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1Institut de Biologie Valrose, University of Nice Sophia Antipolis, 06108 Nice, France
2Institut de Biologie Valrose, CNRS, UMR 7277, 06108 Nice, France
3Institut de Biologie Valrose, INSERM, U1091, 06108 Nice, France

*Correspondence: noselli@unice.fr

http://dx.doi.org/10.1016/j.devcel.2015.04.026
SUMMARY

Left-right (LR) asymmetry is essential for organ
development and function in metazoans, but how
initial LR cue is relayed to tissues still remains un-
clear. Here, we propose a mechanism by which the
Drosophila LR determinant Myosin ID (MyoID) trans-
fers LR information to neighboring cells through the
planar cell polarity (PCP) atypical cadherin Dachsous
(Ds). Molecular interaction between MyoID and Ds in
a specific LR organizer controls dextral cell polarity
of adjoining hindgut progenitors and is required for
organ looping in adults. Loss of Ds blocks hindgut
tissue polarization and looping, indicating that Ds is
a crucial factor for both LR cue transmission and
asymmetric morphogenesis. We further show that
the Ds/Fat and Frizzled PCP pathways are required
for the spreading of LR asymmetry throughout the
hindgut progenitor tissue. These results identify a
direct functional coupling between the LR determi-
nant MyoID and PCP, essential for non-autonomous
propagation of early LR asymmetry.

INTRODUCTION

Left-right (LR) asymmetry is a prominent feature of bilateria (for a

recent review, see Blum et al., 2014; Coutelis et al., 2014; Naka-

mura and Hamada, 2012; Namigai et al., 2014; Vandenberg and

Levin, 2013; Yoshiba and Hamada, 2014). Differentiating two

body sides is essential for positioning organs, controlling their

looping and, ultimately, their function. Abnormalities in LR

patterning can lead to a range of defects, including loss of asym-

metry (isomerism), loss of concordance between organs (heter-

otaxia, situs ambiguous), and inversion of the LR axis (situs inver-

sus); several congenital health-threatening or lethal conditions

are indeed linked to defects in LR asymmetry (Peeters and Dev-

riendt, 2006). Understanding how symmetry is initially broken

and how de novo asymmetry is transferred to tissues during

development yields major questions. Studies using a range of

vertebrate model organisms have revealed some original

patterning mechanisms, including the generation of ion flux in

pre-gastrula embryos, the generation of a leftward flow at the
Devel
embryonic node through rotating cilia, and asymmetrical cell

movement (Adams et al., 2006; Blum et al., 2014; Coutelis

et al., 2014; Cui et al., 2009; Gros et al., 2009; Lenhart et al.,

2013; Levin et al., 2002; Namigai et al., 2014; Vandenberg and

Levin, 2013; Yoshiba and Hamada, 2014). These early events

contribute to symmetry breaking, ultimately leading to asym-

metric activation of the conserved nodal/transforming growth

factor b (TGF-b pathway, which then controls organ asymmet-

rical morphogenesis (Raya and Izpisúa Belmonte, 2006).

In contrast to vertebrates,Drosophila LRmarkers are relatively

simple and homogeneous as they are restrained to tubular or-

gans that undergo dextral morphogenesis; these include male

terminalia rotation, looping of the larval and adult gut, and testis

(Hozumi et al., 2006; Géminard et al., 2014; Spéder et al., 2006;

Coutelis et al., 2008). Genes controlling LR asymmetry in flies

have only recently been identified. The conserved type IDmyosin

gene (myosin ID, myoID; also known as myo31DF) (Mooseker

and Cheney, 1995; Morgan et al., 1995) is unique, as myoID

loss of function leads to complete situs inversus with all asym-

metric organs developing as sinistral (Hozumi et al., 2006; Gém-

inard et al., 2014; Spéder et al., 2006; Coutelis et al., 2008). The

expression of myoID—and, hence, LR symmetry breaking—is

under the direct control of the HOX transcription factor Abdom-

inal-B (Coutelis et al., 2013). It is interesting that tissue-targeted

invalidation of myoID in the genital disc has revealed the exis-

tence of a restricted domain controlling dextral terminalia rota-

tion, termed the ‘‘terminalia LR organizer’’ (Spéder et al., 2006).

Knockdown of myoID in this specific terminalia LR organizer

inverts the rotation of the terminalia; other organs, however,

develop normally, suggesting the existence of additional tis-

sue-specific LR organizers that remain to be characterized.

Planar cell polarity (PCP) is a global process coordinating cell

behaviors in the plane of a tissue (Gray et al., 2011; Wallingford,

2012; for recent reviews, see Yang, 2012). In Drosophila, PCP is

involved in the polarity of hair-like structures in many organs,

including the wing, eye, abdomen, and notum (Adler, 2012; Law-

rence et al., 2007; Lawrence andCasal, 2013;Matis and Axelrod,

2013; Singh and Mlodzik, 2012). The well-studied Drosophila

PCP genes are known to belong to two major pathways: the

‘‘core system’’ and the ‘‘global system’’ (Axelrod, 2009; Good-

rich and Strutt, 2011; Lawrence and Casal, 2013; Matis and

Axelrod, 2013). The core system comprises the distally located

(relative to the anterior-posterior [AP] axis of the wing, in addition

to their polarity along the AP axis in other cell types) proteins Friz-

zled (Fz), Dishevelled (Dsh), and Diego (Dgo); the proximally
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located proteins Van Gogh (Vang, aka Strabismus) and Prickle

(Pk); and symmetrically localized Flamingo (Vinson and Adler,

1987; Krasnow et al., 1995; (Tree et al., 2002; Wolff and Rubin,

1998; Bastock et al., 2003; Das et al., 2002). The global system

includes the atypical cadherins Fat (Ft) and Dachsous (Ds) and

the Golgi kinase Four-Jointed (Fj) (Sharma and McNeill, 2013;

Simon et al., 2010; Thomas and Strutt, 2012; Yang et al.,

2002). Both systems rely on extracellular protein interactions

and feedback signaling to ensure proper polarization of tissues

(Axelrod, 2009; Goodrich and Strutt, 2011; Peng and Axelrod,

2012). Current studies suggest that the two pathways can

interact in different ways, depending on the cell context, with

Ds gradient direction and core module polarization oriented

either parallel or anti-parallel (Zeidler et al., 2000; Casal et al.,

2002; Ma et al., 2003; Matakatsu and Blair, 2004; Rogulja

et al., 2008). Notably, it has been proposed that the global sys-

tem provides a directionality cue that is then used by the core

system to align the polarity of each cell with that of their neigh-

bors (Hogan et al., 2011; Ma et al., 2003; Olofsson et al., 2014;

Ayukawa et al., 2014).

