
HAL Id: hal-01254845
https://hal.science/hal-01254845v1

Submitted on 12 Jan 2016 (v1), last revised 14 Jan 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extraction de commentaires utilisateurs sur le Web
Julien Subercaze, Christophe Gravier, Frederique Laforest

To cite this version:
Julien Subercaze, Christophe Gravier, Frederique Laforest. Extraction de commentaires utilisateurs
sur le Web. 16 èmes Journées Francophones Extraction et Gestion des Connaissances, EGC 2016, Jan
2016, Reims, France. �hal-01254845v1�

https://hal.science/hal-01254845v1
https://hal.archives-ouvertes.fr

Extraction de commentaires utilisateurs sur le Web

Résumé. Dans cet article, nous présentons CommentsMiner, une solution d’ex-
traction non supervisée pour l’extraction de commentaires utilisateurs. Notre
approche se base sur une combinaison de techniques de fouille de sous-arbres
fréquents, d’extraction de données et d’apprentissage de classement. Nos expéri-
mentations montrent que CommentsMiner permet de résoudre le problème d’ex-
traction de commentaires sur 84% d’un jeu de données représentatif et publique-
ment accessible, loin devant les techniques existantes d’extraction.

1 Introduction
Possessing user-generated contents is one the great challenge in today’s Web ecosystem.

Companies such as Twitter, Facebook, Instagram, Google, to name a few, have long under-
stood the value of the content produced by their users. They managed to reach millions of
users, mainly by offering free high-quality services. Analysing and processing these data raise
many interesting research challenges. It is therefore not surprising that content posted on these
mainstream platforms are attractive to researchers, especially because they are accessible as
structured data through APIs. Although these social media and networks are in the limelight,
they however represent only a fraction of user-generated content on the Web. Other user-
generated content include reviews, comments, wikis and others to create content on the Web.

Gathering user-generated comments at Web Scale offer not only business opportunities but
also research issues. That is the reason why Web content extraction and social media analysis
has gained a lot of traction in the past years. However, the comment mining task, expected to
be unsupervised for Web-scale extraction, is surprinsingly understudied.

In this paper, we propose CommentsMiner, a two-stage algorithm that extracts com-
ments from webpages along their conversational structure. Our approach allows nested com-
ments extraction, which enables conversation extraction, a decisive feature for social analysis.
The problem of users’ comments extraction can be defined as retrieving the pattern p that was
used to generate the HTML fragments embedding users’ comments. This pattern is valid at site
scale. As a consequence, once the pattern is determined, it can be used to extract comments
from every page of the site.

Figure 1 depicts the overall architecture of CommentsMiner. In the first stage, we con-
sider the problem of comments and nested comments mining as constrained frequent subtree
mining. In the second stage, we learn a ranking model to select the winner subtree among the
candidates outputted at the previous step.

Extraction de commentaires utilisateurs sur le Web

CommentsMiner achieves a perfect mining score on the TestBed for information extrac-
tion from Deep Web (TBDW), and we present further results on a surrogate dataset called
NUCE – another technical contribution presented with this paper, publicly available.

 Candidate generation: Winner Selection:p

h2

set of candidates
pattern

winner

...

......

... ...

...

, ,
...{ {

DOM tree

 Constrained, frequent
induced subtree mining

 Rank candidates
with features

I - Pattern Identi�cation

II - Extraction

Web page

 Comments Extraction:

match pattern against
DOM tree

Conversation

 rebuild conversation
using parentship

in DOM

{ {

set of comments

C1,C2,C3...,CN
C2

C3

CN

C1

...conversation

O�ine Learning
Ranking
Model

FIG. 1: Outline of CommentsMiner

2 Candidate Generation
In order to mine comments that are nested in a conversational structure, the subtree mining

process must be able to skip leaves horizontally. Thus, using bottom-up subtrees would not be
sufficient to match this pattern. However the vertical removal that is permitted using embedded
subtrees is not a wishful feature and would lead to unnecessary expensive computations. The
frequent subtrees we are mining have therefore the property to be induced.

