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Abstract8

Visible and Near infrared (Vis-NIR) spectroscopy is now a common analyt-9

ical method to measure di�erent physical and chemical properties of soils,10

including carbon content. However, prediction model accuracy is insu�cient11

for Vis-NIR spectroscpopy to replace routine laboratory analysis. One of12

the main issues this technique is facing up to is light scattering due to soil13

particles. It causes departure in the assumed linear relationship between the14

absorbance spectrum and the concentration of the chemical components as15

stated by Beer-Lambert's law, which underpins the linear calibration models.16

Therefore it is essential to improve the quality of the measured signal17

in order to optimize the calibration results. Optics can help to mitigate18

scattering e�ect on the signal.19

The aims of this study were to test the feasibility of a new optical setup,20

names PoLiS, coupling linearly polarized light with a Vis�VNIR (350 - 80021

nm) spectrometer to free the measured spectra from multiscattering e�ect.22

The measured signals were used to model the chemical absorbance of the soil23

samples using Dahm's Equation in the frame of the Representative Layer24

Theory (RLT).25

The study was conducted using a set of 52 soil samples collected in France26

(in the French calcareous Prealps) to predict soil Total Organic Carbon27

(TOC) content. The PoLiS absorbance signal tended to be more linearly28

related to the concentration of organic carbon, which is an important pre-29

requisite to perform linear multivariate modeling. In a second step, the PLS30

models achieved for TOC performed appreciably better than models based31
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on classical re�ectance spectra. The standard errors of cross validation de-32

creased from 20.8 g.kg−1 to 17.6 g.kg−1 and the coe�cient of determination33

R2 improved from 0.82 to 0.87 on ground samples. To compare the added-34

value of the PoLiS method we benchmarked the PoLiS prediction models35

against models built from empirically preprocessed spectra. Again, the Po-36

LiS method showed better performances.37

This work con�rmed that by optical means, it is possible to signi�cantly38

improve the quality of a spectroscopic signal and as a consequence, improve39

also the quality of the linear model.40

Keywords: Visible and near infrared spectroscopy, Light Polarization, Soil,41

Total Organic Carbon, Representative Layer Theory42
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1. Introduction

With the goal of reducing the amount of greenhouse gases in the at-
mosphere, policy makers encourage practices intended to sequester carbon in
soils (reforestation, changes in farming practices). New methods are required
to rapidly and accurately measure soil Carbon at �eld- and landscape-scales.
Although Visible and Near Infrared Spectroscopy (Vis�NIRS) is an analyti-
cal technology adapted to these speci�cations and becoming a very popular
analytical technology in soil science, it is still steps away from being used as
a routine analytical tool, both in �eld and laboratory. One of the reasons is
that calibration models lack of robustness as soon as in�uence factors, which
are numerous in soils, interfere. One of the main issues is that soils are highly
scattering materials. As a direct consequence, the measurement conditions
are far from the ideal conditions stated by Beer-Lambert's law where the ab-
sorbance should be linearly related to the chemical concentration (Gobrecht
et al., 2014). Light scattering depends on the physical structure of the soil
samples and directly contributes to the shape of the measured spectrum by
hiding (or overlapping) the chemically related information. The absorbance
at wavelength λ is not linear with concentration and there is a real contradic-
tion in building calibration models based on linear multivariate methods such
as the commonly-used Partial Least Square Regression (PLS). Overcoming
this signal quality issue is of great interest because the accuracy of the pre-
diction is directly related to the quality of the measured signal (MacDougall
& Crummett, 1980).