The first hint of a role of PCP in LR asymmetry initially came

from the identification of the mouse inversin gene (a distant ho-

molog of the diego core-PCP gene), mutations of which lead to

a high percentage of situs inversus (Morgan et al., 1998). More

recently, the mouse PCP core pathway has been shown to con-

trol cilia positioning in the embryonic node, which is important for

nodal flow and correct LR asymmetry (Antic et al., 2010; Song

et al., 2010). However, so far, no study has linked global PCP

and LR asymmetry.

In this study, we characterize a role of both core and global

PCP pathways in Drosophila adult hindgut LR asymmetry

downstream of MyoID. We identified the hindgut imaginal ring

subdomain H1 as the LR organizer controlling the directional

looping of the adult hindgut. In H1 cells, MyoID physically inter-

acts with the intracellular domain of Ds to dextrally polarize cells

from the H2 domain, corresponding to hindgut precursor cells.

Polarization is inverted (sinistral) in myoID loss of function,

while it is absent when ds is specifically invalidated in the H1

domain. In addition,myoID and ds interact genetically to polarize

the H2 cells. Therefore, Ds is essential to convey MyoID-depen-

dent LR information to neighboring H2 hindgut precursors.

We further show that spreading of LR polarity within H2

precursor cells depends on both global and core PCP pathways.

Thus, these results reveal a mechanism allowing cell-non-auton-

omous transmission of symmetry-breaking information from an

LR organizer to organ precursors essential for proper LR

morphogenesis.

RESULTS

MyoID Controls Directional Looping of the Adult Hindgut
through a Specific LR Organizer
The Drosophila adult hindgut represents an attractive yet un-

characterized model for the study of MyoID-dependent control

of de novo LR asymmetry. Indeed, adult hindgut LR asymmetry

is established independently of larval hindgut asymmetry, as it

derives from dedicated precursor cells clustered in the larval

imaginal ring. The imaginal ring comprises two subdomains

(H1 and H2), which are thought to give rise to the adult
676 Developmental Cell 33, 675–689, June 22, 2015 ª2015 Elsevier I
sphincter-like pylorus, the absorptive ileum, and the stem cell re-

gion (Takashima et al., 2008, 2013; Fox and Spradling, 2009).

During pupal development, imaginal ring derivatives proliferate

and differentiate, while larvae counterparts degenerate (Robert-

son, 1936; Fox and Spradling, 2009). Thus, the transition from

larval to adult hindgut provides an interesting model to charac-

terize the mechanisms responsible for asymmetry cue transmis-

sion downstream of MyoID.

In wild-type flies, the adult hindgut coils clockwise, forming a

single stereotyped loop localized on the right side of the

abdomen when viewed dorsally (Figures 1A and 1D). Looping

can be visualized by transmission microscopy using a non-inva-

sive ‘‘blue feeding’’ method, which stains the gut lumen while

keeping organs in their native configuration. The phenotype

can be further analyzed by dissecting thewhole fly abdomen, fol-

lowed by confocal microscopy. Using these methods, we show

that, inmyoID null mutants, the adult hindgut displays an inverted

sinistral phenotype in 80% of individuals (Figures 1B, 1E, and

1G); the remaining 20% of the population show a twisted pheno-

type, whereby the adult hindgut does not form a loop but a

roughly symmetrical ‘‘S’’ shape (Figures 1C, 1F, and 1G). This

phenotype can be reproduced when expressing myoID-RNAi

driven either by myoID-Gal4, which mimics the myoID expres-

sion pattern (Figure 1G) (Coutelis et al., 2013; Petzoldt et al.,

2012; Spéder et al., 2006), or byn-Gal4 (hereinafter referred to

as hindgut-GAL4), which is expressed in hindgut precursor cells

(Figure 1G). Altogether, these observations show that, as in other

LR organs, MyoID is required for the directionality of adult hind-

gut looping toward dextral (Hozumi et al., 2006).

At the posterior end of the adult hindgut is the rectum, which is

part of the rotated terminalia but derives from both the genital

disc and rectal larval cells (Fox et al., 2010). AsmyoID expression

in the genital disc A8 segment controls dextral rotation of the ter-

minalia, we asked whether myoID activity in the genital disc

and/or rotation of the terminalia itself might be involved in adult

hindgut looping. In order to test these possibilities, we knocked

down myoID by RNAi specifically in the A8 segment (using

Abd-BLDN-Gal4, hereinafter referred to as A8-GAL4) or in the

hindgut (using hindgut-Gal4) and looked at terminalia rotation

and adult hindgut looping in both cases. myoID invalidation in

the hindgut did not affect terminalia rotation but was sufficient

to induce a sinistral and mislooped adult hindgut (Figure 1G);

reciprocally, when myoID was specifically silenced in the A8

segment, the terminalia was misrotated but the hindgut properly

looped (Figure 1G). These results show that (1) terminalia rotation

and adult hindgut looping are two independent events and that

(2) hindgut looping is controlled by a hindgut-specific MyoID-

dependent organizer. Thus, we reveal that MyoID controls

hindgut looping and terminalia rotation through two distinct

tissue-specific organizers.

We next asked when MyoID activity is required for adult hind-

gut looping. Therefore, we knocked downmyoID at different time

periods during development using the Tub-Gal80ts/Gal4 system

(TARGETmethod;McGuire et al., 2003). Using this approach, we

show that myoID activity is required during days 3–5 of larval

development for proper adult hindgut looping. Note that this

functional time frame overlaps with the requirement ofmyoID ac-

tivity during terminalia rotation (Figure 1H) (Petzoldt et al., 2012;

Spéder et al., 2006), indicating that, although terminalia and
nc.



Figure 1. myosin ID Controls Adult Hindgut

Looping

(A–C) Dorsal views of adult fly abdomens after

feeding with a blue dye to reveal hindgut shape.Wild-

type flies show hindgut dextral looping (A), whereas

myoID homozygous mutant flies show either looping

inversion (sinistral, B) or mislooping (C).

(D–F) Confocal microscopy images of thewhole adult

abdomen showing hindgut looping in wild-type

(D, dextral), inverted, and mislooped myoID mutant

flies (E, sinistral; F, mislooped). The hindgut is false

colored for clarity (blue indicates dextral; red in-

dicates sinistral; orange indicates mislooped). This

color code is used hereinafter. Scale bar, 100 mm.

(G) Histogram showing the adult hindgut and termi-

nalia phenotypes following knockdown of myoID in

either the terminalia LR organizer (A8-Gal4) or the

whole hindgut precursor tissue (i.e., the imaginal ring;

hindgut-Gal4 or HG-gal4); same color code is used

as in (D) and (E). N = 100 for each genotype.