In user-generated comments, the content of comments itself may contain not only user-
generated text but also HTML tags. These tags are at the discretion of the users (for instance,
 and <i> to decorate text). As a consequence, maximal subtree mining is too restrictive.
However closed subtree mining matches our requirement, since it will output both the target
and its supertrees: in the case where the comments have different formattings, the target subtree
will have a greater support than its supertrees.

For our implementation, we use CMTreeMiner Chi et al. (2005) as the algorithm of our
choice – because it is the only one providing frequent subtree mining of ordered induced closed
subtrees as reported in da Jiménez et al. (2010). We adapted the algorithm to take into account
the constraints described in the next section.

2.1 Constraints
The search space of a DOM tree is very large, DOM tree contains 1300 nodes1 in average.

Regarding the performance reported by the authors of CMTreeMiner, mining a tree of thousand

1http://www.httparchive.org/trends.php?s=Top1000

nodes with a support of 2 could take minutes, even hours. We define three domain-specific
constraints to reduce the search space of the problem.
Lowest common ancestor similarity. As comments are located in a unique area of the DOM
tree, occurrences of the target pattern are relatively close to each other. The tree distance
between root occurrences of the target pattern is not a priori known, and may vary from page
to page. However, the two root occurrences of the target pattern are in the same subbranch
of the top tag, i.e. the <body> tag. Formally, the lowest common ancestor between two
occurrences of the pattern cannot be the root of the DOM tree.
Blank occurences deletion. Another simple, yet very efficient constraint is based on the text
associated to the occurrences. We discard patterns whose occurrences contains no text or
identical text.
Root and rightmost occurrences equality. In CMTreeMiner induced subtrees occurrences
are identified during the mining process using their rightmost occurrences. We denote RootOcct,T
and RmoOcct,T the sets of root and rightmost occurrences of a frequent subtree t in a data-
tree T . Each comment has its own root and right most occurrence – they are not shared with
other comments. The verification for any candidate subtree is therefore carried out with :
|RootOcct,T | = |RmoOcct,T |.

This stage of the algorithm outputs a set of candidate patterns, among which include the
pattern used to generate the comments on the Webpage. The set of candidate patterns is a
subset of all generated patterns. To be a candidate for the next stage, a pattern must validate
the constraints defined in Section 2.1. In the practice, the number of candidate patterns rarely
exceeds twenty.

3 Winner Selection
For a given webpage, the previous subtree mining step outputs a set of candidate patterns.

Among these candidates, we aim now at finding the pattern p, that was used as the template.
Finding the pattern p, that was used as the template to embed comments, among the subtrees
issued by the previous stage can be seen as a ranking problem, where only the first rank matters.
To rank these candidates patterns, we use textual and densitometric features as input to learning
to rank algorithms, including: SVMRank, MART, RankNet, RankBoost, AdaRank, Random
Forests, and Genetic Programming. We first describe the features, then the ranking measure.
Experimental results are presented in Section 4.

Features description The main characteristics that distinguish candidates for ranking are
both text and densitometric features. One can observe that user-generated content is of variable
length Kohlschütter et Nejdl (2008) – unlike menus for which the length and the number of
words are very similar among menu items. It is also usually forbidden to include links in
comments to avoid spamming, we therefore expect a low density of link in the HTML code.
The text density (ratio text vs code) of user-generated comments is also significantly different
from the one of boilerplate Agichtein et al. (2008). As the content of user-generated comments
differ significantly, the average and the standard deviation of each of these features convey the
heterogeneity between occurrences of the same candidate subtree. Therefore we exploit these
characteristics as a set of eight features (average and standard deviation from text density, link
density, text length and word volume).

Extraction de commentaires utilisateurs sur le Web

Ranking measures Our work deals with a special case of learning to rank, where only the
most relevant candidate matters, regardless of other candidates. This kind of binary relevance
is usually denoted as Winner Takes All (WTA) Xu et al. (2008). Note that CommentsMiner
relies on a ranking function that must be learnt. However, CommentsMiner is considered
unsupervised : once the ranking function is learnt, it can be reused for unknown Web domains,
and without further learning. This is consistent with the classification introduced by the recent
and exhaustive literature review provided in Sleiman et Corchuelo (2013).