The most common strategy to reduce scattering e�ects is spectral pre-
treatment. This preprocessing step is speci�cally designed to reduce mul-
tiplicative and additive e�ects caused by variations of physical properties
(Rinnan et al., 2009; Martens, 1991). Among them, standard normal variate
(SNV) often associated to detrend (Barnes et al., 1989), multiplicative signal
correction (MSC) (Geladi et al., 1985), Extended MSC (EMSC) (Martens,
1991), normalization or Optical Path Length Estimation and Correction
(OPLEC) (Chen et al., 2006; Jin et al., 2012). However, these approaches
remain questionable: they consider that scattering is nearly constant allover
the wavelengths, which is not the case (Shi & Anderson, 2010); they may
eliminate chemical-related information, which is very small with regard to
scattering e�ects (Martens et al., 2003); they are inappropriate when light
scattering varies greatly from sample to sample (Steponavicius & Thennadil,
2011). As a consequence, the model may sometimes fail when applied on a
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new set of samples.
Another option is to acquire the spectrum in a way that separates the part

related to chemical absorption from the part related to scattering. Speci�c
experimental techniques, based on the application of the light propagation
theory or resolution of the Radiative Transfer Equation (Shi & Anderson,
2010) have been proposed: adding-doubling set-ups (Steponavicius & Then-
nadil, 2011; Prahl, 1995; Steponavicius & Thennadil, 2009), spatially-resolved
spectroscopy (Farrell et al., 1992), time-resolved spectroscopy (Chauchard
et al., 2005; Abrahamsson et al., 2005) and frequency-resolved spectroscopy
(Martens, 1991). Although powerful, these methods have their limitations,
particularly when applied on highly scattering samples. First, they may re-
quire complex and sometimes expensive optical implementations, which may
not be compatible with conventional spectrometers or with highly scattering
samples (for which transmission measurement is not possible). Secondly, as
they rely on the estimation of absorption and scattering coe�cients achieved
by model inversion, parameters describing the studied medium (sample thick-
ness, refractive index, particle size and shape...) must be known or approx-
imated, which may be a troublesome task as they are often unknown in
complex media (Steponavicius & Thennadil, 2011; Swartling et al., 2003).

Bendoula et al. (2015) proposed to combine light polarization and VIS-
NIR re�ectance spectra acquisitions. The Polarized Light Spectroscopy (Po-
LiS) method is an original technique to reduce directly the e�ects of multi-
scattering on the measured signal by using the wave theory of light (Lu et al.,
2006; Backman et al., 1999). When linearly polarized light interacts with a
scattering material, the backscattered light progressively looses its initial
polarization and oscillates randomly in all the planes. Using the principle
of polarization subtraction, Bendoula et al. (2015) measured a re�ectance
spectra being less impacted by multiscattering. In Gobrecht et al. (2015),
the signals measured with the PoLiS method were processed in the frame
of Dahm's Representative Layer Theory (Dahm & Dahm, 2007) to propose
a model of the absorbing power. The method was successfully tested on
model particulate samples (sand + dye) showing that the newly computed
absorbance signal is more linearly related to the concentration of dye in the
sample.

The aim of this study is to test the PoLiS method on real soil samples to
predict Total Organic Carbon (TOC)content in order to:

- validate that PoLiS absorbance measured on soil samples is more lin-
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early related to TOC ;

- evaluate the bene�t of using the PoLiS absorbance in TOC calibration
models ;

- compare this �optical� preprocessing method to commonly used math-
ematical preprocessing methods.

2. Material and Methods

2.1. Soil samples

The 52 studied soil samples, provided by Irstea EMGR research unit are
a subset of a soil sample collection used in a previous research work pub-
lished in Saenger et al. (2013). The samples were collected in the Vercors
High Plateau Natural Reserve (VHPNR) a protected mountainous area in the
French calcareous Prealps (44◦97N - 5◦42E). Soils of the VHPNR developed
on Urgonien limestones and are generally neutral or basic. They comprise hu-
miferous and very shallow Cambisols, Leptosols, Umbirsols and Anthroposols
(FAO/IUSS/ISRIC 200). Detailed information on vegetation and soil types
of the study area are provided in Saenger et al. (2013). The samples were
collected from the Topsoil (0-10 cm) from the A horizon (Organo-mineral
layer). The litter layer, when present, was removed prior to sampling.

After collection, soil samples were air dried and stored at 4◦C until chem-
ical and spectral analysis. Total Organic Carbon was measured by dry
combustion after decarbonation according to NF ISO 10694, using a N/C-
Analyzer (Thermo Scienti�c, FLASH 2000 NC Analyzer, France) (AFNOR,
1995) (Table 1).

