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Abstract. Stress in piezoelectric material can be controlled by imposing the electrical

field. Thanks to a feedback, this electrical field can be a function of some strain related

measurement so as to confer to the piezoelectric device a closed loop macroscopic

behaviour. In this paper we address the modelling of such system by extending the

modal decomposition methods to account for the closed loop. To do so the boundary

conditions are modified to include the electrical feedback circuit, hence allowing a

closed-loop modal analysis. A case study is used to illustrate the theory and to validate

it. The main advantage of the method is that design issue such as coupling factor of

the device and closed loop stability are simultaneously captured.

1. Introduction

Piezoelectric devices are intrinsically suited for closed loop structure due to their

reversibility: they can be actuators and sensors. It is therefore sensible to modify the

dynamic of such a device by feeding back the strain state using the direct piezoelectric

effect. Then, applying a voltage depending on this measured strain state, it is therefore

possible for instance to confer a modified compliance to the system or increase dissipation

in an assigned frequency band. This is the basic idea to many applications where

frequency control or damping is required especially in the case of collocated structure.

In (Moheimani, Fleming and Behrens 2003) or (Fairbairn and Moheimani 2013) for

instance, a feedback model is used to modify the damping of structures with different

strategies. As a prerequisite to apply the methods though, the frequency response of

the mechanical structure must be identified. In (Preumont, de Marneffe, Deraemaeker

and Bossens 2008), Preumont et al. address the problem of controlling the vibrations of

large trusses. A quasi-static model of the actuator was considered, because in this case

the dynamic of the piezoelectric actuator was much faster than the one of the controlled

structure. This assumption cannot hold in some cases e.g MEMS or energy harvesters.

Indeed, in this later cases, the overall dynamic must be accounted for since the resonance

is the key issue (Dutoit, Wardle and Kim 2005, Lavrik, Sepaniak and Datskos 2004).

Moreover, it is also a well known fact that the coupling factor, is inherent to the overall

feedback structure and the design of the actuator (Preumont 2005). Therefore, the

designer should consider a comprehensive approach in order to take into account the

dynamic of the piezoelectric actuator in the case of the closed loop structure. Of course,

the model is crucial in this context.

Literature on the subject of piezoelectric actuators modelling is abundant, concentrating

on fine quasistatic modeling (Smits and Choi 1991, Goldfarb and Celanovic 1997)

or dynamic operation near a specific resonance (Mason 1935, Ballas 2007). When

addressing broadband operations, one has to consider several modes (Meirovitch 2003).

Therefore, modal decomposition is a natural and widely used tool (Erturk and

Inman 2009, Ducarne, Thomas and Deü 2012). The approach consists in finding the

modal shapes for a given electrical condition (open circuit or short circuit, the later

being the most used) where the electric field or charge can be eliminated. These modal
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Figure 1. Schematic of the system

shapes are used to form a orthonormal basis on which any response can be decomposed

(Meirovitch 2003, Geradin and Rixen 2014). Moreover, in some cases, the modal shape

have analytical expressions that are helpful to deduce design rules (Ducarne et al. 2012).

Even for more complex geometry, modal shapes of known simpler structures can be used

to model the dynamic (Erturk 2012). However, since the initial analysis is performed in

open loop, many modes may be necessary to model the closed loop response since the

resonant frequencies may be modified. Thus, the insight can be lost, and in practice the

accuracy of the design is dependent on the number of modes that are considered.

In this paper, we show that the modal analysis method can be generalized to take into

account the closed loop. The remainder of the paper continues as follows. Section

2 recalls the modeling of a clamped-free beam equipped with a sensor to provide

feedback possibilities. Section 3 introduces the extension of the modal analysis in

closed loop. We show that the boundary conditions can be modified to incorporate

the effect of the feedback as moments dependent on the measurement. By properly

dividing the contribution of the feedback induced moment into dissipative or generative

(active power) and non-dissipative (reactive power) contributions, we prove that modal

projection on a closed loop modal basis is possible. Section 4 presents experimental

results to illustrate the approach and validate the prediction of a model based on the

theory developed.

2. Modal analysis of a bender

2.1. Assumptions and notations

The schematic of Fig 1 depicts a simplified model of a slender beam used in this paper.