(H) Temporal requirement for MyoID activity during

hindgut (green line) or terminalia (red line) LR devel-

opment. In both cases, MyoID function is required

around day 5 of larval development; thus, 3 days

before actual adult hindgut looping (purple arrow).

N = 50 flies for each time point.

Developmental Cell 33, 675–689, June 22, 2015 ª2015 Elsevier Inc. 677



Figure 2. MyoID Is Expressed and Essential in the H1 Domain for Hindgut LR Asymmetry

(A–D’’) Confocal images of L3 imaginal rings stained with specific markers expressed in the larval imaginal ring. Expression patterns shown in (A’–D’) and (A’’–D’’)

are schematized on the right in gray. MyoID is expressed specifically in the H1 domain, overlapping with Wg-expressing cells. The yellow and orange lines show

positions for H1 cells and H2 cells, respectively. Scale bars, 50 mm.

(E) Schematic representation of the larval digestive tract. The H1 (yellow) and H2 (orange) domains of the imaginal ring are shown. Summary of the phenotypes

induced bymyoIDRNAi expression in the larval imaginal ring. Expression of MyoID specifically in the H1 domain is essential for proper dextral looping of the adult

hindgut. Phenotypes are color coded as in Figure 1.

See also Figures S1 and S2.
hindgut MyoID-dependent organizers are spatially distinct, they

are temporally synchronous.

The Hindgut LR Organizer Lies in the H1 Domain of the
Larval Imaginal Ring
As mentioned earlier, the adult hindgut derives from the larval

imaginal ring that comprises two domains, a small anterior

domain called H1 and a larger posterior domain called H2 (Fig-
678 Developmental Cell 33, 675–689, June 22, 2015 ª2015 Elsevier I
ure 2E) (Murakami and Shiotsuki, 2001). To precisely map

MyoID-expressing cells in the imaginal ring, we analyzed

the expression of several myoID reporter lines (myoID-Gal4,

myoID-lacZ, and myoID::GFP) relative to that of known markers

in the larval hindgut (GBE-Su(H)-Gal4, hindgut-GAL4; Figures

2A–2D; Figures S1A and S1B) (Fox and Spradling, 2009; Taka-

shima et al., 2013) and ptc-Gal4 (described in this study; Fig-

ure 2C; Figures S1C and S1D). We found that MyoID-expressing
nc.



cells co-localize perfectly with Wg expression, which marks all

H1 cells (Figure 2B). To check whether MyoID expression is

exclusive of H1 cells, we used the posterior H1 and anterior H2

marker ptc>GFP (ptc-Gal4, UAS-MCD8GFP), which overlaps

the H1-H2 boundary. Notably, MyoID colocalized with ptc>GFP

in posterior H1 cells but not in H2 cells (Figure 2C; Figures S1C

and S1D). These results were confirmed by checking the

absence of MyoID expression from the H2 domain using an

exclusive H2 marker (GBE-Su(H)-Gal4, UAS-mCD8-GFP) (Fig-

ure 2D; Figures S1A and S1B). From these data, we conclude

that MyoID is precisely expressed in the H1 domain.

To test whether H1 cells may represent the adult hindgut LR

organizer, myoID function was knocked down by RNAi using

Gal4 drivers (Figure S1E) expressed in different portions of the

ring domain. The sinistral phenotype observed using myoID-

Gal4 (H1 driver) was also obtained using hindgut-Gal4, which

is expressed in both the H1 and H2 domains, and ptc-Gal4,

which is expressed in a subset of posterior H1 cells as well as

in anterior H2 cells (Figures 2A–2C and 2E). However, no

phenotype was observed using the H2-specific driver (GBE-

Su(H)-Gal4), indicating that H2 cells do not play a role in LR

determination (Figures 2D and 2E), even though GBE-Su(H) is

expressed at higher levels than ptc-Gal4 or myoID-gal4 (Fig-

ure S1E). In addition, the phenotype was not enhanced by

combining H1 and H2 drivers (Figures S2A and S2B). Altogether,

these data show that MyoID activity in the H1 domain is neces-

sary and sufficient for proper LR asymmetry of the adult hindgut.

Furthermore, these data show that the newly identified

Drosophila MyoID-dependent LR organizer is localized in the

H1 domain of the imaginal ring.

The Hindgut LR Organizer Is a Transient Structure
Although lineage-tracing experiments have identified the adult

pylorus and ileum precursors, the exact contribution of the H1

domain to different parts of the tissue has not been revealed (Ta-

kashima et al., 2013). Therefore, we analyzed the contribution of

H1/MyoID cells to the adult hindgut through a lineage-tracing

method using the myoID-Gal4 line (see Supplemental Experi-

mental Procedures; lineage tracing usingUAS-flpase and flpouts

allows us to trace the lineage of cells expressing a specific Gal4

driver and, by gating Gal4 effectiveness with Gal80ts, limits the

tracing to those cells expressing Gal4 at the time of heat shock).

We confirmed that the progeny of H1+H2 cells (hindgut-Gal4

lineage) or H2 cells alone (GBE-Su(H)-Gal4 lineage) covers the

entire adult hindgut, including the recently identified posterior

terminal midgut (Figures 3A and 3B) (Takashima et al., 2013).

However, the progeny of H1 cells (myoID-Gal4 lineage) does

not cover any cell population of the adult hindgut or midgut,

similar to a negative control lacking a Gal4 transgene (Figures

3C and 3D), suggesting that, in fact, the adult hindgut derives

solely from H2 cells.

To further determine the fate of H1 cells, we followed their

behavior during pupal development. Consistent with our line-

age-tracing experiments, myoID-Gal4 is not expressed in the

developing hindgut during late pupal stages, indicating that H1

cells have indeed a distinct fate from that of H2 cells (Figure 3L).

In fact, at 7 hr after puparium formation (APF), H1 cells (express-

ing both MyoID and hindgut-Gal4) start to adopt a migratory

behavior (Figure 3E), and at 10 hr APF, they are physically sepa-
Devel
rated from the rest of the imaginal ring (Figures 3F and 3G). Then,

at 24 hr APF, H1 cells are found in the pupal midgut (Figures 3I

and 3J), a transient structure responsible for larval midgut degra-

dation prior to its elimination in the meconium by young adults

(Takashima et al., 2011). Consistently, H1 cells are also found

in themeconium (Figures 3M and 3N), indicating that the H1 cells

are degraded in the pupal midgut alongwith other transient larval

tissues. Note that H1 domain detachment is normal inmyoID null

mutants, indicating that myoID does not have a role in this pro-

cess (Figures 3H and 3K). Altogether, this analysis demonstrates

that the H1 domain is a transient structure. Thus, we hypothe-

sized that intervention of the H1 domain in hindgut asymmetry

breaking occurs prior to H1 detachment.