Each sample was prepared to get di�erent particle sizes, namely:

- The Coarse form obtained by hand crushing the air-dried soil to get
aggregates smaller than 5 mm. This preparation resulted in a large
variety of particle and aggregate sizes within and between samples,
depending on the type of soil;

- The Sieved form at 2 mm, which is the classical soil preparation prior
to spectral acquisition;

- The �nely Ground form at 0.25 mm.

5
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Each sample was carefully transferred to an adapted 5�cm diameter petri
dish and moved in circles to get an even and horizontal surface before spectral
analysis.

Table 1 HERE

2.2. Instrumentation

The PoLiS optical setup, schematized in �gure 1, was composed of a halo-
gen light source (150 W, Leica Cls) coupled with a 940 µm core diameter
optical �ber (Numerical Aperture N.A = 0.25, Sedi & ATI). The light deliv-
ered by the �ber was collimated by an aspheric lens (F220SMA-B - Thorlabs).
The incident beam was a 1.5 cm diameter circular spot with 1◦ divergence.
The incident and re�ected beam were polarized through two broad-band (400
nm�800 nm) polarizers (NT52-557, Edmunds Optics). Incident light was lin-
early polarized and re�ected light was collected in a narrow cone ( 1◦). The
output from the analyzer was coupled to an optical �ber (N.A = 0.25, Sedi &
ATI) by an aspheric lens (F220SMA-B - Thorlabs). This �ber was connected
to a spectrometer (MMS1, Zeiss). Spectral data were collected in the 400 �
800 nm wavelength range at 3 nm intervals, resulting in measurements at 121
discrete wavelengths per spectrum. A constant angle of 70o was maintained
between the incident and re�ecting arms. This angle was chosen to optimize
intensity of the re�ected beam.

FIGURE 1 HERE

2.3. PoLiS spectral acquisition

Each sample was illuminated with linearly polarized light and the remit-
ted light intensity was measured with the PoLiS setup with the analyzer
set respectively parallel, I‖(λ), and perpendicular, I⊥(λ), with respect to the
polarization of the illumination light (Figure 2). Dark current, Ib(λ), i.e.
signal without light, was systematically recorded for all measured spectra
with the same optical con�guration and subtracted to each measurement.
All measurements were made in a dark room to limit ambient light e�ects.

FIGURE 2 HERE

A di�use re�ectance gray standard (SpectralonrSRS60, Labsphere) was
used to collect a reference spectrum, I0(λ), to standardize spectra from non-
uniformities of all components of the instrumentation (light source, �bers,
lens, polarizer and spectrometer). The reference measurement was collected
every 10 to 15 samples.
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From these measurements, the backscattered re�ectance, RBS(λ), and
the weakly scattered re�ectance, RSS(λ), were computed for each sample
according to Bendoula et al. (2015):

RBS(λ) =

[
I‖(λ)− Ib‖(λ)

]
+ [I⊥(λ)− Ib⊥(λ)]

[I0(λ)− Ib0(λ)]
(1)

RSS(λ) =

[
I‖(λ)− Ib‖(λ)

]
− [I⊥(λ)− Ib⊥(λ)]

[I0(λ)− Ib0(λ)]
(2)

2.4. PoLiS absorbance AbsPO

As proposed in Gobrecht et al. (2015), the PoLiS absorbance AbsPO(λ)
was computed from the backscattered re�ectance RBS(λ) and low scattered
re�ectance RSS(λ) as :

AbsPO(λ) = − log

(
RSS(λ) +

√
(1−RSS(λ))2 − RSS(λ)

RBS(λ)
(1−RBS(λ))2

)
(3)

For comparison, the backscattered absorbance AbsBS(λ) was also com-
puted from the total backscattered re�ectance signal RBS(λ) measured with
PoLiS.

