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Exact Sparse Approximation Problems via
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Sébastien Bourguignon, Jordan Ninin, Hervé Carfantan, and Marcel Mongeau, Member, IEEE

Abstract—Sparse approximation addresses the problem of
approximately fitting a linear model with a solution having as few
non-zero components as possible. While most sparse estimation
algorithms rely on suboptimal formulations, this work studies the
performance of exact optimization of `0-norm-based problems
through Mixed-Integer Programs (MIPs). Nine different sparse
optimization problems are formulated based on `1, `2 or `∞
data misfit measures, and involving whether constrained or
penalized formulations. For each problem, MIP reformulations
allow exact optimization, with optimality proof, for moderate-size
yet difficult sparse estimation problems. Algorithmic efficiency of
all formulations is evaluated on sparse deconvolution problems.
This study promotes error-constrained minimization of the `0
norm as the most efficient choice when associated with `1 and
`∞ misfits, while the `2 misfit is more efficiently optimized
with sparsity-constrained and sparsity-penalized problems. Then,
exact `0-norm optimization is shown to outperform classical
methods in terms of solution quality, both for over- and under-
determined problems. Finally, numerical simulations emphasize
the relevance of the different `p fitting possibilities as a function
of the noise statistical distribution. Such exact approaches are
shown to be an efficient alternative, in moderate dimension,
to classical (suboptimal) sparse approximation algorithms with
`2 data misfit. They also provide an algorithmic solution to
less common sparse optimization problems based on `1 and
`∞ misfits. For each formulation, simulated test problems are
proposed where optima have been successfully computed. Data
and optimal solutions are made available as potential benchmarks
for evaluating other sparse approximation methods.

Index Terms—sparse approximation, `0-norm-based problems,
optimization, mixed-integer programming, deconvolution

I. INTRODUCTION

A. Sparse estimation for inverse problems

The problem of sparse representation of data y ∈ RN in
a dictionary H ∈ RN × RQ consists in finding a solution
x ∈ RQ to the system y = Hx with the fewest non-zero
components, i.e., with the lowest sparsity level. In sparse
approximation, in order to account for noise and model errors,
the equality constraint is relaxed through the minimization
of the data misfit measure ‖y −Hx‖, where ‖·‖ generally
stands for the standard Euclidean norm in RN . Such sparsest
representation and approximation problems are essentially
combinatorial. Finding the best K-sparse solution (the so-
lution with K non-zero components) is usually considered
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too difficult in practical large-scale instances. Indeed, the
brute-force approach that amounts to exploring all the

(
Q
K

)
possible combinations, is computationally prohibitive. In the
abundant literature on sparse approximation, much work has
been dedicated to the relaxation approach that replaces the `0-
“norm” sparsity measure, ‖x‖0 := Card{i |xi 6= 0}, with the
`1 norm ‖x‖1 :=

∑
i |xi|. Many specific convex optimization

algorithms have been proposed in the past decade, see for
example [1], [2]. In addition, conditions were established
for which both the `0 and the relaxed `1 problems yield
the same solution support (the set of non-zero components).
These mostly rely on a low sparsity level assumption and
on structural hypotheses on the matrix H, such as low
correlation of its columns (see [1] and references therein).
Alternatively, greedy algorithms build a sparse solution by
iteratively adding non-zero components to an initially empty-
support solution [3], [4], [5]. More complex forward-backward
methods [6], [7] may show better performance in practice but
with higher computation time. Tree-search-based methods also
try to improve the classical greedy algorithms using heuristics
to reduce the complexity of exhaustive combinatorial explo-
ration (see e.g., [8] and references therein). Other support
exploration strategies maintain the desired sparsity level at
each iteration, and perform local combinatorial exploration
steps [9]. Optimality proofs for all such strategies also rely
on very restrictive hypotheses [10], [11]. More “`0-oriented”
approaches were proposed, e.g., by successive continuous
approximations of the `0 norm [12], by descent-based Iterative
Hard Thresholding (IHT) [13], [14] and by penalty decompo-
sition methods [15]. However, without additional assumptions
on H, one can only prove that the solution found is a local
minimum of the optimization problem. Moreover, for IHT,
optimality conditions suffer from the same restrictions as the
aforementioned greedy methods [13], [14].

In many inverse problems, the model y ' Hx results
from the discretization of an intrinsically continuous physical
model. A typical example is sparse deconvolution, where Hx
models the convolution of a spike train (in one-dimensional
signals) or of point sources (in imaging problems) by the
impulse response of the acquisition device [7], [16], [17]. A
similar problem concerns nonlinear parameter identification,
where parameters are discretized on arbitrarily thin grids [7],
[18], [19] and estimation amounts to finding a sparse solution
to a linear problem of high dimension. In such cases, the
columns of H can be highly correlated, so no optimality guar-
anty can be obtained for greedy and `1-norm-based methods.
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Similar problems also arise for variable selection in machine
learning and statistics [6], where the set of features (the
columns of H) is not designed to satisfy any recovery property.

The aforementioned problems essentially focus on the cor-
rect estimation of the support of x. In deconvolution, for
example, support identification corresponds to detection and
localization of the sources. Since the true sparsity measure
is indeed the `0 norm, a global optimum of `0-based for-
mulations is more likely to yield exact support identification
than approximate solutions. Consequently, our interest focuses
on optimization methods for `0-norm-based criteria provid-
ing optimality guarantees. Such exact approaches are usually
discarded, based on the argument that sparse optimization
problems are NP hard [20]. It is also commonly considered
that exact optimization amounts to combinatorial exploration
of all possible supports, which is nothing but a worst-case-
scenario argument. Note however that, in order to reduce the
number of explored supports, Tropp and Wright [1] mentioned
the possible use of cutting-plane methods, which are one of
the basic elements of resolution of the mixed-integer programs
explored in the present paper.

Here, we focus on sparse optimization occurring in certain
inverse problems with moderate size yet with a complexity suf-
ficient to make the usual methods fail in estimating the sparsest
solutions. Examples include spike-train deconvolution in ultra-
sonic nondestructive testing (NDT) [16] or Geophysics [17],
sparse hyperspectral unmixing [21], and spectral analysis with
short data sets [22]. A first objective of this contribution is
to show the viability of exact resolution approaches for such
problems.

B. Global optimization via Mixed-Integer Programming

We focus on Mixed-Integer Programs (MIP), that is, op-
timization problems involving both continuous and integer
variables. Such problems are well suited to `0-norm-based
optimization, since the `0 norm naturally introduces a binary
decision variable for each component (zero or non-zero?).
In this paper, MIP refers to the minimization of linear or
quadratic criteria subject to linear or quadratic inequality
constraints. It is commonly claimed that, in the past fifteen
years, a factor 109 was gained in the required computing time
for solving such problems. This gain is due in (roughly) equal
parts to (i) hardware improvement, (ii) progress in the resolu-
tion of linear programs, and (iii) implementation efficiency of
advanced mathematical techniques [23]. Therefore, as it will
be shown in this paper, some exact approaches can now be
advantageously used to address the moderate-size, yet difficult,
applications enumerated at the end of Section I-A.

To our knowledge, the first MIP reformulation of a sparse
optimization problem is proposed in [24]. However, the au-
thors argue that the assumption that |x| is upper bounded,
which is required for the MIP reformulation, leads to com-
putational inefficiency. Therefore, they choose to consider
only a related problem: the maximum feasible subsystem
problem, for which exact solutions can be found only for
very small instances (N = 16, Q = 32) and no result is
given concerning the MIP approach. A similar formulation

with binary variables appears in [25], but binary variables are
replaced by continuous variables in [0, 1] in order to yield
a convex problem, which is obviously not equivalent to the
original one. In [26], some exact and approximate reformula-
tions of `0-based problems are surveyed. The authors deplore
the inherent combinatorial difficulty of such MIP problems
but no practical result is provided. Finally, in [27], noise-
free sparse representation problems are formulated as MIP.
Here, we address the noisy case, which opens perspectives to
different possible formulations of the optimization problem.
Establishing MIP reformulations for such problems, studying
their computational efficiency, investigating properties of opti-
mal solutions and comparing them with the results of standard
methods are the core of this paper.