To test thismodel, H1cellswere ablated at different timepoints

by driving expression of the pro-apoptotic gene reaper in a tem-

perature-dependent manner (using myoID-Gal4;tub:Gal80ts).

Strikingly, ablating the H1 domain between 0 and 10 hr APF re-

sulted in a mislooped phenotype, whereas ablation of H1 after

10 hr APF (i.e., after H1 detachment) had no effect on adult hind-

gut looping. Notably, the overall adult hindgut integrity—and, in

particular, the midgut-hindgut junction—was not compromised

byH1 ablation, as shownby histochemical analysis and retention

of blue food dye in adult guts (Figure S3). These results are

consistent with the fact that H1 cells do not structurally constitute

the adult hindgut and further demonstrate that the H1 domain is

essential prior to detachment to control hindgut asymmetry.

Furthermore, our results redefine the adult hindgut fate map.

Indeed, previous work has shown that the boundary between

the hindgut and themidgut is not stable, with some anterior hind-

gut cells crossing the border to invade the midgut to form the

posterior terminal midgut (Takashima et al., 2013). However,

we show that the most anterior MyoID/Wg/H1 cells are elimi-

nated and, thus, do not contribute to the posterior terminal

midgut. Therefore, we propose that H2 cells are the adult hindgut

proper primordial cells (with the most anterior H2 cells invading

and constituting part of the midgut), whereas H1 cells are, in

fact, transient, non-structural, regulatory cells that provide the

LR directional cue guiding adult hindgut looping.

H1 Cells Transmit Directionality to the Hindgut
Precursor Cells
Since the H1 domain detaches from the adult hindgut

primordium well before hindgut looping and morphogenesis

(approximately 50 hr before), it raises the question of how H1

MyoID-generated LR information is translated to H2 cells. There-

fore, we analyzed cell behavior in the H2 domain during early

pupal development. Cell shape changes and orientation were

characterized by measuring the orientation of cellular mem-

branes relative to the AP axis (Viktorinová and Dahmann, 2013)

(Figures 4A and 4B; see Figures S4A, S4B, and S4G for details

of the method). Before puparium formation (larval stage 3 [L3]),

H2 cells are oriented perpendicularly to the AP axis, with no

visible LR asymmetry (Figures 4C, 4F, and 4I). Strikingly though,

the first visible cell shape changes occur at 10 hr APF, when H2

cells become oriented with a +50� bias relative to the AP axis; we

call this orientation dextral by convention (Figures 4D, 4G, and

4J). Notably, H2 cells in myoID mutants are inverted compared

to those in wild-type, showing an orientation of �50� (sinistral)

(Figures 4E, 4H, and 4K). Measurement of cell orientation by
opmental Cell 33, 675–689, June 22, 2015 ª2015 Elsevier Inc. 679



Figure 3. The Hindgut Organizer Is a Transient Structure

(A–D) Lineage-tracing experiments showing the progeny (GFP, green) of H1+H2 (A), H2 (B), or H1 (C) cells or a negative control (D). The green signal near the

posterior end (P) of the hindgut in (C) and (D) corresponds to auto-fluorescence. Due to the large size of the hindgut, images were obtained by stitching multiple

scans. AMG, adult midgut. AHG, adult hindgut, A, anterior. tPMG, terminal posterior midgut. N = 20 guts per genotype with 100% penetrance. Scale bars in all

panels, 50 mm.

(E) The H1 domain, marked by hindgut-Gal4 starts to separate from the H2 domain around 7 hr APF.

(F) Detachment of the H1 domain is complete at 10 hr APF. The yellow dashed line shows the distance between H1 and H2 cells.

(G) myoID-Gal4 expression is no longer seen in the hindgut (orange dotted line) starting at 10 hr APF.

(H) Similar to (F), detachment of H1 is not impaired in myoID mutants.

(I–I’’) At 24 hr APF, H1 cells (expressing GFP) are trapped inside the pupal midgut (PMG, encircled, yellow dashed line), together with the larval midgut (LMG); H2

cells, on the other hand, are located between the adult midgut (AMG) and the degrading larval hindgut (LHG, marked by white dashed lines). (I’) and (I’’) are

magnification images from (I). Due to the large size of the hindgut, the image was obtained by stitching multiple scans.

(J) At 24 hr APF, H1 cells present in the pupal midgut still express myoID::GFP (red) and hindgut-Gal4 (green).

(K) At 24 hr APF, myoID mutants H1 cells, marked with hindgut-Gal4, are also trapped in the pupal midgut.

(L) At 36 hr APF, MyoID expression is not detectable in H2 cells (orange line).

(legend continued on next page)
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Figure 4. MyoID Controls Early LR Polariza-

tion of H2 Cells

(A and B) Representative L3 (A) and 10 hr APF (B)

imaginal rings expressing PH::GFP to mark cell

membranes (hindgut-Gal4, UAS-PH::GFP). The

black box delineates the region used for quanti-

tative measurements. R, right; L, left; A, anterior;

P, posterior.

(C–E) Representative images of H2 cells at

different time points. At 0 hr APF, cells do not show

any LR bias (C), whereas at 10 hr APF, cells

become elongated and orient toward the right side

(D). In myoID null mutants, cells show an inverted

orientation toward the left side (E).

(F–H) Graphic plot showing the distribution of

cellular angles found in H2 cells at 0 hr APF in wild-

type cells (control, F) and at 10 hr APF in wild-type

(G) and myoID mutant cells (H). Mean values are

represented by a solid line, and SEM is shown in

gray. In (F), the peak at 90�/�90� represents

symmetrical orientation along the hindgut AP axis,

whereas in (G) and (H), peaks indicate preferential

rightward or leftward orientations measured at

10 hr APF. N = 10 guts for each genotype.

(I–K) Plot of the sum of rightward (R)- against

leftward (L)-oriented angles. At 0 hr APF, there is

no significant LR preference (I), while at 10 hr APF,

there is a clear 2.5-fold difference between R and

L (J). In myoID mutants, this difference is inverted

(K). Error bars indicate SE. ***p < 0.0001; NS, non-

significant.

See also Figure S4.
an alternative method using cell long-axis led to the same

conclusion (Figures S4A–S4F).

Altogether, these data indicate that MyoID activity in H1 cells

orchestrates the early H2 cell-shape changes underlying

directional looping of the adult hindgut. Thus, myoID has an

instructive and cell-non-autonomous function in H1 to direct

LR asymmetry of the H2 hindgut precursor cells.

PCP Mediates LR Polarity of H2 Cells
The question remains as to how LR asymmetry is transmitted

and maintained in H2 cells from H1 detachment to looping
(M) The pupal midgut, together with the remnants of the larval midgut, is expelled during the first hours of a

(N) Confocal image of a meconium showing hindgut-Gal4-positive cells.