AbsBS(λ) = − log RBS(λ) (4)

2.5. Multivariate Analysis

2.5.1. Principal Component Analysis

An exploratory analysis of the backscattered absorbance spectraAbsBS(λ)
and the PoLiS absorbance spectra AbsPO(λ), was carried out using Princi-
pal Component Analysis (PCA). In order to evaluate the impact of the soil
preparation on the spectra, the spectral data were centered in two di�erent
ways:

- Mean centered, meaning that the mean spectrum of the entire data set
(global mean) is removed from all samples (Coarse, sieved and ground)
to analyze the global variance of the dataset;
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- Centered according to the location: the mean of the three spectra (one
for each particle size preparation) measured for each sample collected at
one location was subtracted. This centering allowed us to examine the
variance within samples having the same TOC content but presenting
di�erent physical structure.

The Wilk's lambda criterion (Λw) was applied on the scores of the PCA.
Wilk's Lambda is the ratio of the within class variance to the total variance
(Roger et al., 2005). Λw ranges from 0 to 1. For a low value, the classes
are well separated and a value close to one indicates that the classes are
confounded.

2.5.2. Calibration with Partial Least Square Regression

Calibration models were built using PLS (Wold et al., 2001), considered
as the benchmark chemometric technique used for quantitative analysis of
di�use re�ectance spectra. The di�erent types of signals computed, RBS(λ),
AbsBS(λ) and AbsPO(λ), were compared on the basis of the performances of
leave-one-out cross-validation models built on the each particle size sample
set to predict soil Total Organic Content (TOC).

Preprocessing methods such as Standard Normal Variate (SNV), Multi-
plicative Scatter Correction (MSC) and modi�ed Optical Pathlength Esti-
mation and Correction (OPLECm) were applied to the di�erent spectra.

Finally, the robustness of the best models obtained in cross-validation for
each particle size class was tested by predicting the other particle size sets.

The performances of the cross-validations, and validations using other
particle size sets as validation samples, were assessed through the number
of latent variables used in the models, the coe�cient of determination R2

and the Standard Error of Cross-Validation (SECV) and Standard error of
prediction (SEP) corrected from the bias (Bellon-Maurel et al., 2010).

All the computations were performed with Matlab software (Matlab R2012b,
Mathworks).

3. Results and discussion

3.1. Spectral analysis

The di�erent mean�per�quartile spectra measured for samples having dif-
ferent particle sizes are plotted in �gure 3. In the studied wavelength range
(400 nm - 800 nm), spectral signatures are of good quality, with no noise,
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even for AbsPO(λ), which have low signal intensities (about 10% of the total
absorbance signal). In this wavelength range, soil spectra do not show char-
acteristic spectral features and appear ��at�. Hence, the di�erences in the
intensity level are related to the brightness of the samples. The re�ectance
intensity is consistent with the total organic carbon content (TOC) of the
studied samples, showing that the darker the sample, the higher the TOC
content. This observation concerns all particle sizes classes.

The wavelength range of the PoLiS setup is limited to 400 nm - 800 nm by
the range of the polarizer used. This range is not the optimal Vis-NIR region
for soil carbon calibration but Viscarra Rossel et al. (2008), for example,
suggest that the visible portion of the spectrum contains more information
on the absorbance characteristics of soil organic carbon than the shortwave
NIR (700 � 1100 nm) content. In regard of the objectives of this study, this
range is su�cient.

FIGURE 3 HERE

Sample preparation, i.e. particle size, has an impact on the intensity
level of the backscattered re�ectance RBS(λ). As commonly seen in NIR dif-
fuse re�ection (Pasikatan et al., 2001), the smaller the particles, the higher
the re�ectance. As a consequence, the absorbance computed as AbsBS(λ) =
−log RBS(λ) shows a lower level for ground samples. Therefore, the di�er-
ences in the intensity levels are due to the combined e�ect of the physical
structure and the brightness of the soil samples.

For the PoLiS absorbance AbsPO(λ), the intensity is about ten times
smaller than for backscattered absorbance AbsBS(λ). This is partly due to
the fact that the PoLiS optical set up selects only a small part of the signal
(the single scattered one). The shape is also slightly di�erent, with a small
shoulder at 600 nm.

