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Abstract—We study the effect of feedback on an energy harvester  

for broadband applications. Using modal analysis we show that it 

has an influence on modal shape as a side effect of the resonance 

shifting. We show that the piezoelectric coupling can thus be 

reduced. Experimental results are in agreement and also reveal 

that non-linear effects are promoted in some cases. 

Piezoelectric; broadband energy harvesting; modal analysis;  

I.  INTRODUCTION 

Energy harvesting from ambient vibrations is considered as 
one solution to provide energy to autonomous system requiring 
low power or working intermittently [1]. Resonance is the 
optimal condition for energy harvesting because elastic stress is 
compensated by inertia forces. However, in practice the 
resonance condition is rarely verified. First, the mechanical 
source usually generates vibrations in a bandwidth rather than a 
single frequency during operation. Second, the parameters of 
the harvester can vary resulting in a shift of its own resonance 
frequency, hence the ongoing research on broadband harvesters 
[2]. 

Another possibility is to use the inverse piezoelectric effect 
to compensate the elastic stress or the inertia [3,4]. The 
resonance can then be shifted thus enabling to harvest energy 
on a larger bandwidth. The contribution of this paper is to show 
that proportional feedback using the measurement of the tip 
displacement can modify both the frequencies and the modal 
shape. However, we show that the coupling factor of the 
harvester will also be impacted. 

The paper is structured as follow: in next section, the model 
is briefly presented. In the third section, modal bimorph bender 
with feedback is analyzed. Finally the model is compared to 
experimental tests. 

II. MODEL 

A. Assumption and notations 

The schematic of Fig 1 depicts a simplified model of a 
slender bender used for energy harvesting. The problem is 
supposed to be bidimensionnal that is the different fields are  

 

 

Figure 1.  schematic of the studied system 

not dependent on x2 (direction orthogonal to the plane of the 
schematic).The bender is constituted by two piezoelectric (a 
and b) layers polarized to operate in 31 mode. The end at x1=0 
is clamped to the moving frame while a proof mass M is 
clamped at the free end (x1=l). The moving frame is translated 
along the direction e3, its position relative to the reference 
frame is y(t). The bender is supposed to be mechanically 
unloaded, apart from the effect of inertia.  

The electrodes are connected as shown. The voltage V2 is 
constant while the voltage v is varied accordingly to some 
measurement of the end tip. We consider small displacements 
and since electric potentials are imposed on the electrodes, it 
will also be assumed that the electrical field is mainly along the 
e3 direction. 

B. Piezoelectric 

For the following discussion, it is convenient to consider 
displacement and voltage to formulate the problem thus the 
relevant piezoelectric equation used throughout this paper are : 
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c
E is the rigidity matrix at constant electric field, e is the 

piezoelectric matrix, and S is the permittivity at constant 
strain. The corresponding thermodynamic potential is [5] : 
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C. Kinematic 

The bonding of the layers is supposed to be perfect, thus a 
continuous displacement field is considered. In this study shear 
strain is not considered, the bender being thin. The deformation 
considered consists in the superposition of an extension strain 
and a flexion. Thus, following the classical Bernouilli beam 
theory [5,6], the displacement is given by: 
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Which results in a strain field: 
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D. Electrostatic 

Considering now the electrical displacement D, the 
condition divD=0 must hold. According to the piezoelectric 
law (1) and the strain (4), and neglecting the component of the 
electric field along e1, the electrical potential in one the 
piezoelectric of the bender is given by: 
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The functions Ai(x1,t), Bi(x1,t), where i {a,b} denote the two 
piezoelectric domains, are functions to  be determined from the 
potential on the electrodes. 

E. Dynamic Equations 

The augmented Lagrangian of the piezoelectric energy 
harvester is given by: 
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where the four last contributions corresponds to the mechanical 
energy due to the external force, the kinetic energy of the proof 
mass and the energy supplied by the generators. Applying 
variation calculus, the following equations for the extension 
and the flexion displacement field respectively are obtained: 
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where,  is the mass per unit length, J is the rotational inertia 
per unit length,  K is the compressive rigidity, D is equivalent 
the flexural rigidity. w,i denotes the derivative with respect to 
xi, dots are time derivatives. The mechanical boundary 
conditions at the free end are: 
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Where aeex 31  and ahefl 31  are the piezoelectric 

coefficients for extension and flexion respectively, . At the 
clamped end of the bender, the displacements are imposed: 
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III. THEORETICAL STUDY 

A. Secular Equation 

In practice V2 is constant to apply a pre-stress during 
bending. Therefore, u(x1,t) is constant and will not be 
considered in the following. Besides, the rotational inertia 
effects in (7) will not be considered in this study. To isolate the 
effect of feedback, M is not considered. The equilibrium 
equation (7) with boundary conditions (8), and (9) are used to 
form the set of conditions that will lead to the modal analysis 
of the bender. Being an external excitation, y(t) is set to zero 
[6]. Measurement of the displacement is realized by a sensing 
ceramic followed by an integrator. The resulting voltage is 
proportional to the deformation at the end of the bender. To 
realize a feedback, the applied voltage is proportional to the 
measurement voltage: 

 

Figure 2.  Wave number  versus global feedback gain k 

 

Figure 3.  Mode shape for different feedback gain k 
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where G is the feedback gain. Using the set of boundary 
conditions (8) and (9) leads to the secular equation: 
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with Glk fl  the effective feedback gain. This differs 

from the classical secular equation of the clamped-free beam 
by its second terms induced by the feedback, which can be 
retrieved by letting k=0. The wave number and the angular 
frequency are related by the dispersion relation: 

0424   DL  (12)  

B. Resonant Frequencies and Modal Shapes 

Eq. (11) means that the values of  can be modified by the 

gain k as shown on Fig. 2. The curves present asymptotes for  

such that tantanh between the modes.  A softening or a 
hardening effect depending on the sign of k can be obtained. 
Indeed, considering the first mode which is of special interest 
for energy harvesting, the wave number will tend toward 2.635 
for an infinitely negative, so the ratio between the clamped free 
resonance frequency and the closed loop resonance frequency 
is limited to 1.588. A positive gain is more effective. 

