all cases it has been evaluated how the error depends on the thickness ratio of the rod, under patch refinement,
that is, increasing the number of patches employed, joined with G1 continuity, with no internal knot (except in the
case p = 2 as observed at the end of Section 3).
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(a) Second degree modified G1 B-spline basis functions, b̂2
j , with knot vector Ξ = {0, 0, 0, 1, 2, 3, 3, 3}.

(b) First order B-spline basis functions, b1,i , used to interpolate the axial force and the torsional moment, with
knot vector Ξ = {0, 0, 0, 1, 2, 3, 3, 3}.

(c) Zero order B-spline basis functions used to interpolate the bending
moments, with knot vector Ξ = {0, 0, 0, 1, 2, 3, 3, 3}.

Fig. 4. Second degree interpolating basis functions with two internal knots, (the knot vector Ξ = {0, 0, 0, 1, 2, 3, 3, 3} is the same for all
interpolation spaces).

5.1. Membrane locking: 2D arch with a point force at the free end

In this example is considered a 2D cantilever circular arch loaded at the tip by a vertical force F = {0, −1, 0}, (kN).
The radius of the centroid curve is R = 1 (m) the section is rectangular with hn = 0.1, the thickness hν is variable,
n̂(S) = ez , ν̂ = t̂ × ez and E = 2.0 ∗ 108 (kN/m2). See Fig. 5 for the geometry.

For a displacement based model the solution is affected by membrane locking. This can be detected from Fig. 6,
related to a G1 continuous formulation, that shows the relative error in the L2-norm for the u y displacement component
obtained subdividing the arch in five patches for different polynomial degrees p = 2, 3, 4 and for different values of
the aspect ratio hν/R. The L2 error is strongly dependent on the aspect ratio of the arch, especially for the lower order
polynomial interpolations, where the error reaches 100%. Increasing the order of the interpolation this dependence
is reduced but is still present, due to membrane locking. Using a B-spline single patch formulation, the dependence
of the error on the aspect ratio is still greater, as was observed in [26]. The reduction of the interpatch continuity
improves the situation, but does not eliminate the locking phenomena.

5.1.1. Second degree polynomial interpolation
In this paragraph each patch is interpolated with quadratic polynomials, with an internal knot at λ = 0.5 necessary

for guaranteeing the G1 continuity, as explained at the end of Section 3. The relative error in L2-norm for the
displacement component u y is plotted in Fig. 7(a) for different values of the thickness ratio R/hν . On the horizontal
axis is reported the number of control points used, that are increased dividing the arch into more and more patches.
The number of control points is closely related to the element size, since uniform knot vectors have been used. A
similar method of plotting the results has been adopted in [31]. The accuracy of the solution strongly decreases as
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Fig. 5. 2D cantilever arch with a point force at the free end.
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Fig. 6. 2D arch. Influence of the aspect ratio hν/R on the solution for a fixed mesh with a displacement based G1 continuous formulation.

the slenderness parameter R/hν increases. From the figure a super convergent asymptotic rate can be observed, with
respect to the optimal rate p + 1, no matter what the thickness ratio is.

The same results are replotted in Fig. 7(b) against the thickness ratio. Each curve refers in this case to a different
discretization, the numbers next to the curves indicate the number of control points used for the interpolation of the
arch. The influence of the thickness ratio on the accuracy of the solution is apparent. Notice that the error reaches
100% for the most slender arch.

The same analysis has been repeated using the mixed formulation described in Section 4. Figs. 8(a) and 8(b) refer
again to the relative error in L2 norm for the displacement component u y and have to be compared with Figs. 7(a)
and 7(b) obtained for the displacement based solution. Two observations can be made: the rate of convergence is sub-
optimal (does not reach p + 1), but the accuracy level of the solution is independent on the thickness ratio (R/hν).

In this example no discontinuity is present for the internal forces, differently from the examples presented in
Section 5.3. Therefore the example can be used for comparing the accuracy of the multipatch solution with the
accuracy of the single patch solution, in the case the mixed formulation is employed. When in the multi-patch approach
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(a) Relative error in L2-norm of uy as function of the
number of control points for different thickness ratios
R/hν .

(b) Relative error in L2-norm of uy as function of
the thickness ratio for different mesh levels, (the
labels next to the curves are the number of control
points used).