For coarse samples, the absorbance spectra AbsBS(λ) of the highly con-
centrated samples (quartiles Q3 and Q4) are not clearly separated, meaning
that the variance due to particle size di�erences, and therefore scattering,
dominates the chemically related information in the spectra. On the con-
trary, the PoLiS absorbance spectra AbsPO(λ) for quartiles Q3 and Q4 are
clearly separated. This indicates that part of the spectral information due
to the physical structure has been removed. Chemically related information,
characterized by the brightness, becomes more visible.

Figure 4 shows the score plots of the PCA performed on di�erently cen-
tered spectral datasets (AbsBS(λ) and AbsPO(λ)) according to section 2.5.

FIGURE 4 HERE
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On the mean-centered data and for both AbsBS(λ) and AbsPO(λ), PC1
explains more than 98 % of the variability. Because of a multiplicative e�ect,
the spectra appear to be organized in a conic pattern represented by the
triangle in �gure 4. The score plot converges both to a minima close to zero
and spreads on the opposite side. This conic pattern represented on �gure
4, is characteristic of a multiplicative e�ect caused by variables of in�uence
which are a combination of soil brightness (related to TOC) and soil physical
structure, i.e. the particle size.

For AbsBS, �nely ground samples are clearly separated from the two other
particle size classes. For AbsPO(λ), this separation is less obvious. The
summit of the cone contains the darker samples of di�erent particle size
classes. The multiplicative e�ect is due to TOC content as scattering is
supposedly lessen.

The score plot of the data centered per sample location con�rms the
previous observation: for AbsBS(λ), the ground soils are clearly separated
from the two other classes (sieved and coarse) as for AbsPO(λ), the classes
appear more confounded. The values of the Wilk's lambda, computed on the
scores of the PCA con�rm these statements. When particle size classes are
separated, the Wilk's lambda is lower.

The PoLiS method corrects, to a certain extent, the e�ect of scattering
on the signal, leading to an absorbance less sensitive to the physical structure
of the samples.

3.2. Linearity between Absorbance and TOC Concentration

The assumption that, by correcting the signal from part of the multiscat-
tering e�ect, the PoLiS absorbance AbsPO(λ) is more linearly related to TOC
content can be assessed through the Pearson's correlation coe�cient between
the absorbance and the TOC content. The correlograms presented in �gure
5 show the correlation between the two absorbance signals (AbsBS(λ) and
AbsPO(λ)) and TOC as a function of the wavelength and for each sample
preparation.

FIGURE 5 HERE

For coarse and sieved samples, the Pearson's coe�cient R between the
absorbance and the TOC concentration is always higher for AbsPO(λ) than
for AbsBS(λ), over all the wavelength range. For ground samples, the two
correlogram are similar, although slightly better for AbsPO(λ) between 400
and 600 nm. It is coherent with the general acceptance that preparing the
samples (sieving or grinding) has a direct impact on the signal quality and
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consequently on the quality of the calibration models (Morgan et al., 2009;
Bellon-Maurel et al., 2010). Here, PoLiS method leads to an additional
improvement of the correlation between the Absorbance signal and TOC.

Another way to visualize this observation is to plot TOC versus the ab-
sorbance value at the optimal wavelength of AbsBS(λ), respectively 450 nm
for the coarse samples, 600 nm for the sieved samples and 570 nm for the
ground samples (�gure 6).

FIGURE 6 HERE

The degree of linearity between AbsPO(λ) and TOC is improved for coarse
and sieved samples, but this e�ect is lessen for ground samples, for which
the linear correlation coe�cient for AbsBS(λ) and AbsPO(λ) are very similar
and high (>0.87).

To conclude, this analysis shows that AbsPO(λ) is more linearly related
to the TOC concentration (Figure 6) and additionally that the particle size
has less impact on its spectral signature (Figure 4). Therefore, calibration
conditions are more appropriate for AbsPO(λ) than for AbsBS(λ) to use linear
methods like PLS in order to predict TOC in soils.