C. Objectives of the paper

This paper shows that different possible reformulations
of sparse approximation problems can be tackled by MIP
solvers. Sparse approximation is intrinsically a bi-objective
optimization problem, where both the sparsity measure and
the data misfit measure are optimized. In inverse problems, it
is usually formulated through the optimization of a weighted
sum of the two terms. However, constrained formulations
(involving one criterion to be minimized and the other subject
to a constraint) may also be well suited to MIP reformulations,
which are constrained programs by nature. Therefore, we
study the efficiency of MIP solving techniques applied to the
following three formulations:

• minimize the `0 norm under a bounded-data-misfit con-
straint,

• minimize the data misfit under an `0-boundedness con-
straint,

• minimize a weighted sum of the two criteria.

Additionally, we also consider non-quadratic data misfit mea-
sures, which may be appropriate if the error term y −Hx is
non-Gaussian. Moreover, piecewise-linear alternatives to the
`2 norm ‖x‖2 :=

√∑
i |xi|2, may also prove to be more

attractive computationally, because MIPs essentially rely on
the resolution of linear subproblems. In particular, the `1
and `∞ (‖x‖∞ := maxi |xi|) norms are easily linearized;
formulations based on those norms naturally boil down to
optimization problems involving linear inequality constraints
or linear objective functions. Therefore, we also consider
formulations involving `1 and `∞ misfits, for which much
fewer algorithms have been proposed.

Our work establishes MIP reformulations of nine different
sparse approximation problems, which are all evaluated in
terms of computational efficiency, depending on the sparsity
level and on the noise level. Then, these formulations are
compared in their ability to identify the exact support in
the presence of noise, depending on the noise statistical
distribution. Our experimental results additionally show that
the classical methods are far from reaching acceptable results
in such cases, whereas the `0-norm formulations do yield more
satisfactory solutions—but with much higher computing time.
Note that experiments in both [24] and [27] involve random
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matrices, which are more likely to satisfy the conditions ensur-
ing the optimality of `1-norm-based and greedy approaches. In
most ill-posed inverse problems, the columns of H are highly
correlated, so that such conditions certainly do not hold.

The remainder of the paper is organized as follows. Sec-
tion II introduces nine optimization formulations of the sparse
approximation problem, and discusses their statistical inter-
pretation and the structure of the solution sets. MIP refor-
mulations are then established in Section III. Then, basic
elements concerning the resolution of MIP problems are given
in Section IV. Experimental results in Section V are dedicated
to the evaluation of computational costs. Section VI compares
the solutions obtained through MIP optimization with those
of classical sparse approximation algorithms, on both overde-
termined and underdetermined sparse deconvolution problems.
Simulations in Section VII evaluate the support identification
performance of `p-misfit-constrained formulations as a func-
tion of p and of the noise statistical distribution. Finally, a
discussion is given in Section VIII.

II. SPARSE OPTIMIZATION PROBLEMS

In sparse approximation, both the sparsity of the solution
and the fidelity of its corresponding data approximation are
optimized. Therefore, the generic sparse approximation prob-
lem, which we are interested in, is the following unconstrained
bi-objective optimization problem:

min
x

(‖x‖0 , ‖y −Hx‖p), (1)

where p is either 1, 2 or ∞. This section presents nine
formulations of this problem and discusses their statistical
interpretation and the structure of the sets of solutions.

A. Taxonomy

Various mono-objective optimization problems can be for-
mulated to address the bi-criterion problem (1). For p ∈
{1, 2,∞}, the bounded-error problems read

P0/p : min
x
‖x‖0 s.t. ‖y −Hx‖p ≤ αp,

and the sparsity-constrained problems read

Pp/0 : min
x
‖y −Hx‖p s.t. ‖x‖0 ≤ Kp,

where αp and Kp are user-defined threshold parameters.
Finally, the penalized problems read

P0+p : min
x

µp ‖x‖0 + ‖y −Hx‖pp , for p ∈ {1, 2},
and P0+∞ : min

x
µ∞ ‖x‖0 + ‖y −Hx‖∞ ,

where µp and µ∞ are user-defined penalty parameters.
In this paper, we propose a reformulation of each of these

problems as MIPs. To the best of our knowledge, P0/∞ is the
only sparse approximation problem for which a MIP reformu-
lation is mentioned [24]. Remark that the sparse representation
case (noise-free data), which was recently tackled via MIPs
in [27] with equality constraint y = Hx, is the special case
of P0/p with αp set to 0, for which P0/1, P0/2, and P0/∞
are obviously equivalent. Recall that the sparsity-based inverse

problems considered here are sparse approximation problems:
data are always contaminated by measurement noise and the
model may be inexact, so that αp 6= 0.

Choosing one of the nine formulations and the values of
the parameters (αp, Kp or µp) amounts to selecting some
particular solutions among the wide variety of Pareto-optimal
solutions of problem (1). Note that, for a given `p misfit, no
equivalence between the three problems P0/p, Pp/0 and P0+p

can be obtained because the `0 norm is not convex. In par-
ticular, solutions in the non-convex part of the Pareto frontier
cannot be reached by solving the penalized formulation [28].

B. Statistical interpretations and parameter tuning
In practice, one has to choose one among the nine opti-

mization problems and must set a value for the corresponding
parameter. Such choices can be based on statistical arguments.

The `p data-misfit measures, with p ∈ {1, 2,∞}, can be
interpreted in terms of likelihood functions. Let pε be the
statistical distribution of the additive noise term ε = y−Hx.
The likelihood function is defined as: L(y;x) := pε(y−Hx).
If noise samples εn, n = 1, . . . , N are independent and
identically distributed (i.i.d.) according to a centered Gaussian
distribution, then − logL(y;x) is proportional to ‖y −Hx‖22
up to an additive constant. Similarly, − logL(y;x) is pro-
portional to ‖y −Hx‖1 (up to an additive constant) if εn
are i.i.d. according to a centered Laplace distribution. Such
a heavy-tailed distribution assumption may be appropriate in
the presence of impulsive noise [29], [16]. The `∞ misfit is
connected to an i.i.d. uniform noise distribution assumption.
Suppose that ε is uniformly distributed on [−a, a]N , for some
given a > 0. Then, the likelihood function is constant for
any x such that ‖y −Hx‖∞ ≤ a, otherwise it is zero.
Consequently, x̂ = argminx ‖y −Hx‖∞ is a maximum-
likelihood estimator if noise samples are uniformly distributed
on [−a, a], for any a > ‖y −Hx̂‖∞ [30, Ch. 7.1]. In this case,
which arises for example when accounting for quantization
noise, `∞ data fitting may be a relevant choice—see [31] for
both theoretical and numerical arguments.

Consequently, Pp/0 is a sparsity-constrained maximum like-
lihood estimation problem with the aforementioned corre-
sponding noise distribution assumption. In a Bayesian setting,
P0+p defines a Maximum A Posteriori (MAP) estimate, where
the `0 term results from a Bernoulli-Gaussian prior model
with infinite variance Gaussian distribution [7]. Note that,
within such a MAP interpretation, solving P0+∞ reduces
to solving P0/∞. Indeed, since − logL(y;x) is constant if
‖y −Hx‖∞ ≤ a and equals +∞ otherwise, minimizing
µ∞ ‖x‖0−logL(y;x) amounts to minimizing ‖x‖0 subject to
‖y −Hx‖∞ ≤ a. Finally, P0/p considers a maximal tolerance
on the approximation error and cannot be interpreted as a
maximum likelihood or MAP estimation problem.

The choice of the formulation also depends on available
prior information about the considered practical problem. If
reasonable bounds on the acceptable approximation error can
be inferred, e.g., from the knowledge of the signal-to-noise
ratio or from a desired approximation quality, then P0/p may
be preferred. In particular, the parameter αp can be fixed ac-
cording to the statistics of ‖ε‖p, which can be obtained for any
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noise distribution (analytically or numerically). If the sparsity
level is fixed or can be upper bounded, e.g., in a compression
context, then Pp/0 may be appropriate. In P0+p, the parameter
µp trades off between the noise level and the sparsity level.
With the previous MAP interpretation, for p ∈ {1, 2}, it is
an explicit function of the noise variance and of the rate of
non-zero values in the Bernoulli process. Therefore, tuning
µp requires more information than tuning the parameters of
the two other formulations. When too little prior information
is available, a practical solution consists in computing opti-
mal solutions corresponding to different parameter tunings—
whatever the considered formulation—and then selecting a
posteriori the most appropriate one, according to some expert
supervision or to model order selection criteria [32].