Fig. 7. 2D arch. Displacement based formulation with G1 continuity for second degree polynomial interpolation.

(a) Relative error in L2-norm of uy as function of the
number of control points for different thickness ratios
R/hν . Only a subset of the results have been reported
for clearness.

(b) Relative error in L2-norm of uy as function of
the thickness ratio for different mesh levels, (the
labels next to the curves are the number of control
points used).

Fig. 8. 2D arch. Mixed formulation with G1 continuity for second degree polynomial interpolation.

the number of internal knots for each patch is increased the accuracy of the solution improves, tending towards the
accuracy of the single patch B-spline solution (see Fig. 9(a), where the relative error for a fixed aspect ratio R/hν = 10
is plotted against the number of control points for different multi patch second order elements with increasing number
of the internal knots). For all the discretizations used, however, the error is independent from the thickness ratio
(Fig. 9(b)), confirming the absence of locking in this case.

Notice however that the G1 multi-patch approach has a great advantage with respect to the single patch solution,
since the bandwidth of the stiffness matrix, that is full in the latter case, reduces to the number of degrees of freedom
of the patch, thus improving the computational efficiency.
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(a) Relative error in L2-norm of uy as function of the
number of control points for different multi patch
elements obtained increasing the number of internal
knots.

(b) Relative error in L2-norm of uy as function of
the thickness ratios. The lines refer to discretizations
with different number of patches and increasing
number of internal knots.

Fig. 9. 2D arch. Mixed formulation with G1 continuity for second degree polynomial interpolation. Multi-patch formulation with increasing
number of internal knots.

(a) Relative error in L2-norm of uy as function of the
number of control points for different thickness ratios
R/hν .

(b) Relative error in L2-norm of uy as function of
the thickness ratio for different mesh levels, (the
labels next to the curves are the number of control
points used).

Fig. 10. 2D arch. Displacement based formulation with G1 continuity for third degree polynomial Bezier’s interpolation.

5.1.2. Third degree polynomial interpolation

The performance of the proposed method is now analysed using cubic splines. Fig. 10(a) refers to the displacement
based multi-patch formulation. For all the thickness ratios considered, the rate of convergence starts from 2 and tends
asymptotically to a super-convergent rate of 5. Fig. 10(b) summarizes the dependency of the L2 error norm from
the thickness ratio. In every case locking is present, although less severely than in the case a quadratic interpolation
is used. In this case, the error is smaller than in the previous case and much smaller than the error obtained with a
continuous displacement interpolation.

The results obtained with the mixed model are presented in Figs. 11(a) and 11(b). The optimal convergence rate of
4 is reached in this case, and Fig. 11(b) evidences the absence of locking.
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(a) Relative error in L2-norm of uy as function of the
number of control points for different thickness ratios
R/hν .

(b) Relative error in L2-norm of uy as function of
the thickness ratio for different mesh levels, (the
labels next to the curves are the number of control
points used).

Fig. 11. 2D arch. Mixed formulation with G1 continuity for third degree polynomial interpolation.
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Fig. 12. 2D arch. Mixed multipatch formulation with G1 continuity. Comparison between interpolations with different polynomial degrees.

The rates of convergence of the mixed multi patch G1 continuous model for different polynomial degrees are
compared in Fig. 12. Optimal rate of convergence is reached, except than for the case p = 2, as also observed
in [48].

5.2. Flexural locking: 3D circular arch with a point force at the free end

This example concerns a 3D cantilever circular arch loaded at the tip by a vertical force F = {0, 0, −1}, (kN). The
radius of the centroid curve is R = 1 (m) the section is rectangular with hn = 0.1 and hν is variable, n̂(S) = ez ,
ν̂ = t̂ × ez and E = 2.0 ∗ 108 (kN/m2), ν = 0.25; for the geometry see Fig. 13.

This is a typical example in which the flexural locking affects the solution in a displacement based approach. In
addition spurious modes are observed that affect the bending moments. Analogously to the analyses carried out in the
previous example, the L2 error norm for the vertical displacement uz(S) (the most affected by torsional interaction)
is examined.
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Fig. 13. Geometries of the 3D cantilever arch with a point force at the free end.

(a) Relative error in L2-norm of uz as function of the
number of control points for different thickness ratios
R/hν .