3.3. Model analysis

3.3.1. Quality of the calibration models

Figure 7 shows the quality of the models calibrated on the spectra ob-
tained with the di�erent methods : the backscattered re�ectance spectra
(RBS(λ)), the backscattered absorbance spectra (AbsBS(λ)) and the PoLiS
absorbance spectra (AbsPO(λ)), with no preprocessing, for each category of
particle size.

FIGURE 7 HERE

First, the prediction models built with the backscattered re�ectanceRBS(λ)
are not satisfying. They show a characteristic �banana� shaped regression
curve, typical of non-linearity. However, ground and sieved samples produce
better predictions than coarse samples. The latter present a high structural
variability which a�ects the spectra. The scattering e�ect dominates in the
spectral information but in a di�erent manner for all the samples. This con-
�rms the discussion of the previous section: sieving or grinding soils improves
the PLS models.

The log�transformation of the backscattered re�ectanceRBS(λ) into backscat-
tered absorbance, {AbsBS(λ) = −log RBS(λ)}, improves the quality of the
models. Theoretically, the linear relation is between absorbance and concen-
tration and not between re�ectance and the concentration. In our case, the
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log also plays the role of a mathematical preprocessing method as it trans-
forms multiplicative e�ects (due to scattering) into additive e�ects (Hadoux
et al., 2014). The PLS algorithm is capable to discard this additive e�ect in
the regression process. R2 and SECV are improved but need a high num-
ber of latent variables to build the models (10 for the ground samples and 8
for the sieved samples). According to the principle of parsimony, there is a
risk that models will lack in robustness (Bellon-Maurel & McBratney, 2011;
Seasholtz & Kowalski, 1993).

The models built with AbsPO(λ) outperform all the other models built
with RBS(λ) and AbsBS(λ), whatever the particle size. R2 and SECV are
improved and, in addition, the number of latent variables decreases. However,
soil sample preparation still impacts the results. PoLiS method also takes
bene�t from sample preparation (ground or sieved). For coarse samples,
predictions are not so good, although improved compared to the predictions
of the models built with the backscattered absorbance AbsBS.

3.3.2. Comparison of optical and mathematical spectral preprocessing

The PoLiS method can be considered as an �optical preprocessing� method:
prior to the calibration step, the di�erent components of the total spectra are
selected in order to compute an absorbance spectrum. The main objective
of this optical preprocessing step is to enhance the quality of the signal by
reducing the e�ect of multiscattering. We compared the calibration results
using the PoLiS method with three mathematical preprocessing methods
(SNV, MSC and modi�ed OPLEC) usually applied on spectra to reduce the
multiplicative and additive e�ects due to scattering.

Figure 8 present the R2 and the SECV values for each models built.
FIGURE 8 HERE

The TOC prediction models built with the PoLiS absorbance spectra
AbsPO(λ) always show better �gures of merit than for the models built with
RBS(λ) and AbsBS(λ), even when they are preprocessed.

The backscattered re�ectance spectra RBS(λ) are highly impacted by
light scattering. Hence, the preprocessing methods improve the performances
of the prediction models, in particular for the sieved and ground samples.
SNV and MSC have almost the same behavior on these spectral data, which
is often stressed out by authors (Fearn et al., 2009). Modi�ed OPLEC gives
good results and seems to be a promising preprocessing method as it specif-
ically removes the multiplicative e�ect. For coarse samples however, none
of the preprocessing methods applied did signi�cantly increase the quality
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parameters. These samples present a high sample�to�sample heterogeneity
and as a consequence, di�erent levels of light � matter interactions, which are
more di�cult to capture and correct by the di�erent preprocessing method.
Preprocessing the backscattered absorbance spectra AbsBS does not signif-
icantly changes the quality of the models, although the number of latent
variables decreases from 10 to 7.

For AbsPO(λ), none of the preprocessing methods have a positive impact
on the �gures of merit compared to the raw absorbance spectra. On the
contrary, preprocessing the PoLiS absorbance AbsPO(λ) highly degrades the
quality of the models. It is known that mathematical preprocessing methods
suppresses part of the spectral information, sometimes not exclusively due
to physical in�uence but which can also be related to chemical information.