The bender is mechanically excited at one end, and a feedback is used to modify its

dynamic behaviour. In the following, the overall feedback circuit will be modelized as

an amplifier and a series impedance so as to take into account simple filtering circuits.

Regarding the mechanical modelling, the problem is supposed to be two dimensional in

the sense that the different field are not dependent on x2. The bender is constituted

by two piezoelectric layers polarized to operate on a 31 coupling. The end at x1 = 0

is clamped to the moving frame while a proof mass M is clamped at the free end at

x1 = l. The moving frame is translated along the direction e3, its position relative to
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the reference frame is y(t). The bender is supposed to be mechanically unloaded, apart

from the effect of inertia.

The electrodes are connected as shown. In practice, as will be explained later, voltage

V2 is fixed while the voltage V1 is varied. We consider small displacements and since

the electrodes impose equipotentials, it will also be assumed that the electrical field is

mainly along the e3 direction. In the following, the voltage V1(t) is generated from the

measure of the free tip of the bender w,1(L, t).

Van-Voigt notation for tensors will be used in this paper. x⊤ is the transpose of vector

x. Matrices will be indicated by brackets e.g
[
cE

]
is the matrix of compliances at fixed

electrical field. f,ij denotes the partial derivative with respect to space variables xi,xj ,

a repeated index denotes repeated partial derivative with respect to one of the space

variable. Finally ḟ denote time derivative of the function f .

2.2. Model

2.2.1. Piezoelectric law for the following discussion, it is convenient to consider

displacement and voltage to formulate the problem thus the relevant piezoelectric

equations used throughout this paper are (Ikeda 1996) :

{

T =
[
cE

]
S − [e]t E

D = [e]S +
[
ǫS
]
E

(1)

with [e] the piezoelectric coefficient matrix and
[
ǫS
]
the permittivity at fixed strain

matrix. T, S are the stress and strain tensor, E, D are the electric and electrical

displacement fields. The corresponding thermodynamic potential then writes (Tiersten

1969) :

dG2(S,E) = TdS−DdE (2)

2.2.2. Kinematic of the model The bonding of the layers is supposed to be perfect,

thus a continuous displacement field is considered. In this study shear strains are not

considered the bender being thin and the frequencies being low. Thus a Euler-Bernouilli

displacement field is used, given by (W. Weaver, Timoshenko and Young 1990, Geradin

and Rixen 2014) :

u(x1, x3, t) =







u1(x1, x3, t) = u(x1, t)− x3w,1(x1, t)

u2(x1, x3, t) = 0

u3(x1, x3, t) = w(x1, t) + y(t)

(3)

Which results in the strain field :

S = {u,1(x1, t)− x3w,1(x1, t), 0, 0, 0, 0, 0}⊤ (4)
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2.2.3. Electrostatic solution Considering the electrical displacement D, the condition

divD = 0 must hold. It is assumed that the layers are thin along e3 compared to

the dimensions in the other directions. Moreover, the potentials are imposed on the

electrodes located on the horizontal sides of the bender, hence it is assumed that

E3 ≫ E1 and E3 ≫ E2. Let d ∈ {a, b} denotes the considered sub domain relative

to the layers, then for each layer the electric field is given by E = −grad(φd). Using

the (4) and (1), and neglecting the influence of the electric field along e1 and e2, this

condition reduces to :

Dd3,3 = 0 ⇔ −e31w,1(x1, t)− ε33φd(x1, x3, t),33 = 0 (5)

Integrating two times with respect to x3 gives the expression of the electrical potential φd

in one layer of the bender which should write (Nadal, Giraud-Audine, Giraud, Amberg

and Lemaire-Semail 2014) :

φd(x1, x3, t) = −e31
ǫS33

w,11(x1, t)
x23
2

+ Ad(x1, t)x3 +Bd(x1, t) (6)

The functions Ad(x1, t),Bd(x1, t), are functions to be determined from the equipotential

conditions at the electrodes :

layer(a)
φa(−h) = 0

φa(0) = V1
layer(b)

φb(0) = V1

φb(h) = V2
(7)

2.2.4. Dynamic equations The augmented Lagrangian of the piezoelectric energy

harvester is given by :

L =
1

2

∫∫∫

ρu̇t(x1, x3, t)u̇(x1, x3, t)−G2(x1, x3, t)dΩ+

1

2
M u̇(l, 0, t)tu̇(l, 0, t) + V1Q1 + V2Q2 + Fy (8)

where the four last contributions correspond respectively to the kinetic energy of the

proof mass M , the energy supplied by the two generators, and the mechanical energy

due to the external force applied for the mechanical excitation.