(b) Relative error in L2-norm of uz as function of
the thickness ratio for different mesh levels, (the
labels next to the curves are the number of control
points used).

Fig. 14. 3D arch. Displacement based formulation with G1 continuity for second degree polynomial interpolation.

Figs. 14(a), 14(b) refer to a displacement based solution obtained with a quadratic interpolation. The first shows
that a rate of convergence of only 2 is reached. From the second appears that the displacement formulation is unable
to correctly reproduce torsional deformations.

The mixed formulation leads to the results presented in Figs. 15(a), 15(b). Again, a suboptimal rate of convergence
2 is obtained, but the error is almost independent from the thickness ratio. The plot of the error versus the thickness
ratio shows that a little dependency of the accuracy of the solution on the thickness ratio is still present, so that the
solution is not completely free of flexural locking, but the convergence behaviour is guaranteed for a large span of
thickness values. The error obtained with the mixed formulation is by a large amount smaller than the error obtained
with the displacement formulation.

Similar results are obtained for a cubic interpolation. In this case we present the results obtained for the torsional
rotation φ(S). The case of the displacement based multi patch model is summarized in Figs. 16(a), 16(b). The rate
of convergence of the solution seems not to match the optimal value p + 1, at least not for all the thickness ratios
investigated. Correspondingly, the accuracy of the solution depends on the thickness ratio (Fig. 16(b)), even though
the error is smaller than the one found for the quadratic interpolation.

Examining the results obtained with the mixed formulation, Figs. 17(a), 17(b), it can be observed that the optimal
rate of convergence is reached, independently from the thickness ratio, and that the accuracy is almost independent
from the thickness ratio, even less than what was found with the second degree interpolation.

Finally the convergence of the L2 error norm for the vertical displacement uz and the rotation φ for several
polynomial degrees and for the fixed thickness ratio R/hν = 10 is compared in Figs. 18(a) and 18(b). While the
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(a) Relative error in L2-norm of uz as function of the
number of control points for different thickness ratios
R/hν .

(b) Relative error in L2-norm of uz as function of
the thickness ratio for different mesh levels, (the
labels next to the curves are the number of control
points used).

Fig. 15. 3D arch. Mixed formulation with G1 continuity for second degree polynomial interpolation.

(a) Relative error in L2-norm of φ as function of the
number of control points for different thickness ratios
R/hν .

(b) Relative error in L2-norm of φ as function of the
thickness ratio for different mesh levels, (the labels
next to the curves are the number of control points
used).

Fig. 16. 3D arch. Displacement based formulation with G1 continuity for third degree polynomial interpolation.

rate of convergence with the quadratic interpolation is sub-optimal, higher order interpolations reach the optimal rate
of convergence. In the case of the torsional rotation, a higher polynomial degree is needed in order to reach the optimal
rate of convergence.

Examining the internal forces, the multi-patch displacement based formulation presents strong oscillations in the
solution. For instance, the bending moment Mν is plotted in Figs. 19(a) and 19(b) for thickness ratios 100 and 1000
respectively. In the same figures is plotted the bending moment evaluated with the mixed formulation, that superposes
almost exactly to the correct result.
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(a) Relative error in L2-norm of φ as function of the
number of control points for different thickness ratios
R/hν .

(b) Relative error in L2-norm of φ as function of the
thickness ratio for different mesh levels, (the labels
next to the curves are the number of control points
used).

Fig. 17. 3D arch. Mixed formulation with G1 continuity for third degree polynomial interpolation.

(a) Influence of the polynomial degree p on the
relative error for the horizontal displacement,
eL2 (uz), as function of the number of control points.

(b) Influence of the polynomial degree p on the
relative error for the torsional rotation, eL2 (φ), as
function of the number of control points.

Fig. 18. 3D arch. Mixed formulation with G1 continuity. Comparison of rate of convergence for different polynomial degrees.

5.3. 2D arch with discontinuities in the sectional geometry and in the internal forces

The circular arch of radius R = 1 (m) represented in Fig. 20 is examined. As before, n̂ = êz . The width of the arch
is hn = 0.1 (m) while a jump in the thickness hν is present, such that h2 = αh1, with α ranging in the interval (1, 10).
The arch is loaded at the half arc-length with a point force F = {0, −1, 0} (kN), R = 1(m), E = 2.0 ∗ 108 (kN/m2).