Once the winner pattern has been selected by the ranking process, we proceed to the extrac-
tion of the comments. As depicted in Figure 1, we first match the pattern against the DOM tree
and then rebuild the conversational structure of the comments. Matching the pattern against the
DOM tree is performed in linear time using a depth-first strategy (breadth-first is also suitable
here): the algorithm first lists all the occurrences in the DOM tree of the root element of the
pattern. For each occurrnce, it successively checks that the first child of the pattern is matched
in the datatree. The validation continues similarly to a depth-first tree traversal.

4 Experimental results

In this section we first present the baselines and the experimental setup. Then we report
and discuss the accuracy and performance of CommentsMiner for the comments and their
conversational structure extraction task.

Baselines To the best of our knowledge, only MiBat Song et al. (2010) was designed for the
comment extraction task. Unfortunately, the materials used in MiBat (software or datasets)
are not publicly available, nor upon request. The perfect matching success rate of 75.653%
was obtained for several pages belonging to the same Web domain (this is inferred from the
illustrations within the paper, yet the precise number is unknown) – this skews the evaluation.
Another baseline is DEPTA, a follow-up of MDR (see Section ??). DEPTA requires a full
browser rendering and a visual analytics that result in poor scalability, and it is unable to
extract parent-child relationships. While DEPTA is not accessible, MDR can be retrieved
online – which makes it the candidate to be considered a standard baseline in several works as
reported in the survey Sleiman et Corchuelo (2013).

Other eligible candidates are TPC and RST, yet none are publicly available. They were
however evaluated against the same dataset, the TBDW dataset. CommentsMiner achieves
a success rate of 100% on this dataset, which makes hardly a difference with TPC and RST
(resp. 96.23% and 98.06% precision, and resp. 97.03% and 97.88% recall value). Henceforth,
we will focus on the more challenging dataset that is NUCE.

Datasets Both TPC Miao et al. (2009) and RST Bing et al. (2011) are competitors to our
approach. They were evaluated using the TestBed for information extraction from Deep Web
(TBDW). We discuss how CommentsMiner performs on this dataset with respect to these
competitors in the next section (4). However, there are some primary issues on benchmarking
the comments and nested comments extraction task on the TBDW dataset – mainly, it no longer
reflect today’s Web programming habits Particularly (i) <table /> and <form /> tags are

no more used to organize page layout, (ii) there is no case of nested subregions (iii) the average
webpage size has increased by 237% from December 20102 to February 20153.

Since CommentsMiner achieve a perfect score for frequent subtree mining for the ground
truth offered by the TBDW dataset, we built a more challenging dataset with attributes includ-
ing: i) up-to-date web programming paradigms, ii) diverse and multilingual web domains, and
iii) Webpages with nested regions. We started from Google News in English, French and Ger-
man. For each domain, we found a page containing more than two comments and downloaded
its content through the Web browser in order to avoid AJAX calls issue Gyllstrom et al. (2012).
We stricly consider only one page per domain. Some services like Wordpress, Disqus, Live-
fyre, Facebook, etc., provide commenting features. In order to avoid any bias, we kept one
page using each service. The dataset consists in 211 labeled Web pages. We called this labeled
dataset NUCE, which stands for Nested User-generated Content Extraction dataset. Our sur-
rogate dataset is publicly available to download, and includes for each page its browser-side
rendered webpage as well as the associated ground truth.

Algorithm Settings Mean STD

MART 1, 000 trees 66.4 6.3
SVMRank RBF, c = 0.1 77.1 6.3
RankNet 100 iterations 67.1 6.8
RankBoost 300 rounds 84 4.9
AdaRank WTA for training 66 15.4
Coord. Ascent WTA for training 81.6 3.6
ListNet 1, 500 iterations 90.1 13.5
Gen. Prog. 50 iterations 84.3 0.8

MiBAT (baseline) N/A 75.6 Unknown

TAB. 1: Performance and settings of trained learn-
ers on the NUCE dataset.

Results The evaluation depends on
the quality of the learning-to-rank step
since the expected pattern p is always
included in the set of the pattern can-
didates set (as discussed in Section 2).
We utilized different learning methods
for learning to rank pattern candidates.
While it is out of the scope of this pa-
per to provide a complete state-of-the-
art on learning-to-rank methods, the au-
thors can refer to Cao et al. (2007) and
Xia et al. (2008) for further details. The
genetic programs were trained using the
WTA metric and the following opera-
tors were available for the learner : addition, multiplication, substraction, division, power,
along with any values in the range [2; 10, 000]. All learners were trained and tested using the
eight features described previously. Results are presented in Table 1. Training was done using
20% data partitioning and a five-fold cross-validation.