C. Structure of the solution sets

We investigate hereafter the structure of the solution sets of
the different problems, for fixed values of the corresponding
parameters αp, Kp and µp. In the following, an optimal
support refers to a set of indices which supports at least one
optimal solution. The `0 norm is a piecewise constant function,
where each value is attained on a finite number of supports.
Hence, for any problem P defined in Section II-A, the set
of minimizers can be defined as the finite union of sets of
minimizers on each optimal support: if S denotes the set of
optimal supports, then:

Arg P =
⋃
s∈S

Arg Ps,

where Ps denotes the restriction of problem P to the support s.
Let us characterize the solution set of Ps. We assume that

the sparsity level of all solutions is lower than N and that
the matrix H satisfies the Unique Representation Property
(URP) [33], that is, any N columns of H are linearly indepen-
dent. For any x supported by s, ‖x‖0 is constant, hence Ps

p/0

and Ps
0+p are solved by minimizing ‖y −Hsxs‖p, where

xs (respectively, Hs) collects the non-zero components in x
(respectively, the corresponding columns of H). Thanks to the
URP, Hs has full column rank and, for p = 2, Ps admits
a unique solution (the least-squares solution). Consequently,
the solution sets of P2/0 and P0+2 are both (finite) unions
of singletons. The `p norms for p = 1 and p = ∞
are not strictly convex, therefore one can only claim that
minxs

‖y −Hsxs‖p is attained on a convex set, such that
Hsxs lies in an `p-sphere in dimension Ks − 1, centered
at y. Consequently, for p = 1 and p = ∞, the solution
sets of Pp/0 and P0+p are (finite) unions of convex sets
of the form

{
‖y −Hsxs‖p = constant

}
. Now, consider

the solution set of Ps
0/p, which is formed by all vectors

xs such that ‖y −Hsxs‖p ≤ αp. In the particular case
where minxs

‖y −Hsxs‖p = αp, it comes from the previous
arguments that the solution set is a singleton for p = 2,
and a convex set for p = 1 and p = ∞. But, in the most
frequent case where minxs

‖y −Hsxs‖p < αp, the solution

set
{
xs

∣∣ ‖y −Hsxs‖p ≤ αp

}
is such that Hsxs lies in an

`p-ball of dimension Ks, centered at y, and the solution set of
P0/p is a finite union of such sets. Consequently, for a given p,

the solution set of P0/p is generally “larger” than the solution
sets of Pp/0 and P0+p. In particular, the minimizers of these
last two problems may be unique. For example, with some
additional assumptions on the data y and on the matrix H, the
solution of P0+2 is unique [34]. On the contrary, the minimizer
of P0/p is certainly not unique, except in very specific cases.

III. MIXED-INTEGER REFORMULATIONS

In this section, we establish the reformulations of opti-
mization problems P0/p, Pp/0 and P0+p for p ∈ {1, 2,∞},
as Mixed-Integer Linear Programs (MILPs), Mixed-Integer
Quadratic Programs (MIQPs) or Mixed-Integer Quadratically
Constrained (linear) Programs (MIQCPs).

A. Definitions of MILP, MIQP and MIQCP

The general form of an MILP is

min
v
cᵀv, subject to (s.t.)


Ainv ≤ bin,

Aeqv = beq,

lb ≤ v ≤ ub,

vj ∈ Z,∀j ∈ I,
where v ∈ RJ is the vector of optimization variables; c ∈ RJ

defines the linear objective function; bin ∈ RPin , beq ∈ RPeq ,
Ain ∈ RPin × RJ and Aeq ∈ RPeq × RJ define the inequality
and equality constraints; lb and ub ∈ RJ are respectively
the vectors of lower and upper bounds of the optimization
variables; I is the index set corresponding to the components
of v that are constrained to be integer-valued.

An MIQP has the general form:

min
v

1

2
vᵀFv + cᵀv, s.t.


Ainv ≤ bin,

Aeqv = beq,

lb ≤ v ≤ ub,

vj ∈ Z,∀j ∈ I,
where F is a J × J matrix.

Finally, the form of an MIQCP that is of interest in this
paper is:

min
v
cᵀv, s.t.
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2
vᵀBv + dᵀv ≤ e,

Ainv ≤ bin,

Aeqv = beq,

lb ≤ v ≤ ub,

vj ∈ Z,∀j ∈ I,
where B is a J × J matrix, d ∈ RJ and e ∈ R.

B. Equivalent reformulation techniques

We now present standard reformulation techniques that
enables to express each of the nine optimization problems
introduced in Section II-A as an MILP, an MIQP or an MIQCP,
without any approximation.
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1) Boundedness assumption and “big-M” reformulation of
the `0 norm: For each q = 1, 2, . . . , Q, let us introduce an
additional binary optimization variable bq, such that

bq = 0⇔ xq = 0. (2)

Then, the non-linear sparsity measure ‖x‖0 is equal to the lin-
ear term 1ᵀ

Qb (=
∑

q bq), where 1Q is the Q-dimensional all-
ones column vector. The logical constraint (2) must however
be translated into (in)equality constraints compatible with MIP,
ideally through linear constraints. One standard way to achieve
this (see e.g. [24], [27]) is to assume that a solution x of the
problem under consideration satisfies the following constraints
for some sufficiently large pre-defined value M > 0:

−M1Q < x < M1Q. (3)

This assumption supposes that the problem admits bounded
optimal solutions, which is not restrictive in our practical
applications. The parameter M has to be large enough so that
‖x̂‖∞ < M at any desirable optimal solution x̂. On the other
hand, the bound M must be as tight as possible in order to
improve computational efficiency; therefore tuning the value
of parameter M may be a critical issue [24]. In the problems
addressed in this paper, satisfactory results are obtained with
a rather simple empirical rule discussed in Section V-B. Note
that specific lower and upper bounds for each component xq
could also be advantageously considered [27] if corresponding
prior information is available.

The reformulations of `0-norm-based constraints and objec-
tive functions are obtained through the two following respec-
tive lemmas.

Lemma 1: Considering the boundedness assumption (3),

‖x‖0 ≤ K ⇔


∃b ∈ {0; 1}Q such that

Q∑
q=1

bq ≤ K, (i)

−Mb ≤ x ≤Mb. (ii)

Proof: The ⇒ implication is straightforward by consid-
ering b defined by Equation (2). Now, let b ∈ {0; 1}Q satisfy
(i) and (ii), and suppose ‖x‖0 > K. From (ii), one has
(bq = 0) ⇒ (xq = 0), that is, (xq 6= 0) ⇒ (bq = 1). Hence
bq = 1 for at least K + 1 indices q, which contradicts (i).
Consequently, ‖x‖0 ≤ K.

Lemma 2: Considering the boundedness assumption (3),

min
x∈F
‖x‖0 ⇔ min

x∈F
b∈{0,1}Q

Q∑
q=1

bq s.t. −Mb ≤ x ≤Mb,

where F represents the feasible domain of the problem under
consideration.

Proof: Similar to that of Lemma 1.
Such a reformulation technique is commonly referred to as
“big-M” reformulation. Remark finally that another reformu-
lation of the cumbersome logical constraint (2) consists in
introducing the equality constraint xq(bq − 1) = 0. However,
the latter is a bi-linear constraint, typically less interesting in
terms of computation time for off-the-self MIP solvers than

linear constraints [35].

2) Reformulation of the `1 data misfit measure: The `1
misfit term can be written linearly as ‖y −Hx‖1 =

∑
n wn,

with additional constraints wn = |yn − hr
nx|, n = 1, . . . , N ,

where hr
n denotes the nth row of H. Then, these con-

straints can be relaxed (exactly) by the linear inequalities:
−w ≤ y−Hx ≤ w, with column vector w = [w1, . . . , wN ]ᵀ,
thanks to the two following lemmas.

Lemma 3: min
x∈F
‖y −Hx‖1

⇔ min
x∈F,w∈RN

∑
n

wn s.t. −w ≤ y −Hx ≤ w.

Proof: Let fn(x) = yn − hr
nx. The following optimiza-

tion problems are equivalent:

Pa : min
x∈F

∑
n

|fn(x)|

Pb : min
x∈F,w∈RN

∑
n

wn s.t. |fn(x)| = wn,∀n

Pc : min
x∈F,w∈RN

∑
n

wn s.t. |fn(x)| ≤ wn,∀n.