For a displacement based model the solution is affected by membrane locking. First the case of uniform thickness
is considered, α = 1, (h1 = h2 = hν), so that, due to the point force applied, there is a discontinuity on the internal
axial and shear forces. A cubic interpolation p = 3 is adopted. Fig. 21(a) shows the rate of convergence and the
accuracy of the relative error in L2-norm for the vertical displacement component u y for several thickness ratios
R/hν . The accuracy and the rate of convergence depend on the thickness ratio considered, in particular only for the
lowest thickness ratio the rate of convergence reaches the theoretical value p + 1, while increasing the slenderness
parameter the rate of convergence of the relative error decreases to the value 2. The results obtained with the B-
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(a) R/hν = 102. (b) R/hν = 103.

Fig. 19. 3D arch. Bending moment Mν for multi-patch G1 continuous displacement formulation and multi-patch G1 continuous mixed formulation
with a third degree polynomial interpolation.

Fig. 20. Geometry for the 2D arch with mid-point force and a jump in the thickness.

bar formulation are presented in Fig. 21(b). The rate of convergence of the relative error in L2-norm for the u y
displacement component is optimal and the accuracy is independent from the thickness ratio.

The deformation of the arch presented in Fig. 22 shows that the G1-continuity is implicitly ensured (i.e. the
alignments of the three control points at the joints between subsequent patches are respected).

The G1 continuous formulation allows discontinuities on the strains and internal forces, as shown in Fig. 23 that
presents the axial force along the arch. However huge oscillations can be observed in the displacement formulation
(Fig. 23(a)). The solution obtained with the mixed formulation is plotted in Fig. 23(b), and reproduces the exact
solution. Increasing the thickness ratio R/hν the oscillations in the axial force strongly increase for the displacement
based formulation. This phenomenon is highlighted in Figs. 24(a) and 24(b) in which the relative errors in L2-norm
for the axial force and bending moment are plotted versus the slenderness parameter for the displacement based
and the mixed formulation (α = 1). The smaller the thickness ratio the greater is the error for the displacement
based formulation while with the mixed formulation the accuracy is independent on the slenderness parameter for the
considered mesh (20-patches).

Figs. 25 and 26 summarize the results for the case in which the geometry of the arch is discontinuous, h2 = αh1.
The axial force distribution is analysed. As α increases the oscillations in the second part of the arch disappear while
they remain unchanged in the first part of the arch for the displacement based formulation (see Fig. 25 respectively
for α = 3, 5, 7, 10). The solution of the mixed method reproduces in any case the exact result.
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(a) Relative error in L2-norm of uy as function of the
number of control points for several thickness ratios
R/hν .

(b) Relative error in L2-norm of uy as function of the
number of control points for several thickness ratios
R/hν . A subset of the results for the higher thickness
ratios has been plotted for clearness.

Fig. 21. 2D arch with discontinuity on the internal forces α = 1. Comparison of the displacement and the mixed formulations for a third degree
polynomial interpolation.

Fig. 22. Initial and deformed geometry (α = 1, R/hν = 103).

Figs. 26(a) and 26(b) show the relative errors in the axial force and bending moment for R/h1 = 102 and several
values of α for both the displacement and the mixed formulations. The error in L2-norm for the displacement based
formulation decreases with increasing values of α either for the axial force and for the bending moment. In the case
of the mixed formulation these errors are independent on the value of α. Furthermore, the error on the axial force is
significantly smaller than the error obtained with the displacement formulation.

5.4. 3D element with a kink

The previous example presented a plane structure with internal discontinuities. The final example concerns a space
structure with a kink and a concentrated force that introduce discontinuities on the bending and torsional moments. The
structure represented in Fig. 27(a) is examined, with R = 1 (m), n̂ = êz, hn = 0.1 (m), E = 2 ∗ 108 (kN/m2), ν =

0.25, F = (0, 0, −1) (kN). The structure is built in at the extremities. The deformed configuration together with the
position of the control points is presented in Fig. 27(b). Third degree polynomials were used.
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(a) Axial force distribution for the displacement based
formulation. The dashed line is the exact solution.

(b) Axial force distribution for the mixed formulation.

Fig. 23. 2D arch with a discontinuity on the internal forces (α = 1 and hν = 10−2 (m)). Diagram of the axial force.