(O) Schematic representation of H1 domain behavior at different time points showing the detachment of the

(P) Schematic representation of the fate map of adult hindgut and posterior midgut.

See also Figure S3.
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morphogenesis. It is noteworthy that

cell-shape changes in H2 cells occur in

the plane of the epithelium. Therefore,

we asked whether the PCP pathways

that set and maintain PCP in other

epithelia (Axelrod, 2009; Goodrich and

Strutt, 2011; Peng and Axelrod, 2012)

are also required for hindgut LR polarity.

To do so, we drove RNAi targeting com-

ponents of the core and global PCP path-

ways in either H1 (myoID-Gal4) or H1+H2
cells (hindgut-Gal4). Knocking down any of the core system

components in H1+H2 cells resulted in a penetrant mislooped

adult hindgut phenotype (Figures 5B–5D and 5E; Figure S5A).

In contrast, RNAi depletion solely in H1 cells did not lead to

any looping defect (Figure 5F), suggesting that the core PCP

genes are required in H2 cells alone for maintaining proper polar-

ity and looping of the adult hindgut.

Similar to the core system, RNAi depletion of the global PCP

pathway ft, ds, or fj genes in H1+H2 or H2 cells (using hindgut-

GAL4 orGBE-Su(H)-Gal4, respectively) resulted in a highly pene-

trant mislooped phenotype (Figures 5G–5I and 5K; Figures S5B
dult life in the meconium.

H1 domain from the H2 domain.
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Figure 5. Hindgut Phenotypes of Core and Global PCP Genes

(A–D) and (G–J) show hindgut phenotypes from control flies (A), flies expressing RNAi against core (green, B–D) or global (purple, G–J) PCP pathway genes, and

flies expressing ds-RNAi specifically in the H1 domain (J). Representative confocal images are shown with false-colored hindguts for clarity (color coded as in

Figure 1). Scale bar, 100 mm. In (E), (F), (K), and (L), histograms show the percentage of hindgut rotation defects following RNAi depletion of the core and global

system components in the entire imaginal ring (H1+H2 domains), using hindgut-Gal4 (E and K), or specifically in H1 cells, usingmyoID-Gal4 (F and L). N = 100 for

each genotype. See also Figures S2 and S5.
and S5D). Surprisingly though, and unlike for any other member

of the PCP pathways, knockdown of ds specifically in H1 cells

resulted in a highly penetrant mislooped phenotype, indicating

that ds is essential in the H1 domain for adult hindgut asymmetry

(Figures 5J and 5L; Figure S5C). Depletion of fat led to a weak

phenotype, which could be enhanced by removing one copy of

the gene (Figure 5L; Figure S2C). In contrast, fj loss of function

did not show any phenotype (Figure 5L; Figure S2D), consistent

with its expression being restricted to the posterior H2 region

(Figures S2E–S2E’’’).

The strong ds loss-of-function phenotype reveals that Ds

plays a non-autonomous role in H1 cells to direct H2 direction-

ality. Altogether, these results indicate that adult hindgut looping
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relies on proper PCP signaling in both H1 and H2 compartments.

Although both Fz and Ft/Ds systems participate in maintaining

LR orientation in H2 cells, the atypical cadherin Ds achieves a

specific function in the H1 domain.

Ds Interacts with MyoID to Control Early LR Polarity of
H2 Cells Non-Autonomously
To further assess the role of Ds in H1 cells, we specifically

removed ds function from H1 cells using myoID-Gal4 and

analyzed H2 cell orientation. Notably, the quantification of mem-

brane orientation showed a complete loss of H2 cell orientation

bias (Figures 6A and 6B). Therefore, ds is essential in H1 cells

for H2 cell LR polarity. Notably, the absence of bias inversion
nc.



Figure 6. Genetic and Biochemical Interac-

tion between MyoID and Ds in H1 Cells

(A) Representative images of H2 cells at 10 hr APF,

from control flies (top) or ds-RNAi flies (bottom).

Cells are elongated and oriented toward the right

side in control, while in ds-RNAi flies, cells do not

show any bias as in early 0 hr APF H2 cells

(compare with Figure 4C).

(B) Knockdown of ds in the H1 domain results in a

loss of LR polarity as revealed by the distribution of

cellular angles found in H2 cells compared to the

control (blue line). N = 10 guts for each genotype.

(C) Plot of the sum of rightward (R)- and leftward

(L)-oriented angles after depletion of Ds in H1 cells

at 10 hr APF. Control cells show a bias toward the

right side, while depletion of ds from H1 cells leads

to a loss of the LR bias. Error bars indicate SE.

***p < 0.0001; NS, non-significant.

(D–F) Phenotype of heterozygous ds (D), myoID

(E), or double ds; myoID heterozygote (F) flies.

Representative confocal images are shown with

false-colored hindguts for clarity (color coded as in

Figure 1). N = 100 guts for each genotype. Scale

bars, 100 mm.

(G) Histogram showing the percentage of defects

in single and double heterozygous flies mutant for

ds and/ormyoID. Error bars indicate SE. *p < 0.01.

N = 100 for each genotype.

(H) Co-immunoprecipitation experiment using

myoID-gal4, UAS-myoID::GFP; attpB-P(acman-

ds::HA) larval hindgut extracts. MyoID is specif-

ically immunoprecipitated by Ds::HA but not if a

non-specific antibody is used (NS Ab).

(I) Confocal image of an imaginal ring from a larva

overexpressing MyoID::GFP and Ds-HA at low

levels (myoID-Gal4, UAS-myoID::GFP; attpB-

P(acman-ds::HA). Ds expression is visible in both

H1 (marked by myoID-Gal4) and H2 cells. White

dashed line outlines the H1/H2 border.

(J–L) Confocal images of Ds-GFP knockin allele

showing Ds membrane distribution at 4 hr APF (J),

7 hr APF (K), and 10 hr APF (L).

See also Figure S6.
in ds mutants, as observed in myoID mutant conditions, indi-

cates that ds is essential in H1 to transmit both dextral and sinis-

tral orientations. Therefore, in the absence of ds, directional
Developmental Cell 33, 675–6
guidance cannot be conveyed to H2 cells;

thus, the tissue remains naive.