Indeed, Pa ⇔ Pb is trivial. In order to show that Pb ⇔ Pc,
one can simply remark that if an optimal solution (x?,w?)
of Pc is such that |fn0

(x?)| < w?
n0

for some index n0, then
one can straightforwardly construct a better feasible solution
for Pc, which yields a contradiction.

Lemma 3 will be used to obtain a MIP reformulation
of P1/0 and P0+1, which involve the `1-misfit term in the
objective function. For P0/1, which involves the `1-misfit term
as a constraint, we use the following lemma:

Lemma 4: Let (x?,w?) solve the optimization problem:

Pd : min
x∈RQ,w∈RN

‖x‖0 s.t.


∑
n

wn ≤ α1

−w ≤ y −Hx ≤ w.
Then, x? is a solution of P0/1.

Proof: Suppose that (x?,w?) solves (Pd) and let w′n :=
|y − hr

nx
?|, ∀n. Then,

∑
n w
′
n ≤

∑
n w

?
n ≤ α1 and (x?,w′)

is a solution of:

Pe : min
x∈RQ,w∈RN

‖x‖0 s.t.


∑
n

wn ≤ α1

|yn − hr
nx| = wn,∀n.

Indeed, since Pd is a relaxation of Pe—the feasible set of Pe

is a subset of that of Pd—, its optimal value, ‖x?‖0, is a lower
bound for the optimal value of Pe. The solution (x?,w′) is
clearly feasible for Pe and it attains the lower bound ‖x?‖0.
Hence, it is optimal for Pe. Finally, Pe is clearly equivalent
to P0/1.
Let us remark finally that problems Pd and Pe are not strictly
equivalent because they are not minimized by the same couple
of vectors (x,w), but they share the same solution set for x.

3) Reformulation of the `∞ data misfit measure: P0/∞
naturally brings linear inequality constraints as

‖y −Hx‖∞ ≤ α∞ ⇔ − α∞1N ≤ y −Hx ≤ α∞1N .
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For both P∞/0 and P0+∞, involving the `∞ norm in the
objective function, one can simply introduce an additional
scalar variable z such that minimizing ‖y −Hx‖∞ amounts
to minimizing z under the constraints

−z1N ≤ y −Hx ≤ z1N .

Here again, one can easily show that an optimal solution of
the original problem will necessarily satisfy ‖y −Hx‖∞ = z.

C. Mixed-integer programming reformulations

Given the reformulation techniques of Section III-B, the
nine problem reformulations proposed in Table I are straight-
forward.

IV. MIP RESOLUTION: BASIC ELEMENTS

Mixed-integer programming problems are not easy prob-
lems. MILP problems are already NP-hard [36]. As a con-
sequence, reducing sparse approximation problems to MILP,
MIQP or MIQCP problems does not per se reduce the
complexity. Nevertheless, such MIP reformulations not only
open up possibilities to prove the optimality (or quantify the
sub-optimality) of solutions, but also allows one to benefit
from decades of exponential progress in terms of required
computing time to solve a given MIP problem. This progress
does not simply reflect the doubling of computing power
every 18 months, it is also a consequence of fast progress in
both the theory and practice of linear programming and dis-
crete optimization (duality, numerical linear algebra, interior-
point methods, semi-definite positive relaxations, branch and
bound/cut/price methods, decomposition approaches, global
optimization, etc.) Once the sparse approximation problem
is recast as a MIP problem, then state-of-the-art off-the-
shelf software can be used, such as BARON, COUENNE,
CPLEX, GloMIQO, GUROBI, MOSEK or Xpress-MP—see
for example [35] and references therein. We chose to use
CPLEX [23] because it is unanimously considered among the
best MIP solvers. CPLEX has been developed over the last
thirty years and includes the best strategies developed by the
MIP community. Moreover, it is freely available for research
and teaching purposes.

The main method behind the CPLEX MIP solver is a
branch-and-cut algorithm. Globally, it implements a branch-
and-bound strategy (i.e., a tree-structured implicit enumeration
algorithm) based on successive continuous relaxations of the
integer variables [37]. Each branch generates a subproblem
by fixing some integer (in our case, binary) variables, and a
set of branches is constructed corresponding to the different
possible configurations of such variables. Then, the aim is to
discard (huge) parts of the remaining combinatorial tree by
lower bounding the objective function on the corresponding
subproblems. To obtain such lower bounds, a continuous
relaxation of each subproblem is formed by relaxing the
integer variables. Linear constraints, such as Gomory cutting
planes [38], are added to each generated (continuous relax-
ation) subproblem, so that the continuous solution converges
to an integer solution. Such cutting planes remove part of
the feasible domain of the subproblem that does not contain

any integer solution. This approach amounts to attempting
to construct the convex hull of the set of integer feasible
solutions of each subproblem. CPLEX incorporates several
techniques in order to improve performance, such as constraint
propagation techniques [39], linear algebra techniques [23] and
heuristic techniques to find rapidly a good integer solution.
Doing so, parts of the research space are eliminated only if it
is proved that they do not contain the global minimum.

The best current integer solution provides an upper bound of
the global minimum of the entire problem. The solution of the
current relaxed (continuous) subproblem gives a lower bound
of the global minimum of the current subproblem with integer
constraints under consideration. The worst solution of all
relaxed subproblems—the one that achieves the lowest lower
bound—gives a certified lower bound of the global minimum
of the entire problem. If such a lower bound is attained by
the best current integer solution, then a global minimizer is
found and optimality is proved. Otherwise, the entire process
is iterated by creating new branches. The algorithm converges
towards such a certified optimum in a finite number of steps.
If the solver reaches the time limit, the duality gap (the
difference between the best solution found and the certified
lower bound of the global minimum) provides a measure of
sub-optimality of the solution found. Note that tree-search
based greedy algorithms such as in [8] also rely on tree-
based (local) exploration and on lower-bounding the objective
function on sets of solutions, which is used inside a greedy
procedure. Therefore, they do not come with any optimality
guarantee.

Remark that in most sparsity-inspired signal processing
problems, the matrix H satisfies specific properties that are
exploited for efficient computations. In particular, if H rep-
resents a redundant set of transforms based on multi-scale
representations such as wavelets [40], matrix-vector products
Hv and Hᵀv (where v is some given vector of an appropriate
dimension) can be computed by fast algorithms using Fast
Fourier Transforms (FFT). In 1D (respectively, 2D) deconvo-
lution problems, H is a Toeplitz (respectively, Toeplitz-block-
Toeplitz) matrix, so that matrix-vector products can also be
computed by FFT. No such matrix structure is exploited within
the standard mixed-integer optimization algorithms, as they are
implemented as general-purpose MIP solvers. The only matrix
property that is exploited here is the possible sparsity of the
matrix H to compute fast vector products. This is particularly
the case for the finite impulse response (FIR) deconvolution
problems that are considered hereafter.

V. EXPERIMENTAL RESULTS: OPTIMIZATION
PERFORMANCE

This section presents the test problems and the computa-
tional framework. Then, the computational efficiency of the
nine MIP reformulations is studied.

A. Definition of test problems

The different MIP reformulations are evaluated on one-
dimensional sparse deconvolution problems. Such problems
are typically encountered for example in ultrasonic NDT [16]
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Problem Equivalent MIP reformulation MIP class
Bounded-misfit formulations (parameters: α2, α1 and α∞)

P0/2 min
x∈RQ,b∈{0,1}Q

1ᵀ
Qb s.t.

{
xᵀHᵀHx− 2yᵀHx ≤ α2

2 − yᵀy

−Mb ≤ x ≤Mb MIQCP

P0/1 min
x∈RQ,b∈{0,1}Q,w∈RN

1ᵀ
Qb s.t.


1ᵀ
Nw ≤ α1

−w ≤ y −Hx ≤ w
−Mb ≤ x ≤Mb

MILP

P0/∞ min
x∈RQ,b∈{0,1}Q

1ᵀ
Qb s.t.

{
−α∞1N ≤ y −Hx ≤ α∞1N

−Mb ≤ x ≤Mb MILP

Sparsity-constrained formulations (parameters: K2, K1 and K∞)

P2/0 min
x∈RQ,b∈{0,1}Q

xᵀHᵀHx− 2yᵀHx s.t.