(a) L2 error on the axial force. (b) L2 error on the bending moment.

Fig. 24. 2D arch with a discontinuity on the internal forces (α = 1).

The bending and torsional moments are plotted in Fig. 28 for R/hν = 103. Figs. 28(a) and 28(b) refer to
G1 continuous displacement formulation, Figs. 28(c) and 28(d) refer to G1 continuous mixed formulation. Large
oscillations occur in the curved element, especially in the bending moment, and discontinuities in the torsional
moment, due to the coupling with the bending displacements. The oscillations and the discontinuities completely
disappear in the B-bar formulation.

6. Conclusions

A B-bar type formulation for an isogeometric model of space Kirchhoff rods has been presented. A G1 continuous
multi-patch approach has been employed, according to what was proposed in [26]. The approach is very appealing
for engineering applications, and, in addition, it allows to effectively use lower order degree interpolations. The
mixed formulation is obtained interpolating the internal forces with polynomials of lower degree with respect to
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Fig. 25. 2D arch with discontinuity on the geometry, h2 = α h1 with α = 3, 5, 7, 10 h1 = 10−2 m. Diagrams of the axial force, displacement and
mixed (dashed line) formulations.

the displacement, leading to a B-bar formulation. The displacement based formulation presents severe locking in all
of the examples presented, especially if a single patch interpolation with high continuity is used. Locking is reduced,
but is still present, when a multi-patch displacement formulation with G1 continuity is employed. Using the mixed
formulation, on the contrary, locking could be suppressed in the solution, at least for plane problems. In space rods
with torsional–flexural interaction, the error was in general found to be independent from the thickness ratio, except
for the torsional rotation which showed some residual dependency. In any case the error resulted significantly smaller
than the one found for the pure displacement formulation.

As far as the rate of convergence is concerned, it was found that the mixed formulation always reaches the optimal
rate of convergence for the L2 error on the displacements, except for the case in which a quadratic polynomial
interpolation was used. The pure displacement solution, instead, generally shows a super convergent rate, but looses
accuracy if the slenderness increases.

The mixed approach has proved effective also in reducing the oscillations on the internal forces that are obtained
with the displacement formulation for the greatest values of the slenderness and for elements with sharp discontinuities
on the geometry or on the internal forces distribution.
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(a) Relative errors in L2-norm for the axial force for
several values of α.

(b) Relative errors in L2-norm for the bending moment
for several values of α.

Fig. 26. 2D arch with discontinuity on the geometry. Axial force and bending moment for R/h1 = 100, as function of α = h2/h1.

(a) Geometry of the problem. (b) Deformed configuration of the
centroid curve of the rod.

Fig. 27. 3D kinked arch: Geometry and deformed configuration.

Appendix

In this appendix we report the explicit form of the deformation matrices introduced in Eq. (23). In the following
we denote by (tx , ty, tz) the component of the tangent vector t to the rod axis on a Euclidean frame (Ex , Ey, Ez), and
indicate by b = t̂ ×

dt
d S the curvature of the rod axis. Accounting for the results (4) and the interpolation (11) one

has:

Bε = CεM Cε =


tx

d

d S
0 0 0

0 ty
d

d S
0 0

0 0 tz
d

d S
0

0 0 0 0

 (A.1)

Bχt = Cχt M Cχt =



1

∥t∥2 b · Ex
d

d S
0 0 0

0
1

∥t∥2 b · Ey
d

d S
0 0

0 0
1

∥t∥2 b · Ez
d

d S
0

0 0 0
d

d S


(A.2)
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(a) Bending moment distribution for the displacement
based formulation.
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based formulation.
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Fig. 28. 3D kinked arch: Bending and torsional moments for the displacement based and mixed formulation respectively for the thickness
hν = 10−3.

Bχn = Cχn M Cχn =


−ν̂ · Ex

d2

d S2 0 0 0

0 −ν̂ · Ey
d2

d S2 0 0

0 0 −ν̂ · Ez
d2

d S2 0

0 0 0 b · ν̂


(A.3)

Bχν = Cχν M Cχν =


n̂ · Ex

d2

d S2 0 0 0

0 n̂ · Ey
d2

d S2 0 0

0 0 n̂ · Ez
d2

d S2 0

0 0 0 −b · n̂


. (A.4)
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