As a conclusion, the PoLiS method produces an optimal absorbance sig-
nal, which does not need to be preprocessed prior calibration as the models
built from AbsPO(λ) always outperform the other models, for all the particle
sizes.

3.3.3. Behaviour of the PoLiS method regarding particle size

The main assumption made for the PoliS method is that it reduces the
multiscattering e�ect on the absorbance spectra. Yet, multiscattering is de-
pendent of the particle size of the sample. In section 3.1, the PCA analysis
on the data concluded that AbsPO(λ) is less impacted by the preparation of
the samples than AbsBS(λ), although, the ground samples still behave dif-
ferently. Table 2 show the quality parameter (R2, bias and Standard Error
of Prediction corrected from the bias (SEPc) and slope) of the models built
on one particle size class and applied to another particle size class.

TABLE 2 HERE

First, each time �nely ground samples (< 0.25 mm) are involved, either
in the calibration set or in the test set, PoLiS method do not produce better
predictions. R2 is lower with AbsPO(λ) than with AbsBS(λ) and the SEPc,
the bias and the slope are worse. We previously observed that for ground
samples, AbsBS(λ) and AbsPO(λ) show a very similar correlogram, meaning
that both absorbance signals show a relative linearity with TOC. Here, the
PoLiS method seems to reach its limits when the particle size of the particu-
late samples are very small. Grinding �nely the samples a�ects the way light
travels in the samples and probably also the depolarization process. As a
consequence, the backscattered re�ectance RBS(λ) and the low scattered re-
�ectance RSS(λ) used to compute the PoliS absorbance AbsPO(λ) (equation
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3) are not completely reliable.
When particle sizes are larger that 2 mm, i.e. sieved or coarse, the models

built with AbsPO(λ) always produce better results than with AbsBS(λ), as
shown in �gure 9.

FIGURE 9 HERE

Although the PoLiS calibration model built on coarse samples was the less
performant in cross-validation (see �gure 7), the prediction are not degraded
when it is applied on the sieved samples. Moreover, the bias, which is a good
indicator of robustness, remains small. On the other way, when the model
built on sieved samples is applied on coarse samples, the �gures of merit
are not as good as in cross validation, but still, the results are much better
with AbsPO(λ) than with AbsBS(λ). And again, the bias is very small for
AbsPO(λ) compared to the high bias value for AbsBS(λ).

These results show that PoLiS is a promising measurement technique in
the perspective of reducing the sample preparation as it is less sensitive to
changes of the physical structure of the samples and well adapted to low
processed samples.

4. Conclusions

For the �rst time, the issue of light scattering in Vis-NIR spectroscopy
applied to soils has been studied from an optical point of view. In this study,
PoLiS, an original optical setup based on light polarization spectroscopy,
was used to select backscattered light being less impacted by multiscatter-
ing e�ects due to particles composing soil samples. The absorbance signal
computed from the PoLiS measurements was compared to the absorbance
traditionally computed by taking the log of the backscattered re�ectance.

The aim of this study was to verify the assumptions underpinning the
PoLiS method. We can make following statements and concluding remarks :

- On soil samples, the method produced spectral signatures of good qual-
ity, with no noise, despite the low intensity in the PoLiS wavelength
range;

- Removing part of the multiscattering improved the degree of linearity
between the PoLiS absorbance and the TOC, over all the wavelength
range (400 - 800 nm) for coarse and sieved samples.
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- TOC prediction models build with the PoLiS absorbance always out-
performed the models built with the backscattered absorbance, even
when mathematically preprocessed. This is an important result con-
�rming that a signal of better quality improves the quality of the pre-
diction models.

- The PoLiS absorbance is less impacted by a change of particle size of the
samples but an e�ect is still visible, particularly for ground samples. As
a consequence, the predictive potential of the PoLiS absorbance when
only the physical structure of the sample changes is higher than the
backscattered absorbance, when the particle size is > 2 mm. For �nely
ground samples, PoLiS seems to reach it limits.