{
1ᵀ
Qb ≤ K2

−Mb ≤ x ≤Mb
MIQP

P1/0 min
x∈RQ,b∈{0,1}Q,w∈RN

1ᵀ
Nw s.t.


1ᵀ
Qb ≤ K1

−w ≤ y −Hx ≤ w
−Mb ≤ x ≤Mb

MILP

P∞/0 min
x∈RQ,b∈{0,1}Q,z∈R

z s.t.


1ᵀ
Qb ≤ K∞

−z1N ≤ y −Hx ≤ z1N

−Mb ≤ x ≤Mb
MILP

Penalized formulations (parameters: µ2, µ1 and µ∞)
P0+2 min

x∈RQ,b∈{0,1}Q
µ21

ᵀ
Qb+ x

ᵀHᵀHx− 2yᵀHx s.t.
{
−Mb ≤ x ≤Mb MIQP

P0+1 min
x∈RQ,b∈{0,1}Q,w∈RN

µ11
ᵀ
Qb+ 1N

ᵀw s.t.

{
−w ≤ y −Hx ≤ w
−Mb ≤ x ≤Mb MILP

P0+∞ min
x∈RQ,b∈{0,1}Q,z∈R

µ∞1ᵀ
Qb+ z s.t.

{
−z1N ≤ y −Hx ≤ z1N

−Mb ≤ x ≤Mb MILP

TABLE I
MIXED-INTEGER PROGRAMMING REFORMULATIONS OF NINE SPARSE APPROXIMATION PROBLEMS.

and in seismic reflection in Geophysics [17]. In the following,
x is a K-sparse sequence in R100 (i.e., Q = 100), with
uniformly distributed spike locations, where the sparsity level,
K, is varying. In order to avoid arbitrary small spike values,
each non-zero amplitude is drawn as sign(u) + u, where
u is a centered Gaussian sample with unit variance. The
matrix H is the discrete convolution matrix corresponding
to the 21-sample impulse response shown in Fig. 1 (left).
With the boundary assumption that x is zero outside its
domain, y is a 120-sample signal (i.e., N = 120). White
noise is added with variable signal-to-noise ratio (SNR). In this
section, noise samples are generated according to a centered
normal distribution N (0, σ2), with σ such that SNRdB =

10 log10

(
‖Hx‖22/(Nσ2)

)
. We name such problems SASNR

K .
Note that they are slightly overdetermined (Q < N ), whereas
typical sparse approximation problems deal with largely under-
determined systems. However, trivial inversion is not satisfac-

tory here, because of the presence of noise and of the ill-
conditioned nature of H (cond(H) ' 103).

We consider problems SASNR
K with K varying between 5

and 11, and SNR varying from +∞ (noise-free data) downto
10 dB. One example of data is given in Fig. 1 (right) for K = 7
and SNR = 20 dB. It illustrates the difficulty of sparse decon-
volution problems arising for example in ultrasonic NDT [16].
The oscillating impulse response and the proximity of the
spikes produce overlapping echoes in the available data. As the
echoes cannot be distinguished visually, numerical techniques
are required. All data and optimization results of this section
are available online as supplementary multimedia material.

B. Machine configuration and implementation details

Optimization is run with IBM ILOG CPLEX V12.6.0 from a
Matlab interface on a computer with eight Intel Xeon X5472
processors with Central Processing Units (CPU) clocked at
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Fig. 1. Example of sparse deconvolution data. Left: impulse response. Right:
7-sparse sequence x (circles) and noisy convolved data y, with SNR = 20 dB.

3 GHz. The maximum time allowed for each resolution is
set to Tmax = 1000s. The other CPLEX parameters are set
to their default value. For each problem, the “big-M” con-
stant is set to M = 1.1x1max, where x1max := ‖Hᵀy‖∞/‖h‖

2
2

corresponds to the maximum amplitude of 1-sparse solutions
estimated by least-squares. If the boundedness assumption (3)
is saturated—i.e., one component in the solution x̂ reaches the
value −M or M—then the optimization is successively run
again with M replaced with 1.1M , until the obtained solution
satisfies ‖x̂‖∞ < M . The CPU times given below include
such restarts. With this heuristic strategy, in our simulations,
only few cases led to such saturation: no restart was necessary
in 90 % of the cases, and the average number of restarts in
the other cases was approximately 1.6.

C. Evaluation of computational costs

Each of the nine MIP reformulations of Table I is run
for fifty random instances (for both spike distributions and
noise realizations) of each SASNR

K problem. In this section, in
order to ensure a fair comparison (in terms of computational
efficiency), the parameters Kp are set to the true sparsity
level K, and parameters αp and µp are set by trial and error,
until the sparsity level of each solution equals K. Note that
in our case, the matrix H has full column rank, hence `0
inequality constraints in Pp/0 will yield the same results as
if they were equality constraints. That is, when imposing
‖x‖0 ≤ K, all the K columns of matrix H contribute
to the reduction of the data misfit. However, formulations
with inequality constraints yielded lower computing times.
Sparse representation problems (noise-free data, SNR = ∞)
are addressed through P0/p for p ∈ {1, 2,∞}, with threshold
αp = 10−8. Remark that in the noise-free case, no sparsity-
enhancing algorithm is indeed necessary, since the solution
can simply be computed by least squares.

Average CPU times obtained for MIP reformulations are
given in Table II. The figures on the left-hand side of each
column is the time required to prove the global optimality of
the solution found. The figures on the right-hand side indicate
the time after which the support of the solution was found,
which is generally much lower. The figures in parentheses
indicate the number of instances for which optimality was not
proved within 1000s.

All CPU times increase with the sparsity level K, but also
with the noise level. In particular, for SNR = 10 dB and
K = 11, for each formulation, optimality of the solutions
was obtained in less than 1000s only on a fraction of the fifty
instances. In order to explain such behavior, let us remark that
the sparsity level (respectively, the noise level) increases the
size of the feasible domain of Pp/0 (respectively, of P0/p).

More generally, for all problems, if either the sparsity level or
the noise level increases, then the branch-and-bound strategy
becomes less efficient in discriminating between concurrent
candidates and in eliminating some of them.

With SNR = 30 dB, the lowest CPU times are achieved
by solving P0+2—although optimization did not terminate
within 1000s for one instance of SA30

11. When the noise
level increases, solving P0/1 and P0/∞ problems becomes
more efficient computationally, and their superiority over other
problems increases with both the sparsity level and the noise
level. In particular, P0/1 problems were always solved exactly
in less than 1000s, except for (SNR = 20 dB, K = 11). Results
are slightly not as good for P0/∞, where optimization did not
terminate within 1000s for three more instances with SNR =
20 dB and K = 11. Note that even a small amount of noise
severely degrades the resolution performance of problems
P0/p. Optimization of P0/2, the only problem with a quadratic
constraint, is the most time-consuming among all proposed
formulations. Non-linear constraints are known to make the
MIP really difficult to solve [35]. An element of explanation
can be found by comparing the Lagrangians of formulations
involving `2 misfits. Indeed, the Lagrangian of P0/2 contains
trilinear terms. On the contrary, the Lagrangians of P2/0 and
of P0+2 are quadratic functions. Therefore, optimizing a linear
function under quadratic constraints is more complex than
optimizing a quadratic function under linear constraints.

For any p ∈ {1, 2,∞}, solving problems P0+p generally
performs better than solving problems Pp/0 at high SNR. On
the contrary, as the noise level increases, sparsity-constrained
formulations outperform penalized versions. For both formu-
lations, which involve the data misfit in the objective function,
using an `2 misfit measure is the most efficient choice, and
both `1- and `∞-misfit optimizations behave similarly.

We also note a high dispersion of the required CPU times
among the fifty realizations of each problem. For example,
the average time for the resolution of P0+1 on SA20

9 prob-
lems was approximately 11s on forty-eight instances, whereas
optimization did not terminate after 1000s on the two other
instances. We also remark that, for P0/2, optimality was not
proved within 1000s for two instances of the simplest test
problem SA+∞

5 . Two other instances of SA+∞
5 also required

a much higher CPU time than the others, which leads to an
atypically high average time of 53s, reflecting once again the
difficulty of the quadratically-constrained problem P0/2.