Applying variational calculus to the Lagrangian (8) leads to the equations of the

problem (Hammond 1981). The internal mechanical equilibrium involves the following

equations for the extension and the flexion displacement field respectively :

−Mü(x1, t) +Ku,11(x1, t) = 0 (9a)

−M (ẅ(x1, t) + ÿ(x1, t)) + J ẅ,11(x1, t)−Dw,1111(x1, t) = 0 (9b)

where :

• M is the mass per unit length
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• J is the rotational inertia per unit length

• K is the compressive rigidity

• D is equivalent the flexion rigidity

The mechanical boundary conditions at the free end are :

Ku,1(l, t) = −NexV2(t) (10a)

Dw,11(l, t) = Nfl

(

V1 −
V2

2

)

(10b)

Dw,111(l, t)−J ẅ,1(l, t) =Mẅ(l, t) +Mÿ(t) (10c)

where the electromechanical conversion coefficient for extension and bending are

respectively :

Nex = e31a (11a)

Nfl = e31ah (11b)

At the other end of the bender, the displacement are supposed to be perfectly imposed,

hence :

u(0, t) = 0 (12a)

w(0, t) = 0 (12b)

w,1(0, t) = 0 (12c)

The electrical charges can be deduced from :

Q1(t) = CS(2V1 − V2)−Nfl [w,1(x, t)]
l

0 (13a)

2Q2(t) +Q1(t) = CSV2 −Nex [u(x, t)]
l

0 (13b)

with CS =
ǫS33al

h
(13c)

CS is the clamped capacitance.

3. Theoretical study

The study will consider the case when V2 is constant, which is necessary in practice to

apply a compressive prestress in order to avoid excessive tensile stress during bending.

Therefore, the displacement field u(x, t) is static since the extension and flexion fields

are decoupled as can be deduced from the previous equations. Besides,without loss of

generality, the frequency range considered is supposed to be sufficiently low to neglect

the rotational inertia effects in (9b) and thus they will not be considered.

The equilibrium (9b) with the boundary conditions (10b), (10c), (12b) and (12c) are

used for the modal analysis of the bender. To do so, the system is supposed to be free,

hence every independent sources of the system are cancelled. This implies that for the
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mechanical side, y(t) must be set to zero.

At a considered resonant angular frequency ω, the solution to (9b) is :

w(x1, t) = ψ(x1)η(t) (14)

where ψ(x1) is the modal shape written as a linear combination of the Duncan functions

(see appendix Appendix A) :

ψ(x1) =
[

As1

(

β
x1

l

)

+Bc1

(

β
x1

l

)

+ Cs2

(

β
x1

l

)

+Dc2

(

β
x1

l

)]

(15)

and η(t) is the vibration :

η(t) = η sin (ωt+ α) (16)

Moreover the dispersion condition is :

Dβ4 −Mω2l4 = 0 (17)

The problem can be simplified further thanks to (12b) and (12c) :

A = B = 0

We proceed in the following by modifying the boundary condition (10b) to include the

feedback effect.

3.1. Electrical equations

The electrical circuit that filters and amplifies the measurement signal is now introduced.

Assuming a linear circuit, a Thévenin equivalent circuit is considered. We restrict the

study to case when the voltage source is proportional to the measured signal‡ :

vc(t) = Gcw(l, t) (18)

where Gc is the sensor gain possibly followed by an amplification. For the purpose of

the study, we substitute V1 = V2

2
+ v in (10b) and (13a). It reflects the fact that the

bending moment is actually controlled by disturbing the middle plane voltage from the

value it would normally have in a pure extension case. Since in the following harmonic

oscillation will be studied, the various variables are expressed using complex vectors.

Then, the displacement w(x1, t) writes § :

w(x1, t) → w(x1, t) = ψ(x1)η(t) = ψ(x1)ηe
jωt

with η = ηejα. Furthermore, equations will be written in a rotating frame so that the

ejωt can be dropped, and for shorthand : W ,1... = ψ,1...(L)η.