The unique involvement of Ds in

the H1 domain suggests a possible

interaction with MyoID to direct LR

asymmetry. To test this hypothesis,

we evaluated potential genetic interac-

tions between the two genes. Heterozy-

gous mutant flies for ds or myoID show

mislooped phenotypes with no or very

low penetrance (�2%), respectively (Fig-

ures 6C and 6D). However, in double-

heterozygous flies mutant for one myoID

and one ds allele, the frequency of mis-

looped defects is significantly raised

(Figures 6E and 6F), indicating that
myoID and ds interact for proper adult hindgut looping and

suggesting they affect a common process important for LR

asymmetry.
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Ds Intracellular Domain Is Responsible for MyoID-
Dependent LR Polarization
Previously, MyoID has been shown to bind b-catenin and

Drosophila E-cadherin (DE-cadherin) for proper looping of the

terminalia (Petzoldt et al., 2012; Taniguchi et al., 2011). Since

Ds is an atypical cadherin whose expression is needed in the

same domain as MyoID in the imaginal ring (Figure 5), we tested

whether MyoID and Ds also interact molecularly. For this pur-

pose, we expressed both MyoID-GFP- and Ds-hemagglutinin

(HA)-tagged proteins in the H1 domain. In this experiment, a

genomic construct for Ds (Ds::HA) and myoID-Gal4 was used

to drive tagged proteins (Figure 6I). Co-immunoprecipitation

with anti-HA antibodies from larval hindgut extracts led to the

specific pulldown of MyoID::GFP (Figure 6H; specificity of the

anti-HA immunoprecipitation was tested in a separate experi-

ment and did not show any cross-reaction; Figure S6). These

data show that MyoID and Ds bind in a same complex and

interact together in H1 cells for proper LR morphogenesis of

the hindgut.

MyoID is known to act inside cells; therefore, we checked

whether MyoID specifically interacts with the Ds intracellular

domain (ICD). Tagged forms of MyoID (MyoID-GFP) and the Ds

intracellular domain (Ds amino acids 3120–3556; Ds-ICD-Flag)

were co-expressed in Drosophila S2R+ cells. It is interesting

that we noticed that both proteins co-localize and accumulate

at membrane sites in contact with neighboring cells (Figure 7A).

This co-localization was further supported biochemically in a co-

immunoprecipitation assay showing that MyoID-GFP is able to

co-immunoprecipitate the full-length intracellular domain of Ds

(Figure 7B).

In other planar polarized epithelia, ds overexpression induces

long-range polarity rearrangements due to Ds protein mislocali-

zation (Ambegaonkar et al., 2012; Brittle et al., 2012; Bosveld

et al., 2012; Matakatsu and Blair, 2006). Notably, overexpression

of ds in H1 cells induces a gain-of-functionmislooped phenotype

in about 40% of flies (Figure 7D), suggesting that stoichiometry

between MyoID and Ds should be maintained in H1 cells.

Thus, overexpression of MyoID would be expected to, at least

partially, rescue the ds overexpression phenotype. In fact, the

ds overexpression phenotype (but not the fat overexpression

phenotype; Figure S2F) was fully rescued by co-overexpression

of myoID in H1 cells (Figures 7G and 7J), corroborating the

importance of the Ds-MyoID interaction in H1 for proper looping.

To further test the MyoID/Ds interaction, we performed epistasis

experiments in H1 cells. When ds is overexpressed in H1 cells

along with an RNAi against myoID, all hindguts are mislooped

and none show sinistral looping (Figure S2G). In addition, deple-

tion of both ds and myoID also lead to a mislooped phenotype

(Figure S2H). Although some alternative models of interaction

may take place, these results suggest that ds lies downstream

of myoID to set LR asymmetry of the hindgut.

We used the rescue assay described earlier to further probe

which of the Ds domains is required for interaction with MyoID

in vivo by overexpressing truncated forms of Ds, lacking either

the intracellular (dsDICD) or the extracellular (dsDECD) domain

(Matakatsu and Blair, 2006). Expression of these truncated forms

also led to a gain-of-function mislooped phenotype (Figures 7E

and 7F). However, the phenotype induced by overexpression

of dsDICD was not at all rescued upon co-expression of MyoID
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(Figures 7H and 7K), confirming that the Ds intracellular domain

is, indeed, important for the interaction with MyoID. The mis-

looped phenotype observed by overexpression of dsDECD is

likely due to the displacement of endogenous full-length Ds/

MyoID complexes or the production of abnormal Ds dimers (Fig-

ure 7F). Indeed, dsDECD cannot bind to Ft; therefore, it cannot

propagate planar polarity to other cells. Consistently, this pheno-

type was rescued by MyoID co-overexpression, which likely

re-equilibrates the dose of active versus inactive complexes

(Figures 7I and 7L).

Altogether, these results suggest that Ds/MyoID stoichiometry

is important in vivo and that MyoID in H1 cells propagates LR

asymmetry to H2 target cells through interaction with the intra-

cellular domain of Ds in H1 cells.

DISCUSSION

In this work, we reveal the existence of an hindgut-specific LR

organizer having transient activity. We show that LR information

is transferred non-autonomously from this organizing center to

the target tissue, involving a unique MyoID-Ds interaction taking

place at a PCP signaling boundary (the H1/H2 boundary). Prop-

agation of this initial LR information to the developing hindgut re-

quires both Ds/Ft global and core Fz PCP signaling. Notably,

these results suggest that MyoID can act as a directional cue

to bias planar cell polarity.

So far, only a role for the core PCP pathway in cilia positioning

and LR asymmetry had been reported in mouse, chick, and Xen-

opus (Zhang and Levin, 2009; Antic et al., 2010; Song et al.,

2010). Here, we reveal a role of the Fat/Ds PCP pathway in LR

asymmetry. We show that the atypical cadherin Ds is essential

for early LR planar polarization of hindgut precursors and later

on for looping morphogenesis. Ds has a cell-non-autonomous

function, allowing transfer of LR information from the H1 domain

to H2 hindgut precursor cells. Ds, therefore, represents a critical

relay factor acting at the boundary between, and linking, a LR

organizer and its target tissue.

In addition to a MyoID-dependent function in H1, the mis-

looped phenotype induced upon Ds silencing in the H2 domain

(Figure 5; Figure S5D) suggests that Ds also has a MyoID-inde-

pendent activity in H2 cells, likely through interaction with other

PCP genes. Indeed, reducing the activity of PCP global or core

gene functions reveals that the two pathways are important in

the H2 region for adult hindgut looping (Figures S5D and S5E).

However, the results reveal important differences in the way

these pathways control hindgut asymmetry. First, although the

adult phenotype is similar upon silencing of one or the other

pathway, the early polarization of H2 cells in pupae (10 hr APF)

is only affected when knocking down the activity of Ds, Ft, and

Fj (Figure 5; data not shown). These results show that the Ds/

Ft pathway, but not the core pathway, is required for establishing

early LR polarity. Second, the phenotype is quantitatively

different, since silencing of the Ds, Ft, or Fj PCP gene led to a

consistent and very strong phenotype, while reducing Fz PCP

signaling had a significantly less penetrant one. These data sug-

gest a partly overlapping function of both PCP signaling path-

ways for late hindgut morphogenesis (Figure 5). Therefore, we

propose the following sequential model (Figure 7M): in H1 cells,

MyoID interacts with the Ds intracellular domain, which becomes
nc.