Finally, let us evaluate the CPU time of exhaustive com-
binatorial exploration for P2/0. Using notations introduced
in Section II-C, for a given support s with K components,
the minimizer of Ps

2/0 has the closed-form expression x̂s =

(Hs
ᵀHs)

−1
Hs

ᵀy. Then, the least-squares misfit value is
computed by: ‖y −Hsx̂s‖2 = ‖y‖2 − ‖Hsx̂s‖2. In practice,
x̂s can be computed by performing Cholesky decomposition
of Hs

ᵀHs, so that one computation of the objective function
mainly amounts to two K × K triangular inversions. The
CPU time, denoted cK , of one such computation is estimated
by averaging over 105 inversions. Then, neglecting the cost
of Cholesky factorizations, the cost for testing all K-sparse
solutions is extrapolated as

(
Q
K

)
cK . It yields approximately
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Error-constrained problems Sparsity-constrained problems Penalized problems
P0/2 P0/1 P0/∞ P2/0 P1/0 P∞/0 P0+2 P0+1 P0+∞

SNR = ∞
K = 5 53 |50 (2) 0.07|0.03 0.06|0.03
K = 7 3.8 |3.6 0.09|0.03 0.08|0.03
K = 9 4.4 |4.2 0.12|0.03 0.10|0.03

K = 11 5.2 |5.0 0.14|0.03 0.13|0.03
SNR = 30 dB

K = 5 13 |7.2 0.3 | 0.2 0.1 | 0.1 0.3 |0.2 0.5 |0.4 0.5 |0.4 0.2 |0.1 0.4 |0.2 0.4 |0.2
K = 7 17 |6.7 1.4 | 0.4 0.3 | 0.1 0.5 |0.3 1.4 |0.8 1.4 |1.0 0.4 |0.2 1.0 |0.6 0.8 |0.4
K = 9 132|37 3.1 | 1.0 1.7 | 0.5 3.0 |1.0 9.3 |3.0 25 |7.5 1.9 |0.8(1) 19 |2.7 17 |2.7

K = 11 399|96 (18) 18 | 4.1 19 | 2.1 29 |4.0(1) 72 |11 (2) 78 | 17 (9) 11 |2.7(1) 60 |13 (1) 48 | 14 (4)

SNR = 20 dB
K = 5 13 |8.6 0.3 | 0.2 0.1 | 0.1 0.3 |0.2 0.6 |0.3 0.5 |0.4 0.3 |0.2 0.6 |0.3 0.4 |0.2
K = 7 48 |11 (1) 1.0 | 0.4 0.5 | 0.1 1.3 |0.6 4.0 |1.8 4.2 |3.5 6.6 |0.9 14 |1.5(1) 29 | 14
K = 9 285|82 (9) 6.6 | 2.7 3.7 | 0.4 18 |3.4(1) 30 |6.4(1) 72 | 64 (2) 28 |13 (2) 11 |2.8(2) 87 | 18 (2)

K = 11 - | - (50) 67 | 16 65 | 11 (3) 166|21 (6) 244|22 (11) 355|260(20) 104|16 (5) 179|58 (13) 299| 38 (17)

SNR = 10 dB
K = 5 20 |4.9 0.5 | 0.2 0.2 | 0.1 0.4 |0.2 1.3 |0.6 1.7 |1.4 1.9 |1.7 2.0 |0.5(2) 15 |0.8
K = 7 195|27 (2) 2.3 | 0.6 1.4 | 0.2 3.5 |0.7 11 |3.0 40 | 39 42 |2.4 73 |4.0(3) 66 | 15 (6)

K = 9 485|63 (34) 24 | 3.9 26 | 1.2 54 |12 (1) 189|28 (4) 220|218(11) 96 |25 (11) 230|11 (18) 215| 32 (16)

K = 11 - | - (50) 287 | 44 (12) 211 | 9.0 (9) 358|26 (24) 670|75 (42) 600|598(39) 340|34 (32) 300|13 (43) 508|101(44)

TABLE II
CPU TIMES (IN SECONDS) OBTAINED BY THE NINE MIP REFORMULATIONS, AS A FUNCTION OF THE SIGNAL-TO-NOISE RATIO (SNR) AND OF THE

SPARSITY LEVEL (K), AVERAGED OVER 50 INSTANCES OF EACH PROBLEM. THE FIRST NUMBER INDICATES THE CPU TIME FOR ESTABLISHING
OPTIMALITY OF THE SOLUTION. THE SECOND NUMBER GIVES THE CPU TIME AT WHICH THE CORRESPONDING OPTIMUM WAS FOUND. NUMBERS IN

PARENTHESES COUNT THE INSTANCES FOR WHICH OPTIMALITY WAS NOT PROVEN IN LESS THAN 1000S. FOR REFERENCE, THE COMPUTATION TIME OF
CLASSICAL SPARSE APPROXIMATION ALGORITHMS ON OUR HARDWARE CAN BE FOUND IN FIG. 2.

1500s for K = 5, 4 days for K = 7, and more than
one year for K = 9. Problems based on both `1 and
`∞ misfits require the resolution of a linear program for
each support, therefore the corresponding exhaustive search
yields still higher computational costs than in the `2 case.
Consequently, exhaustive search cannot be considered as a
practical solution, even for such moderate-size problems. In
order to emphasize the ability of the MIP solver to remove
important parts of the full combinatorial tree search, we give
a last indicator. For P2/0 with SNR = 30 dB and K = 9,
for which all instances were successfully solved, the average
number of combinations that were explicitly considered in the
branch-and-bound procedure is about 4.5 105, to be compared
with the total number of

(
100
9

)
' 1.9 1012 combinations.

VI. EXPERIMENTAL RESULTS: EVALUATION OF SOLUTIONS

We now compare the solutions obtained via MIP optimiza-
tion with those of classical sparse approximation methods:
Orthogonal Matching Pursuit (OMP) [5], Single Best Re-
placement (SBR) [7], Iterative Hard Thresholding (IHT)1 [13],
[14] and the minimization of the `1-norm-penalized least-
squares criterion (`1-relax) using homotopy continuation [41].
All algorithms are tuned so that all solutions have the correct
number of spikes. Therefore, all methods are put in a favorable
setting for evaluating their ability to retrieve the correct support
of the solution.

Recall that for sparse deconvolution, none of the clas-
sical methods are theoretically guaranteed to solve the `0-
norm problem. As seen in the previous section, the MIP

1We used T. Blumensath’s implementation of IHT (program AIHT.m)
available at: http://www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html

approach can compute an exact solution, but requires a larger
computation time. In order to evaluate intermediate solutions
found by the MIP solver, we consider several values of the
maximum time allowed for each MIP resolution: Tmax =1s,
10s, 100s and 1000s. If the maximum time is reached, then
the current solution is considered—which is the best solution
found, without any optimality guarantee. The parameter M is
tuned as explained in Section V-B when running optimization
with Tmax = 1000s. Then, this value is also used for lower
values of Tmax.

In this section, we consider two types of sparse deconvo-
lution problems. The first problems are similar to those of
Section V-A, with N = 120 and Q = 100, and are therefore
slightly overdetermined. The second ones are underdetermined
problems, the most frequent case in sparse approximation.
Such problems may arise in high resolution sparse deconvolu-
tion. Indeed, the true spike locations are generally continuous-
valued (e.g., representing times of flight of reflected waves),
and the model Hx is a discrete approximation of a continuous
integral equation. The discretization step is usually chosen
equal to the sampling period of the data, thus H is a discrete
convolution matrix. Such a choice may be too rough and can
lead to erroneous spike locations [42]. In order to improve the
model, one may consider an upsampled convolution model,
where both the impulse response and the sparse sequence are
upsampled by an integer factor, UF. Then, H can be viewed as
the concatenation of UF discrete convolution matrices. Detail
about the corresponding matrix structure can be found in [42].
In the following, we consider UF = 2, so that N = 120
and Q = 200. Recall however that the intrinsic difficulty
of sparse deconvolution is mostly due to the ill-conditioned
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nature of matrix H and to the presence of noise, even in the
overdetermined case.

Fifty random instances are run with UF = 1 and UF = 2,
SNR = ∞ and SNR = 20 dB, and sparsity levels K varying
between 5 and 11. In the noise-free case, for the MIP ap-
proach, only P0/p problems are relevant. Therefore, solutions
are computed via the optimization of P0/∞ (with threshold
α∞ = 10−8), which was the most efficient computationally
(see Section V-C). All data and MIP optimization results of
this section are available online as supplementary multimedia
material.