‡ A more general case involves a frequency dependent measure voltage. However, since there are no

fundamental differences in the outline of the demonstration, this simpler case is considered.

§ x denote a complex number, and j =
√
−1.
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Let Z = N(jω)
P (jω)

be the equivalent series impedance of the Thévenin equivalent generator,

the equations of the circuit are :

i =
vc − v

Z
(19a)

jCSωv = i+ jωNflW ,1 (19b)

The second equation is deduced by time derivation of (13a). According to (13a) and

(10b), v and vc can be expressed in terms of displacement or derivatives of displacement.

Writing that P (jω) =
∑
pk(jω)

k and N(jω) =
∑
nk(jω)

k k ∈ N
+, equations (19a),

(19b) and (10b) can be combined, resulting in the following equation :





deg(P )
∑

k=0

CSpk(jω)
k+1 +

deg(N)
∑

k=0

nk(jω)
k



DW ,11+

κ2fl

deg(P )
∑

k=0

pk(jω)
k+1W ,1 − κflGc

deg(N)
∑

k=0

nk(jw)
kW = 0 (20)

For the sake of clarity, the condition n0 6= 0 is assumed. In this case, the previous result

can be reformulated as :

DW ,11 = R(jω)W ,11 + S(jω)W ,1 + T (jω)W (21)

where R(jω) = −∑deg(P )
k=0

Cspk
n0

(jω)k+1 − ∑deg(N)
k=1

nk

n0

(jω)k, S(jω) = −κ2

fl

n0

P (jω) and

T (jω) =
κfl

n0

N(jω) are polynomials. This defines the new boundary condition for the

bending moment including the closed loop. For the following discussion, rewrite the

previous equation :

DW ,11 = Rd(jω)W ,11 + Sd(jω)W ,1 + Td(jω)W

+ jω
(
Rq(jω)W ,11 + Sq(jω)W ,1 + Tq(jω)W

)
(22)

where Rd(jω), Rq(jω), Sd(jω), Sq(jω), Td(jω) and Tq(jω) are real even polynomials of

ω.

Only the non-dissipative contribution of this condition must be considered for modal

analysis. Multiplying both sides of (20) by the the conjugate of the rotation speed at

the end of the tip (jωW ,1)
∗, gives the complex power transmitted to the bender by the

feedback :

−jωDW ,11W
∗
,1 = −jω

[
R(jω)W ,11 + S(jω)W ,1 + T (jω)W

]
W ∗

,1

Two different contributions should be distinguished :

• imaginary terms, corresponding to real projection on the real axis of the closed loop

bending moment complex vector (therefore leading or lagging in quadrature with

the rotation speed), which are conservative ;
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• real terms, corresponding to imaginary part of the closed loop bending moment

complex vector, which are either dissipative or supplying power.

Since W , W ,1 and W ,11 are in phase, it can be concluded that real parts of R, S and

T (denoted Rd, Sd and Td in the sequel) will contribute to the reactive power, while

imaginary parts (denoted Rq, Sq, Tq) will be responsible for active power .

3.2. Secular equation

For the modal analysis, only the conservative contribution of the system must be

considered. Thus, according to the previous discussion, only the Rd, Sd and Td are

relevant, and thus, after cancelling the η that appear on both sides of the equality sign,

the boundary conditions (10b) and (10c) are rewritten as :

Dψ,11(l) = Rd(ω)ψ,11(l) + Sd(ω)ψ,1(l) + Td(ω)ψ(l) (23a)

Dψ,111(l) = −Mω2ψ(l) (23b)

Using (17) to rewrite these conditions in β, a general secular equation can be obtained

(see Appendix B).

Solving this equation for β = βk gives the resonant frequencies ωk using (17), and once

replaced in (14), the mode shape ψk can be obtained up to a multiplicative constant .

In the usual modal analysis method, the modes are used to decompose the solution to a

given excitation. These mode shapes which already partly include the electrical feedback

are now compared to the classical mode shapes that would arise from considering short

circuit conditions.