Figure 7. MyoID Interacts with Ds Intracel-

lular Domain

(A) Co-expression of Ds-ICD and MyoID in

Drosophila S2R+ cells reveals co-localization of

both proteins at cell-cell contact sites (arrow-

heads). Heatmap false-colored confocal images

show protein concentration.

(B) Co-immunoprecipitation of Ds-ICD-Flag using

MyoID::GFP as bait in Drosophila S2R+ cells.

(C) Cartoon of full-length and truncated forms of

Ds used in (D–L), showing the intracellular domain

(ICD, green), the transmembrane domain (orange),

and the extracellular domain (ECD, blue).

(D–I) Hindgut phenotype from flies overexpressing

different forms of Ds alone (D–F) or co-over-

expressing different forms of Ds and MyoID (G–I).

Scale bars, 100 mm.

(J–L) Histogram showing the percentage of

defects shown in (D)–(I). Error bars indicate SE.

*p < 0.01. N = 100 for each genotype.

(M) Model of MyoID and Ds interaction in the H1

LR organizer. MyoID induces an ‘‘LR bias’’ (green

dotted arrow) on Ds in H1 cells (represented by Ds

localization on the right). This LR bias is then

transferred to H2 cells through Ds/Ft interaction at

the H1/H2 boundary. At 10 hr APF, H2 cells

become polarized along the LR axis, initiating

looping morphogenesis leading to a fully looped

hindgut at 50 hr APF.

See also Figure S2.
‘‘biased’’ toward dextral through a currently unknown mecha-

nism (discussed later). This initial LR bias is then transmitted

across the H1/H2 boundary through Ds/Ft heterophilic interac-

tion. Then, boundary H2 cells relay the initial bias and spread it
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to the remaining H2 cells through clas-

sical Ds/Ft PCP. It is interesting that the

local signaling boundary suggested by

our model is consistent with recent

studies showing that Ds can propagate

polarity information in a range of up to

eight cells, a distance that is consistent

with the size of the H2 domain at 10 hr

APF (Figure 4) (Ambegaonkar et al.,

2012; Bosveld et al., 2012; Brittle et al.,

2012). Once initial polarity has been set

up through the Ds/Ft pathway, this is

further relayed to and/or amplified by

the core pathway. Notably, a similar

two-step mechanism has also been pro-

posed for the wing (Hogan et al., 2011;

Ma et al., 2003; Yang et al., 2002) and

could apply to other tissues (Olofsson

et al., 2014; Ayukawa et al., 2014).

The discovery of a coupling between

the MyoID dextral factor and Ds is a

nice example of crosstalk between exist-

ing signaling modules (Noselli and Perri-

mon, 2000). In the simplest crosstalk

model, the role of MyoID would just be

to bias or tilt Ds function toward one
side, possibly through Ds localization and/or activity polarization

along the LR axis (Figure 7M). Using both in vitro and in vivo as-

says, we show that interaction between Ds and MyoID requires

Ds intracellular domain, supporting a cytoplasmic interaction
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between the two proteins. These results, along with recent find-

ings, suggest that Ds may represent a general platform for

myosin function in different tissues. In particular, the intracellular

domain of Ds was found to bind to the unconventional myosin

Dachs, controlling Dachs polarized localization, which is impor-

tant for subsequent cell rearrangements underlying thorax

morphogenesis (Bosveld et al., 2012). However, in contrast to

thoracic Dachs, MyoID is not obviously polarized in H1 cells (Fig-

ure 6), suggesting that the interaction between myosins and Ds

may involve different mechanisms. Additionally, we could not

detect any LR polarized localization of MyoID or Ds in H1 cells

(Figures 6I–6L), although we cannot exclude the existence of

subtle asymmetries undetectable by available tools. Neverthe-

less, alternative means to generate the LR bias in H1 include:

(1) LR polarized expression of an unknown asymmetric factor

or (2) LR asymmetric activity of Ds. These interesting possibilities

are consistent with recent work showing that some type I myo-

sins can generate directed spiral movement of actin filaments

in vitro (Pyrpassopoulos et al., 2012). It is tempting to speculate

that, similarly, MyoID putative chiral activity could be translated

into Ds asymmetrical function along the LR axis (Figure 7M).

Future work will explore this possibility as well as others to

unravel the molecular basis of MyoID LR biasing activity in the

H1 organizer.

The identification of the H1 domain as a specific adult tissue

LR organizer demonstrates the existence of multiple indepen-

dent tissue and stage-specific LR organizers in flies. This

situation echoes what is known in other models, including verte-

brates, in which at least two phases of asymmetry establishment

can be distinguished. A first pre-gastrula phase, as early as the

four-cell stage in Xenopus, involves the generation of asym-

metric gradients of ions. Then, a second phase takes place at

gastrulation and involves Nodal flow and asymmetric cell migra-

tion, eventually leading to asymmetric expression of the nodal

gene in the left lateral plate mesoderm (Adams et al., 2006; Levin

et al., 2002; Raya and Izpisúa Belmonte, 2006). In Drosophila,

some interesting common and specific features can be drawn

out by comparing the hindgut and terminalia organizers (Gémi-

nard et al., 2014; Spéder et al., 2006). The first major common

feature is the fact that both organizers rely on MyoID function,

showing the conserved role of this factor in Drosophila LR

asymmetry. Second, the two organizers show temporal

disconnection, acting much earlier than LR morphogenesis,

which is expected of a structure providing directionality to

tissues per se (24 hr for terminalia and �72 hr for hindgut

looping). Such temporal disconnection of MyoID function with

late morphogenesis is also observed in the terminalia where a

peak of MyoID activity precedes terminalia rotation by 24 hr

(Spéder et al., 2006; Suzanne et al., 2010). Time lag in MyoID

function requires LR cue transmission and maintenance in

developing tissues until directional morphogenesis. The finding

of a role of Ds and PCP in hindgut LR asymmetry provides a

simple mechanism by which initial LR information is maintained

and transmitted across tissue through long-range PCP self-

propagation.

Notably, the two organizers also show distinct features. In ter-

minalia, MyoID has a cell-autonomous function in two adjacent

domains (Suzanne et al., 2010). In addition, the terminalia orga-

nizer is permanent, developing as an integral component of the
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adult tissue. In contrast, MyoID in the imaginal ring has a cell-

non-autonomous function. Indeed, a striking feature of the hind-

gut organizer is its transience as it detaches from the hindgut

precursors 50 hr before full looping morphogenesis prior to its

degradation and elimination; hence, the need to transfer LR in-

formation to the H2 hindgut primordium. An interesting question

then is whether the MyoID-Ds/PCP interaction is conserved in

terminalia. We have shown that terminalia rotation requires the

activity of DE-cadherin; however, invalidation of the atypical

cadherins Ds or Ft or core PCP signaling in the terminalia orga-

nizer did not affect asymmetry (Petzoldt et al., 2012). The fact

that PCP does not have a general role inDrosophila LR asymme-

try is not altogether surprising, as MyoID cell-autonomous func-

tion in terminalia and organizer persistence does not require that

LR information be transferred to and stored in other parts of the

tissue, as is the case in the hindgut. Therefore, despite conserva-

tion of the MyoID-dependent upstream dextral cue, significant

differences in downstreammorphogenetic pathways imply alter-

native cellular mechanisms controlling cue transmission and

maintenance.