ListNet best model provides a P@1 of 90.170 over 100 runs. However ListNet-based
learning-to-rank models suffer from a very significant standard deviation. We conclude that
Genetic Programming models are the most suitable for the learning-to-rank step. Although
those models do not achieve the best success rate (84.375 in average), it is still very good
while providing more guarantees on its generalization. Genetic Programming based models
offers a standard deviation of 0.854. Genetic Programming models therefore offer a stability
of success rates of the utmost pratical interest for a learn once, extract many crawling strategy.

2http://httparchive.org/interesting.php?l=Dec%2028%202010
3http://httparchive.org/interesting.php?l=Dec%2015%202013

Extraction de commentaires utilisateurs sur le Web

5 Conclusions and future work
In this paper, we presented CommentsMiner, a novel approach to extract user-generated

comments. CommentsMiner bridges the gap between frequent subtree mining and web
information extraction by succesfully extracting HTML templates that embed user-generated
comments. A specificity of users comments is their conversational structure. Our approach
based on constrained mining of closed frequent subtrees is able to extract nested comments. By
constraining the mining process, we are able to avoid the combinatorial explosion that usually
characterizes subtree mining. To identify the winner subtree among those output by the mining
step, we use a learning-to-rank approach and compared the result of several algorithms. We
finally compare our extraction result to existing approaches on both a popular and a surrogate
datasets, thus acknowledging the improvement brought by CommentsMiner.

References
Agichtein, E., C. Castillo, D. Donato, A. Gionis, et G. Mishne (2008). Finding high-quality

content in social media. In Proceedings of the 2008 International Conference on Web Search
and Data Mining, pp. 183–194. ACM.

Bing, L., W. Lam, et Y. Gu (2011). Towards a unified solution: data record region detection
and segmentation. In Proc. of the 20th CIKM Conference, pp. 1265–1274.

Cao, Z., T. Qin, T.-Y. Liu, M.-F. Tsai, et H. Li (2007). Learning to rank: from pairwise
approach to listwise approach. In Proc. of the 24th ICML Conference, pp. 129–136.

Chi, Y., Y. Xia, Y. Yang, et R. R. Muntz (2005). Mining closed and maximal frequent subtrees
from databases of labeled rooted trees. Knowledge and Data Engineering, IEEE Transac-
tions on 17(2), 190–202.

da Jiménez, A., F. Berzal, et J.-C. Cubero (2010). Frequent tree pattern mining: A survey.
Intell. Data Anal. 14(6), 603–622.

Gyllstrom, K., C. Eickhoff, A. P. de Vries, et M.-F. Moens (2012). The downside of markup:
examining the harmful effects of css and javascript on indexing today’s web. In Proc. of the
21st CIKM Conference, pp. 1990–1994.

Kohlschütter, C. et W. Nejdl (2008). A densitometric approach to web page segmentation. In
Proc. of the 17th ACM CIKM Conference, pp. 1173–1182.

Miao, G., J. Tatemura, W.-P. Hsiung, A. Sawires, et L. E. Moser (2009). Extracting data
records from the web using tag path clustering. In Proc. of WWW, pp. 981–990.

Sleiman, H. et R. Corchuelo (2013). A survey on region extractors from web documents. IEEE
trans. on Knowledge and Data Engineering 25(9), 1960–1981.

Song, X., J. Liu, Y. Cao, C.-Y. Lin, et H.-W. Hon (2010). Automatic extraction of web data
records containing user-generated content. In Proc. of CIKM, pp. 39–48.

Xia, F., T.-Y. Liu, J. Wang, W. Zhang, et H. Li (2008). Listwise approach to learning to rank:
theory and algorithm. In Proc. of the 25th ICML Conference, pp. 1192–1199.

Xu, J., T.-Y. Liu, M. Lu, H. Li, et W.-Y. Ma (2008). Directly optimizing evaluation measures
in learning to rank. In Proc. of the 31st SIGIR conference, pp. 107–114.