3.3. Properties of the closed-loop modal shapes

The closed loop (C.L.) modal shapes can be used to describe the solution to the forced

vibrations problem. Indeed, let the θj(x1) be the normalized open loop (O.L.) modal

shapes of the bender, obtained by replacing the feedback circuit by a short circuit which

verify :

−Mν2j θ
2
j +Dθj,1111 = 0 (24)

where νk are the corresponding modal angular frequencies, for the boundary conditions :

θj(0) = 0 (25)

θj,1(0) = 0 (26)

Dθj,11(l) = 0 (27)

Dθj,111(l) = −Mν2j θ(l) (28)

(29)

The normalization considered is defined by (Erturk and Inman 2009) :

∫ l

0

Mθ2j (x1)dx1 +Mθ2j (l) = 1 (30)
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Note that the same normalization will be applied to the ψk. The O.L. modal shapes

verify :
∫ l

0

Mθj(x1)θk(x1)dx1 +Mθkθj = δjk (31)

where δjk = 1 if j = k and δjk = 0 if j 6= k. Therefore, the C.L. modal shapes ψk(x1)

can be expressed as :

ψk(x1) =

∞∑

j=1

αkjθj(x1) αkj ∈ R (32)

Since the ψk(x1) depend on the wave numbers {βk} which form and increasing sequence,

it is clear from the expression (15) that :

ψk(x1) 6= ψj(x1) if k 6= j (33)

It follows that the ψk are independent vectors that can be related to a free basis, and

thus can be used also as a basis, that is any response of the bender can be written :

w(x1, t) =
∞∑

k=1

ψk(x1)ηk(t) (34)

The standard procedure to solve the vibration problem involves the projection of the

dynamic equilibrium verified by a modal shape ψk on a modal shape ψj is :

∫ l

0

[Mψk(x1)η̈k(t) +Dψk,1111(x1)ηk(t)]ψj(t)dx1 = 0 (35)

Using part integration, and the boundary conditions (23a) and (23b), the previous

equation for harmonic vibrations (i.e η̈k(t) = −ω2
kηk(t)) is rewritten as follows :

− ω2
k

(∫ l

0

Mψk(x1)ψj(x1)dx1 +Mψk(l)ψj(l)

)

− [Rd(ωk)ψk,11(l) + Sd(ωk)ψk,1(l) + Td(ωk)ψk(l)]ψj,1(l)

+D
∫ l

0

ψk,11(x1)ψj,11(x1)dx1 = 0 (36)

Considering the special case where j = k, and using the proposed normalization

given by (30), the potential energy for the modal shape, including the feedback, verifies :

− [Rd(ωj)ψj,11(l) + Sd(ωj)ψj,1(l) + Td(ωj)ψj(l)]ψj,1(l)

+D
∫ l

0

ψj,11(x1)
2dx1 = ω2

j (37)

The projection of the dynamic equilibrium of mode ψj on mode ψk leads to an equation

similar to (36) where the k and j indexes are swapped. The difference of these equations

would give :
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(ω2
j − ω2

k)

(∫ l

0

Mψk(x1)ψj(x1)dx1 +Mψk(l)ψj(l)

)

+ [Rd(ωj)ψj,11(l) + Sd(ωj)ψj,1(l) + Td(ωj)ψj(l)]ψk,1(l)

− [Rd(ωk)ψk,11(l) + Sd(ωk)ψk,1(l) + Td(ωk)ψk(l)]ψj,1(l) = 0 (38)

Therefore, the C.L. modal shapes are generally not orthogonal in closed-loop for the

functional (35) ‖. Actually, in C.L. the functional should be modified to account for the

electrical equilibrium of the bender and the circuit. Fortunately, this tedious task can

be avoided to solve the forced response due to the feature discussed below.

3.3.1. Response to the forced vibration Indeed, the problem can still be decomposed.

Assuming that the solution can be written as in (34) the projection of the solution on

mode ψj writes :

∫ l

0

[
∞∑

k=1

Mψk(x1)η̈k(t) +Dψk,1111(x1)ηk(t) +mÿ

]

ψj(x1)dx1 = 0 (39)

Isolating the contribution of the jth mode and performing part integration gives :

∫ l

0

[
∞∑

k 6=j

Mψk(x1)η̈k(t) +Dψk,1111(x1)ηk(t)

]