Indeed, a variation form 0 to 1 would theoretically decrease  
from 1.875 to 0. For k=1 a bifurcation occurs. The 
eigenvectors can be determined from (8) to (10), and the 

solutions k to (11) up to a multiplicative constant. In the case 
at hand they write: 
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The modes are orthogonal and can be normalized. Ak are 
determined to verify: 
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Fig. 3 represents mode shapes according to the wave 
number and the corresponding feedback gain. For negative 
gain, the shapes tend toward a clamped-blocked rotation shape. 

 

Figure 4.  Participation factor and modal mass vs gain k 

 

Figure 5.  Reduced induced charge vs gain k/ wave number  

For increasing positive gain, the curvature becomes more 
pronounced, but the mode amplitude decreases. This is 
confirmed by Fig. 4 where the modal mass are represented vs 
the feedback gain. 

C. Modal Force 

As mentioned, the normalized modes form an orthonormal 
base. Eq (7) can be solved by projection on each mode. The 
forces are then transformed to modal forces.  The mechanical 
load yμ in (7) is uniform, thus, the corresponding modal force 

is proportional to: 
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The amplitude are likely to be larger for high participation 
factor.  Fig. 4 shows that for softening gains, the participation 
factor collapses, while for hardening gain, it remains relatively 
constant. This is similar to the evolution of the modal mass, 
presented on the same graph.  

D. Modal Electromechanical Coupling 

Using the piezoelectric equations (1), the strain field (4) 
and the electrical potential (5), the charges on the electrodes are 
obtained by integrating D on their surface. One obtains for Q1: 
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 (16) can be decomposed into a charge involving the blocked 
capacitance, and a charge induced by the strain in the material 
Qm which is potentially harvested. On Fig. 5 the graphs 

represent the reduced induced charge  
lkflm WQ 1,/   versus 

the feedback gain and the wave number. This quantity is 
proportional to the modal electromechanical coupling [7]. On 
the softening side, the coupling first slightly increasing (due to 
the increased curvature) then rapidly collapses (as the modal 
mass decreases). On the hardening side, the effect is similar, 
because the moment blocks the free end rotation. This in turn 
degrades the electromechanical coupling as it depends on the 
difference of slopes at both ends. 



 

 

Figure 6.  resonance for various experimental feedback gain  

 

Figure 7.  Experimental modal shapes 

 

Figure 8.  Theoretical and experimental wave number vs 

gain k 

IV. EXPERIMENTAL ASSESSMENT 

A. Experimental setup 

The bender used for the experiments is a Noliac CMBP05 
which consists in two bonded cofired monolithic ceramic V2 is 
equal to 200V and v(t) varies from 0 to 200V via the feedback 
loop. The deflexion is sensed using a Hall effect sensor. The 
measurement is integrated, then amplified by an analog 
amplifier (NF HSA 4052) to provide the necessary voltage 
superposed to a bias voltage. Vibrations are generated by a 
vibrating pot. Speed of the mobile is measured by a Polytec 
vibrometer (OFV5000, sensor OFV 505).  

B. Results 

The result for the magnitude (in dB) between the vibrating 
pot’s acceleration and the speed of the bender’s tip is presented 
on Fig. 6 for various gains. The variation range of the gain was 
imposed by the voltage limitation for the hardening side 
(negatives gains) and instability of the closed loop on the 
softening side (positive gains) due to the bifurcation of the 
wave number as k approaches 1. As a consequence, the closed 
loop gain’s sign changes with the inversion on the free end 
slope inducing a positive feedback. The resonant frequency can 
be shifted from 225 Hz to 410 Hz. The short circuit resonance 
is obtained by setting G=0 (fcc=329 Hz), therefore the 
percentage of variation (fcl-fcc)/fcc is -32% to 25%. For high 
positive values of k, non linearities become prominent because 
the feedback compensates the linear elasticity of the material.  

The shapes were measured for some frequencies and 
compared to the predicted ones using (14) on Fig. 7. Since the 
amplitude is irrelevant, the graphs are scaled. The agreement 
between measurement and prediction confirm that the modal 
analysis is correct. To further assert the model, the measured 
and theoretical wave numbers are compared on Fig. 8. Again, a 
good agreement can be observed. 

V. CONCLUSION 

An analysis of a bender using a feedback for broadband 
harvesting has been proposed. The shifting of the resonant 
frequency is indeed possible within a range that was identified. 
However, it was shown that the potential benefit is in fact 
limited even though losses have not been considered in the 
study. Regarding softening, the mode are less easily excited by 
a uniform load that would result from the acceleration, this 
suggests a different shape of the bender   for instance a varying 
section. Regarding hardening, as the bending moment tends to 
block the rotation at the free end, the coupling is degraded. 
Tests have confirmed these conclusions, although the electrical 
coupling could not be directly investigated due to the difficulty 
to measure the motional current. This point will be addressed 
in future works. 
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