The LR signaling module, comprising the dextral determinant

MyoID and the still-unknown sinistral determinant, can therefore

be coupled to distinct morphogenetic modules, including PCP,

as shown in this study. We suggest that coupling between LR

asymmetry and PCP might be observed in processes requiring

long-distance patterning of tissues and organ precursors, both

in invertebrate and vertebrate models. Understanding organ

LR morphogenesis clearly requires studying diverse and com-

plementary models. In this context, the multiplicity of LR orga-

nizers discovered in Drosophila represents a powerful model to

study the diversity in the coupling of LR organizers with down-

stream programs responsible for late tissue morphogenesis. In

particular, the Drosophila hindgut represents an invaluable

model for studying the genetic basis and molecular mechanisms

coupling LR asymmetry with PCP patterning.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for details about the methods.

Genetics

The strain w1118 was used as control. TubP:Gal80ts, UAS-FLP, Ubi-p63E(FRT.

STOP)Stinger, ds05142, ds38k, ds33k, fj9-11, UAS:PH(g)-GFP, UAS:myrRFP,

10XStat92E-GFP, UAS:MCD8-GFP, and UAS:dicer2 were all obtained from

the Bloomington Drosophila Stock Center (BDSC). The hindgut-specific

byn-Gal4 was originally described by Judith Ann Lengyel (Iwaki and Lengyel,

2002) but was given to us by Kenji Matsuno. The A8-specific Abd-BLDN-Gal4

was a gift from E. Sanchez Herrero (de Navas et al., 2006). GBE-Su(H)-Gal4

drives expression in H2 cells and was a gift from Xiankun Zeng (Zeng

et al., 2010). ptc-Gal4, myoID-Gal4(NP1458), myoID-lacZ, myoIDk2/k2, UAS:

myoID-RNAi-2X, and UAS:myoID-GFP have been previously described

(Spéder et al., 2006). P(w+, genomic-myoID-GFP) is a insertion in the second

chromosome that contains the genomic sequence of myoID in which a HA-

GFP cassette has been placed before the stop codon and that can rescue

myoIDk2/k2 phenotypes. attB-P(acman-ds-HA) was a gift from Ken Irvine

(Ambegaonkar et al., 2012). The Ds::GFP knockin allele was a gift from David

Strutt (Brittle et al., 2012). The following RNAi lines were used: dsGD14350,

dsGD2646, dsJM02842, dsGD14350, ftKK101190, ftGD881, ftJF03245, ftGD430, ftHMS01310,

ftJF02843, dgoHMS01454, dgoGD7575, dgoKK109514, fzGD4614, fzKK108004, pkGD1510,

stanHMS01464, stanJF02047, stanGD607, stanGD1889, vangGD1889, vangKK108814.

They were obtained from the BDSC and Vienna Drosophila RNAi Center

(VDRC).
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TARGET System

Experiments were performed as described by Spéder et al. (2006) using the

TARGET system (described in McGuire et al., 2003). In brief, synchronized

fly populations of the genotype myoD-Gal4, tub-Gal80TS/UAS-myoID-RNAi

were raised at 25�C (Gal4 OFF) and then moved for 1 day to 29�C (Gal4

ON). The same procedure was used in combination withUAS-reaper to genet-

ically ablate H1 cells, but in this case, flies were kept at 29�C for 1 hr.

Lineage-Tracing Strategy

Flies carryingmyoID-Gal4 (H1),GBE-Su(H)-Gal4 (H2), or byn-Gal4 (H1-2) were

crossed to flies bearing the following transgenes: TubP:Gal80ts,UAS-FLP, and

Ubi-p63E(FRT.STOP)Stinger-GFP (Evans et al., 2009). The offspring was

raised at 18�C until larval stage 2 (L2) and then transferred and kept at 29�C
to allow the expression of the flp gene, causing the excision of the stop

cassette and leading to continuous Stinger-GFP expression. Finally, flies at

the white prepupal stage were transferred back to 18�C to prevent further

Stinger-GFP expression. Adults were dissected and analyzed for Stinger-

GFP presence. As a negative control, both flies without a Gal4 construct and

flies that never underwent the 29�C heat shock were used.

Antibodies and Staining

Larval and adult hindguts were dissected in PBS and fixed in 4% formaldehyde

for 20 min. Subsequent washes and incubations were conducted in PBS with

0.1% Triton. Tissues were incubated overnight with primary antibody at 4�C,
followed by a 2-hr incubation with secondary antibodies at room temperature.

Antibodies used were mouse anti-Wg (Developmental Studies Hybridoma

Bank [DSHB], 1:50) and mouse anti-B-Galactosidase (Promega 1:1,000).

F-actin was stained using Phalloidin-Cy3-fluorescein isothiocyanate (FITC;

Molecular Probes 1:400). FITC-, Cy3-, and Cy5-conjugated secondary anti-

bodies were obtained from Jackson ImmunoResearch Laboratories and

used at 1:200.

Blue Erioglaucine Staining

Flies were fed a mixture of 3% agar, 5% sucrose, and 2.5% erioglaucine

(Sigma, #861146) for at least 6 hr. Then, the adult hindgut position was exam-

ined in a Leica MZ6 stereomicroscope.

Cell Polarity Measurements

A small square was selected in themiddle of the H2 ring to minimize the effects

of deformation caused by the architecture of a tube. Images were previously

aligned along the AP axis. LR cell orientation was then analyzed with Fiji soft-

ware, first manually by calculating the main axis of one cell and measuring its

angle with the perpendicular AP axis and then by using the Fiji ‘‘Directionality’’

plug-in created by Jean-Yves Tinevez (http://fiji.sc/directionality). This plug-in

gives the preferred orientation of structures present in the input image (cellular

membrane) and plots them as a histogram of frequencies (Figure S4G).

For measuring the long-axis and cell orientation angle, cells were first

segmented using the ‘‘find maxima’’ tool from Fiji with the ‘‘segmented parti-

cles’’ option as output. Finally, the segmented polygons were directly

measured using the ‘‘measure tool’’ in Fiji software (Figures S4A–S4F).
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