ψj(x1)dx1

+M
∫ l

0

ψj(x1)
2dx1η̈j(t) +D

∫ l

0

ψj,11(x1)
2dx1ηj(t)

− [Rd(ω)ψj,11(l) + Sd(ω)ψj,1(l) + Td(ω)ψj(l)]ψj,1(l)ηj(t)

+ ÿ(t)

∫ l

0

Mψj(x1)dx1 +Mψj(l)
2η̈j(t) +Mÿ(t)ψj(l) = 0 (40)

First integral in this expression is nil because modal shape verify (35), thus it can be

deduced using (30) and (37) that the equation simplifies to :

η̈j(t) + ω2
j ηj(t) = −φj(t) (41)

with the modal inertia forces :

φj(t) =

(∫ l

0

Mψj(x1)dx1 +Mψj(l)

)

ÿ(t) (42)

These equations allow to calculate the modal shapes, the resonant frequencies as well

as the coupling factors. However, to be able to predict the vibration amplitude, it is

necessary to include the active effects of the electrical circuit.

‖ This depends on the feedback law : for instance, it can be easily deduced from (38) if the feedback

is proportional to the derivative of the displacement w
,1(l, t), orthogonality property is retrieved for

Z = 1
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Figure 2. Experimental setup : (1) bender with a magnet and proof mass fixed at

the end; (2) Hall sensor; (3) shaker; (4) accelerometer

3.3.2. Active effects of the electrical circuit It remains to take into account the effect

of the sources introduced by the feedback. Equations (21) and (22) show that the odd

powers of the polynomials R(jω), S(jω) and T (jω) (that is Rq, Sq and Tq) can either

dissipate or provide power. The procedure is the same, that is assuming the solution

(34), the dynamic equation is projected onto a mode ψj . However, the general boundary

condition for moment is now considered :

Dw,11(l, t) = Rdw,11(l, t) +Sdw,1(l, t) + Tdw(l, t)

Rqẇ,11(l, t) +Sqẇ,1(l, t) + Tqẇ(l, t) (43)

where Rd, Sd, Td, Rq, Sq, and Tq are the linear differential operators with respect to

time corresponding to the ω polynomials defined in (22).

The modal equations are then :

η̈j(t) + 2ξωj η̇j(t) + ω2
j ηj(t) = −φj(t)−

∞∑

k=1

φjk(t) (44)

In the previous equation the modal damping ξ has been introduced (Geradin and

Rixen 2014). A cross coupling between modes appears with the contributions φjk(t)

given by :

φjk(t) = [Rqη̇k(t)ψk,11(l) +Sqη̇k(t)ψk,1(l) + Tqη̇k(t)ψk(l)]ψj(l) (45)

4. Experimental validation

4.1. Experimental setup

A picture of the experimental set up is reproduced in Fig. 2. The co-fired multilayer

bender is a Noliac CMBP05 (NOLIAC 2011). The material is NCE57. The main spec-

ifications are summed up in tab. 1, and were used for the model that is discussed
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ǫT
33

ǫ0
1800 - Relative dielectric constant

tanδ 170.10-4 - Dielectric loss factor

−d31 170.10-12 C/N Piezoelectric charge constant

k31 0.33 - Electromechanical coupling factor

ρ 7.7.103 kg.m3 density

sE11 17.10-12 m2/N elastic compliances

Q 70 - Mechanical quality factor

Table 1. Characteristics of NCE 57 piezoelectric material

hereafter. The bender is clamped on one side fixed on a vibrating pot. On the other

side, a magnet is fixed (weight 0.8 g) and for some test a tungsten mass can be fixed. The

magnet is used to measure the end tip displacement thanks to a Hall sensor. This sensor

was calibrated using a laser sensor (Polytec OFV 505), the sensitivity was estimated

to 8.3 mV/µm. The feedback is realized by amplifying the displacement measure using

operational amplifier to select the gain by combining resistors then a power amplifier

(NF HSA 4051) is used to post amplify with gains of 20 and 40, resulting in supply

voltages varying from 0 to 250 V. An accelerometer is fixed on the moving frame. In

order to establish the frequency responses of displacement, a dynamic signal analyser

(Stanford Research SR 785) is used. Finally, electrical measurements (voltage, current,

acceleration and displacement sensors output) are realised using an oscilloscope (Tek-

tronik TDS 3014).