In the noisy case, we consider P2/0, since the classical
methods rely on `2 data misfit measures. Two quality indices
are computed for each simulated data set:
• the exact recovery rate, which is the average number of

simulations for which a given algorithm correctly locates
the support of the true sequence;

• the average spike distance between the estimated and the
true sequences. To this aim, a distance similar to that
used in neuroscience [43] is defined: both estimated and
true spike trains are convolved with a continuous-domain
Gaussian kernel (with standard deviation chosen equal
to the discretization step of the spikes). Then, the `2-
norm error between both signals is computed. Such a
criterion is less severe than the exact recovery rate if the
estimated spikes are slightly shifted with respect to the
true ones, and also gives more importance to spikes with
high amplitudes.

Note that with SNR = ∞, the true sequence is a minimizer
of P0/p, with p = 1, 2,∞. Hence the expected exact recovery
rate for the MIP approach is 100%. On the other hand, in the
noisy case, the minimizer of P2/0 may not be obtained on the
true support. Therefore, successful global optimization does
not always produce exact recovery.

Results are summarized in Fig. 2. The top row shows the
average exact recovery rate as a function of the number of
spikes, and the bottom row plots the average spike distance to
the true sequence as a function of the CPU time.

Let us first focus on the noise-free case (left columns).
Recall that, in the overdetermined noise-free case, the solution
can simply be computed by least squares. Simulations are still
of interest, however, in order to compare the algorithms in
an ideal and simple context. For all classical algorithms, the
exact recovery rate is lower than 40% in the overdetermined
case, and decreases as the sparsity level increases (top row).
Their performance is still worse in the underdetermined case,
where the exact recovery rate is close to zero, except for the
simplest problems (K=5). Their average spike distance to the
true sequence (bottom row) is logically lower for algorithms
requiring more computation time. We note in particular the
bad results obtained by IHT in the underdetermined case. Such
bad performance of IHT was already attested when theoretical
optimality conditions do not hold [14]. This is particularly
true in the underdetermined case, where the columns of H
are strongly correlated. On the contrary, the MIP strategy
correctly retrieves the support in nearly 100% of the noise-
free instances, even with the computation time limited to
1s. Actually, only one instance led to erroneous support

identification (for UF = 2 and K = 5), meaning that the
solution was not found, even within 1000s. The MIP approach
also gives an average spike distance close to zero, which means
that both the supports and the amplitudes of the solutions have
been correctly recovered, even in the underdetermined case,
but with a larger computation time (from 0.03s to 0.2s for
UF = 1, and from 0.1s to 20s for UF = 2). Note however that
all classical algorithms are still much faster on such relatively
small problems (between 10−3s and 10−2s).

In the more realistic noisy case (SNR = 20 dB), the results
of the classical algorithms are very similar to those obtained
in the noise-free case, both in terms of exact recovery rate,
average spike distance and CPU time. In contrast, the MIP
performance deteriorates, and the exact recovery rate quickly
decreases as the number of spikes increases. Recall however
that, in the presence of noise, the minimizer of P2/0 may
not retrieve the correct support: in the overdetermined case,
for example, the MIP solver returns the optimal solution in
less than 1000s in 94% of the instances, whereas the average
exact recovery rate is much lower. However, it is still better
than that of the classical methods with Tmax = 1s, and
even much better if Tmax is increased to 100s or 1000s. The
MIP approach also outperforms classical methods in terms of
average spike distance, in particular if Tmax is high enough. In
the overdetermined case, the average computing time ranges
from 0.25s (for K = 5) to 350s (for K = 11) and, as
mentioned earlier, global optimality was obtained in less than
1000s for most simulations. In the underdetermined case,
however, an optimum was not proved to be found within 1000s
in 51 % of the instances, that mostly correspond to the cases
where K = 9 and K = 11. This analysis corroborates the
results in Section V-C: the presence of noise strongly impacts
the computing time of the MIP solver, and therefore the quality
of the solutions obtained by early stopping.

A typical data set and estimated sparse sequences are shown
in Fig. 3. It corresponds to the overdetermined case, the true
sequence is 9-sparse and SNR = 20 dB. In this example, the
MIP approach is the only algorithm that correctly identifies the
support. Note that the resulting `2 misfit at the MIP solution
is lower than the `2 norm of the noise.

VII. EXPERIMENTAL RESULTS: RELEVANCE OF `1-, `2-
AND `∞-NORM DATA MISFITS

In this section, the impact of the data misfit measure
(through `1, `2 and `∞ norms) on the quality of the solu-
tion is studied, as a function of the noise distribution—as
motivated by the discussion in Section II-B. To this aim,
data are simulated in a manner similar to Section V-A and
Fig. 1. The 7-sparse spike sequence xtrue is fixed, and 200
noise realizations are drawn, where noise samples are i.i.d.
according to Gaussian, Laplacian and uniform distributions,
successively. The SNR here is set to 15 dB. The three error-
constrained problems P0/p are considered here. We focus
on these formulations because, in practical cases, tuning the
parameter αp requires less prior information than tuning
the parameter Kp for Pp/0 or the parameter µp for P0+p.
Indeed, for any given noise distribution pε, the parameters
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Fig. 2. Performance of classical sparse approximation algorithms and MIP optimization on sparse deconvolution problems, as a function of the signal-to-noise
ratio and of the size of the unknown vector. Overdetermined cases correspond to the standard deconvolution problem (N = 120, Q = 100). Underdetermined
cases correspond to an upsampling factor UF = 2 such that N = 120 and Q = 200. Top row: exact recovery rate as a function of the sparsity level K.
Bottom row: average spike distance to the true sequence as a function of the computation time. For each algorithm, the four marks correspond to K = 5, 7,
9 and 11. Note the log-scale and the different scalings of the time axes. The notation MIPTmax corresponds to the MIP optimization strategy running in a
maximum of Tmax seconds. All results are averaged over 50 random realizations.
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Fig. 3. Data (top-left) and deconvolution results obtained by different sparse
approximation algorithms in the overdetermined case (N = 120, Q = 100),
with SNR = 20 dB and K = 9 spikes. Circles locate the true spikes. On
the top-left panel, the dashed (respectively, solid) line represents the data
y = Hx+ε (respectively, the noise ε). On the other panels, crosses show the
obtained minimizer x̂ and the solid line represents the residual r = y−Hx̂.
For each algorithm, the residual norm and the average spike distance to the
true sequence (ASD) are given.

αp, p ∈ {1, 2,∞}, can be naturally estimated from a common
statistical rule. More precisely, setting αp to a value satisfying
Pr
(
‖ε‖p ≤ αp|ε∼pε

)
= 95 % amounts to considering that

the approximation error cannot be distinguished from noise
with probability 95%. Doing so, fair comparisons can be
performed between the solutions of the three problems P0/p.

These three problems share the same objective function,
hence they can be compared through their minimum value,
that is, the estimated number of spikes. In order to evaluate
the quality of the solutions, we also consider the support error
esupp(x̂,xtrue) := ||b̂− btrue||0, where b̂q (respectively, btrue

q )
equals 1 if x̂q 6= 0 (respectively, xtrue

q 6= 0), and 0 otherwise.
Optimization terminated in less than 1000s for all simulations.
Fig. 4 shows the distribution of the `0 norms (left column)
and of the support errors (right column) for the three noise
distributions, and for the three `p data misfits.

We first note that the correct value of the `0 norm is the most
frequently reached in all cases, except if an `∞ misfit is used
with Laplacian noise. When the estimated `0 norm is wrong,
it is generally lower than the true value. Indeed, in most cases
(statistically, in 95% of the cases from the definition of αp), the
noise realization satisfies ‖ε‖p < αp. That is, the true sequence
x? satisfies the misfit-bound constraint. Thus, the threshold
αp allows a higher approximation error than the noise in the
data, which enables the possibility of solutions with fewer
spikes. Consequently, in such cases, ‖x̂‖0 ≤ ‖x?‖0. This is
particularly true if the noise distribution is heavy-tailed, where
the `p-norm of the noise samples may be much below the
threshold αp, as show the `0 norm estimation statistics in the
case of Laplacian noise. On the other hand, if ‖ε‖p ≥ αp,
then the true sequence does not correspond to a solution of
the optimization problem, and ‖y −Hx̂‖p < ‖y −Hx?‖p. In
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Fig. 4. Estimation results obtained for the deconvolution of a 7-sparse
sequence with SNR = 15 dB, averaged over 200 noise realizations, in
the case of Gaussian (top), Laplacian (center), and uniform (bottom) noise
distributions. Error-constrained problems P0/p are considered, with p = 2
(white), p = 1 (gray) and p =∞ (black). Left: distributions of the `0 norm
of the solutions for the three `p misfits. For each problem, K indicates the
average estimated `0 norm value. Right: distributions of the support errors.
For each problem, e indicates the average support error between the estimated
and the true sequences.

such cases, one may have ‖x̂‖0 > ‖x?‖0. In our simulations,
only very few instances led to such an overestimation of the
`0 norm.