4.2. Case study : effect of a position feedback and output series resistance on the

closed-loop resonance

4.2.1. Model For practical reasons, a series resistance was implemented. Indeed, sensor

noise are amplified in the closed loop exciting higher resonances, and can even become

destabilising. To prevent this, the resistance was initially introduced to constitute in

combination with the capacitance CS low pass filter.

To address the effects of this resistance, since Z = Rs, the following polynomials are

considered :

N = Rs (46a)

P = 1 (46b)

Then the condition (43)is :

w,11(l, t) =
Nfl

D Gcw(l, t)− τẇ,11(l, t)−
N 2

fl

DRẇ,1(l, t) (47)
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Figure 3. Theoretical effect of the normalised feedback gain k on the wave number β
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Figure 4. Theoretical effect of the normalised feedback gain k on the modal shapes

with τ = RsCS. So, for this simple case :






Rdw,11(l, t) = 0

Sdw,1(l, t) = 0

Tdw(l, t) = NflGcw(l, t)

and







Rqẇ,11(l, t) = −τDẇ,11(l, t)

Sqẇ,1(l, t) = −N 2

fl

Rs
ẇ,1(l, t)

Tqẇ(l, t) = 0

4.2.2. Mechanical resonance As far as the effect of the feedback on resonance is

concerned, only Tdw(l, t) has to be considered. For the sake of generality, the variable

change ζ = x
l
is introduced. The plot of β against the normalized gain k =

NflGcl
2

D
(fig.

3) then depicts the effect of this feedback on the modal shapes (see fig 4 for the case of

the first mode), and thus on the resonance frequencies for various mass ratio µ = M
M

:

• k > 0 reduces β, that is it decreases resonance frequencies, thus it can be assimilated

to a softening in the sense that it acts as if the rigidity of the bender was less than

in open-loop. The effect is rather drastic as for k = 1 the first mode will become

unstable due to buckling.

• On the contrary, k < 0 increases β, although rather progressively, so a hardening

is induced by the closed loop. Asymptotic analysis shows that for the first mode

limk→∞ β = π

The theoretical (solid and dashed lines) and measured (cross and dots) wave number

are compared for some values of the normalized gain k on fig. 5. Theoretical
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k

values of β are obtained using the secular equation discussed in Appendix B.

The normalized gain are calculated using the theoretical expression of k, the

manufacturer coefficients of tab. 1, the values of the feedback gains of the

amplifier circuit (set to Gc = {−40,−26,−20,−13, 0, 13, 20, 26, 40}. Taking into

account the gain of the sensor and the flexion rigidity, the reduced gain were k =

{−1.13,−0.74,−0.57,−0.37, 0, 0.37, 0.57, 0.74, 1.13}.The experimental values of β are

deduced from the measured resonance frequencies. Two values of the tip mass to bender

mass ratio µ were considered (µ = {0.06, 0.54}). The experimental results are in good

agreement with the theoretical prediction.

The effects of the closed loop on the dissipation are now examined. Due to the variation

of β with respect to k, the modal shape ψj are modified, and therefore so are the modal

forces φj (42). This is depicted on fig. 6 (top) for the two first modes. Moreover,

they affect the modal damping as can be seen in relations (44) and (45). In this case,

assuming that the cross coupling of the modes is negligible near the mode resonance

since the considered mode dominates, it is possible to express the closed loop damping

factor as follows :

ξ′j = ξj −
1

2
(rqψj,11(l) + sqψj,1(l))ψj,1(l)

where :

rq = −τD
l3

and sq =
Rκ2fl

l2

The curves of the damping versus k for the case µ = 0.06 are presented on fig. 6 and it

can be seen that the feedback has a clear impact especially on the first mode. Note that

to obtain these curves. The O.L. damping was estimated form the O.L. quality factor

on the frequency response. For both modes, the damping vanishes as the gain tend to

low values, which indicate a possible instability. The predicted resonance curve of the

tip vibration amplitude and phase shift at imposed acceleration are depicted on fig. 7.