As it could be expected, the lowest support errors are
achieved by using the `2 (respectively, `1 and `∞) misfit in the
case of Gaussian (respectively, Laplacian and uniform) noise.
For each noise distribution, the corresponding misfit yields the
smallest average support error, and more frequently achieves
correct support identification—even if, for Gaussian or Lapla-
cian noise, it is only obtained in a few cases (respectively,
15% and 11%). We also remark that switching from `2 to `1
misfits with Gaussian noise only slightly degrades the support
identification performance, whereas optimization is computa-
tionally more efficient in the `1 case—see Section V-C. Much
better support identification is achieved with uniform noise
combined with the `∞ misfit, which yields exact identification
in 90 % of the cases, whereas `1 and `2 data fitting achieve
much worse results. Note that with both `∞ and `2 misfits, the
`0 norm is correctly estimated in 98% of the cases. However,

support recovery performance is much worse in the `2 case, as
some spikes are misplaced. Such superiority of `∞ data fitting
for uniform noise was already attested in [31] in a non-sparse
context.

Fig. 5 displays typical results obtained for one particular
realization of the noise process. For Gaussian (respectively,
Laplacian and uniform) noise distributions, one example is
shown such that `2 (respectively, `1 and `∞) data fitting yields
a solution with the most frequent support error obtained among
the 200 realizations. Note that, in each case, the solution shown
corresponds to one solution of the considered optimization
problem, that is, with the lowest `0 norm that satisfies the
bounded-`p-misfit constraint. Recall indeed that, for most
values of threshold parameters αp, problems P0/p feature an
infinite number of solutions—see Section II-C. Consequently,
the presented solution is almost certainly not the solution with
minimal `p misfit. With Gaussian noise, the minimizer of P0/2

has the correct `0 norm, but with two misplaced spikes, that
leads to a support error equal to 4. With the minimizer of
P0/1, two spikes are slightly misplaced, and a third one is
not detected. The minimizer of P0/∞ also has the correct `0
norm, but its spikes are very badly located. For Laplacian
noise, the most frequent support error for the minimizer of
P0/1 is 3, which corresponds to one misplaced spike and
the non-detection of one spike. Note that on the presented
example, both minimizers of P0/1 and of P0/2 identify the
same support, whereas the solution of P0/∞ features only four
spikes (among which one is erroneous). In the case of uniform
noise, the solution of P0/∞ correctly locates all spikes. The
solution of P0/1 misplaces one spike and misses another one,
and the solution of P0/2 is still worse, with three misplaced
spikes—although with the correct sparsity level.

VIII. DISCUSSION

In this paper, nine sparse approximation problems involving
the `0 norm were considered and reformulated as mixed-
integer programs (MIP). Bounded-error, sparsity-constrained
and penalized formulations were studied, involving `p-norm
data misfit measures, for p ∈ {1, 2,∞}. Thanks to efficient
dedicated MIP solvers, we demonstrated that moderate-size
sparse approximation problems can be solved exactly, whereas
exhaustive search remains computationally prohibitive for such
instances. In particular, the use of a branch-and-bound strategy,
coupled with efficient cutting planes methods, allows most
combinations to be discarded without being evaluated.

Computational costs were evaluated on simulated difficult
sparse deconvolution problems. Simulated data and corre-
sponding optimal solutions are made available as poten-
tial benchmarks for evaluating other (potentially suboptimal)
sparse approximation algorithms2. Our experiments show that
misfit-constrained minimization of the `0 norm is the most
efficient optimization formulation when associated with `1
and `∞ misfit measure. Conversely, the `2 misfit measure
is advantageously used as an objective function, not as a

2Matlab implementations of the nine formulations are available at
http://www.irccyn.ec-nantes.fr/∼bourguignon
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Fig. 5. Solutions of deconvolution problems P0/p with Gaussian (top), Laplacian (center) and uniform (bottom) noises, for one particular noise realization,
with SNR = 15 dB. Circles locate the true spikes. On the left column, the dashed (respectively, solid) line represents the data y (respectively, the noise ε).
On the three other columns, crosses show the obtained minimizer x̂ and the solid line represents the residual y −Hx̂.

constraint. All CPU times increase with the number of non-
zero components in the true solution, and also with the amount
of noise in the data. Our encouraging numerical results tend
to indicate however that such optimization formulations may
be appropriate for tackling sparse approximation problems
with several hundreds of unknowns, as long as the solution
is highly sparse and/or the noise level is low. In particular,
they do represent an alternative to `1-norm-based and greedy
methods for difficult estimation problems with highly corre-
lated dictionaries, both of which are likely to fail. Simulations
revealed, in particular, that exact solutions of `0 problems
almost always achieve perfect support recovery for underdeter-
mined noise-free problems, whereas classical methods perform
relatively badly. In the presence of noise, the MIP solutions
still outperform that of classical methods (in both over- and
underdetermined cases), although the required computing time
for obtaining exact solutions dramatically increases.

The `0 sparse approximation problem with `2 data misfit
measure has been used in a huge quantity of works in signal
processing, statistics, machine learning, etc. To the best of our
knowledge, the methods presented in this paper are the only
guaranteed-optimality alternatives to exhaustive search that do
not rely on any strong assumption on the dictionary structure.

With the introduced MIP reformulations, we also proposed
to solve exactly less common sparse optimization problems
based on `1 and `∞ misfits. Such problems may be of interest
from an informational point of view. Simulations illustrated
this point, and confirmed a rather intuitive fact: choosing an `p
misfit with p = 2 (respectively, p = 1 and p =∞) is relevant
if the noise distribution is Gaussian (respectively, Laplacian
and uniform) as far as support identification is concerned.
In particular, with uniformly distributed noise, introducing
an `∞ misfit constraint frequently achieves correct support
identification, which is not the case for any other combination
of data misfit and noise distribution.

Several points in the MIP reformulations could be consid-
ered in order to improve computational efficiency. First, as
acknowledged in previous works on MIP reformulations of
sparsity-based problems [24], [27], tuning the value, M , in the
“big-M” reformulation impacts algorithmic performance. For
a given problem, statistical rules may be used in order to infer
reasonable M values. Then, new constraints in the optimiza-
tion formulations may be added in order to reduce the feasible
domain. For example, in [27], an upper bound on the `0 norm
of the solution sought is considered. Furthermore, many signal
processing problems naturally involve linear constraints such



14

as positivity or sum-to-one requirements. The proposed MIP-
based approaches can easily be adapted to such cases, for
which exact solutions can still be obtained. Adding such extra
constraints may also contribute to reducing the computational
time, whereas it generally penalizes the efficiency of classical
(convex or greedy) sparse approximation algorithms. One may
also consider directly the bi-objective optimization problem
with multi-criterion optimization methods [44] in order to
propose a whole range of trade-off (sparsity vs. data fitting)
solutions.

Global optimization of criteria involving structured sparsity
would also be worth being studied, where (possibly over-
lapping) subsets of coefficients are jointly zero or non-zero.
Such problems are generally tackled by convex optimization
approaches involving mixed norms [45] or by extensions of
greedy algorithms [46]. Both suffer from similar limitations
than their scalar `1-norm relaxation and greedy counterparts,
as far as optimality with respect to the `0-based problem
is concerned. We believe that exact optimization of such
problems through MIP should also be possible for moderate-
size problems. For example, MIP-like formulations of some
structured sparsity problems are shown in [25]—although the
authors finally resort to (inexact) continuous relaxation of
the binary variables—and in [47], where specific structured
sparsity problems defined through totally unimodular systems
allow exact optimization in polynomial time.
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