The model prediction are in good agreement with the experiment as for the resonance

amplitudes and frequencies. Still, some discrepancies can be found as the experimental

resonance curves are non symmetric, especially for low values of damping. Tests showed

that the resonance curves are different for increasing and decreasing frequency sweeping
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Figure 6. Theoretical dependence of the modal forces (top) and of the closed loop

damping coefficients (bottom) on the normalised gain k for different values of µ

and presents amplitude jumps, which is typical of piezoelectric (soft Duffing resonance).

This is out of the scope of the model, and the tests presented on fig. 7 are obtained

for a decreasing frequency sweep and small acceleration amplitude (0.5 g). Damping is

also correctly estimated, in the limit of the model. In fig. 8 prediction of the ampli-

tude are compared to experience (top). Furthermore, predictions of the model taking

into account the damping introduced in closed loop by the electrical circuit are com-

pared to prediction including only the mechanical (O.L.) damping (bottom). It clearly

illustrates the combination of both modal forces and damping in closed loop. It can be

noted that as predicted the system is close to instability as the feedback gain approaches

high positive values and the bode diagram cannot be plotted due to noisy measurements.

4.2.3. Current at resonance Finally, fig. 9 compares the measured and predicted

currents delivered by the amplifier to the piezoelectric device at the mechanical

resonance frequencies. The theoretical current is obtained by replacing the expression

of the derivative of the displacement into (13a) and performing a time derivation :

i1(t) = Q̇1(t) = 2CSV̇1 − κflẇ,1(L, t)
︸ ︷︷ ︸

motional current

Again, the results are in good agreement. Additionally, the motional current is

represented to illustrate the effect of variation of β due to k that results in an inflexion

of the motional current curve when the resonant frequency increases.
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5. Conclusion

This paper proposes an alternative modal decomposition so as to study the effects of

feedback on the dynamic of a piezoelectric device. The method is general and consists

in the following steps :

• the boundary conditions of the dynamic equation of the system are modified

to include directly the feedback as written in (21). Two contributions can be

distinguished : reactive (non dissipative) terms depending on even time derivatives

of the displacement or spatial derivative of the displacement, active terms depending

on odd time derivative of the same functions.

• a modal analysis, consisting in solving the partial derivative equations when the

dissipative terms are cancelled. This results in a set of modal shapes (closed

loop modal shapes) that presents some properties similar to the classical modal

decomposition : the equation of motion can still be projected to form a infinite

system of independent equations depending solely on time.

• finally, the dissipative contribution are included as external sources and the solution

is then written as a decomposition on the closed loop modal basis.
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The method has been applied to a simple set up that allows to derive the solutions

and has been validated against experimental results. The benefit of the approach is to

consider the closed loop system as a whole system and represent the electromechanical

interaction including the control. The classical modal decomposition, obtained by

considering the short circuited resonance, can also be used to obtain this but the

truncation of the projected solution is still the key to the accuracy of the model near a

resonance of the closed loop system. In contrast, the proposed method can efficiently

model the dynamic with a few modes. Moreover, some issues such as stability or energy

consumption can be directly addressed. Therefore, the expected benefits of the method

are in the field of design or control of devices where the decoupling of the mechanical

structure dynamic and the piezoelectric device is not verified e.g energy harvesters such
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as the one used here, or atomic force microscope tips.
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Appendix A. Duncan functions

Duncan functions are defined as :

si(x) = sinh(x) + (−1)i sin(x) (A.1a)

ci(x) = cosh(x) + (−1)i cos(x) (A.1b)

with i ∈ {1, 2} They verify the property :

s1,1111 = c1,111 = s2,11 = c2,1 = s1

Appendix B. Expression of the secular equation

Defining :

R′
d(β) = Rd

( D
M

β4

l4

)

, S ′
d(β) = Sd

( D
M

β4

l4

)

,

T ′
d(β) = Td

( D
M

β4

l4

)

the secular equation is obtained after some calculus :

[

(D − R′
d(β))

β2

l2
s1(β)− S ′

d(β)
β

L
c2(β)− T ′

d(β)s2(β)

]

[s2(β) + µβc2(β)]−
[

(D −R′
d(β))

β2

l2
c1(β)

−S ′
d(β)

β

L
s1(β)− T ′

d(β)c2(β)

]

[c1(β) + µβs2(β)] = 0 (B.1)

Appendix C. references

Ballas, R. G.: 2007, Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior

and Aspects of Sensor Integration, Springer Science & Business Media.
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