This study con�rms the high potential of the PoLiS method for the spec-
tral analysis of soil properties. Solving the technical limits which would make
the PoLiS method work beyond 800 nm, would allow to take an important
step in the metrological quality of the soil carbon content measurement by
NIRS.
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Table legend:
Table 1 : Total Organic Carbon (g.kg−1) descriptive statistics for the

whole dataset. Q1, Q2 and Q3 correspond respectively to the �rst quartile,
the median and the upper quartile. SD: standard deviation.

Table 2 : Performance of the models built with AbsBS(λ) and AbsPO(λ)
on one particle size sample set and tested on another particle size sample
set. L.V. is the number of latent variables used for the calibration model,
R2 is the coe�cient of determination, SEPc is standard error of prediction
corrected form the bias in g.kg−1.
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Table 1

n Mean SD Min Q1 Q2 Q3 Max Skewness
TOC 52 88.6 48.04 11.4 50.20 88.75 115.0 248.0 0.86

Table 1: Descriptive statistics for the whole dataset. Q1, Q2 and Q3 correspond respec-
tively to the �rst quartile, the median and the upper quartile. SD: standard deviation for
TOC: Total Organic Carbon (g.kg−1)
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Table 2

Particle size of the
Calibration set

Particle size of
the Test set

Signal L.V. R2 SEPc Bias Slope

Coarse
Sieved

AbsBS(λ) 5 0.64 29 −6.5 0.74
AbsPO(λ) 5 0.76 24 −5.7 0.86

Ground
AbsBS(λ) 5 0.67 28 −44 0.70
AbsPO(λ) 5 0.62 31 −33 0.50

Sieved
Coarse

AbsBS(λ) 8 0.53 37 24.5 0.78
AbsPO(λ) 5 0.67 28 6.0 0.72

Ground
AbsBS(λ) 8 0.75 24 −20 0.72
AbsPO(λ) 5 0.70 28 −34 0.54

Ground
Coarse

AbsBS(λ) 10 0.45 44 12 0.8
AbsPO(λ) 4 0.50 52 23 1.1

Sieved
AbsBS(λ) 10 0.70 27 11 0.84
AbsPO(λ) 4 0.69 43 31 1.28

Table 2: Performance of the models built with AbsBS(λ) and AbsPO(λ) on one particle
size sample set and tested on another particle size sample set. L.V. is the number of latent
variables used for the calibration model, R2 is the coe�cient of determination, SEPc is
standard error of prediction corrected form the bias in g.kg−1.
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Figure legend
Figure 1 : Schematic diagram of polarized light spectroscopy system (Po-

LiS).
Figure 2 : Principle of the measurement of the two components I‖(λ) and

I⊥(λ) of the totally backscattered light by means of linear light polarization
Figure 3 : Mean re�ectance RBS(λ), backscattered absorbance AbsBS(λ),

PoLiS absorbance AbsPO(λ) per quartile of TOC concentration for the three
di�erent particle sizes (a.) coarse < 5mm, (b.) sieved < 2 mm and (c.)
ground < 0.25 mm

Figure 4 : Scores plots of the two principal components of the Principal
Component Analysis performed on the absorbance spectra AbsBS(λ) (�rst
line) and AbsPO(λ) (second line) for di�erent data centering (mean centering
and centering per sample location) methods.

Figure 5 : Correlogram between Absorbance and TOC for the wavelength
range 400 - 800 nm. Vertical line indicates the wavelength at which the
correlation coe�cient for AbsBS(λ) is the highest.

Figure 6 : Plot of the backscattered absorbance AbsBS(λ) and the PoLiS
absorbance AbsPO(λ) at wavelength λ vs the TOC concentration (in g ·kg−1)
for the three di�erent particle sizes: coarse < 5 mm, sieved < 2 mm and
ground < 0.25 mm) with linear �tting. R is the Pearson's coe�cient.

Figure 7 : Predicted vs measured total organic carbon content from leave-
one-out cross validation models calibrated with backscattered re�ectance
spectra (RBS), backscattered absorbance (AbsBS(λ)) and PoLiS Absorbance
(AbsPO(λ)) for the three di�erent particle sizes: (a.) coarse < 5mm , (b.)
sieved < 2 mm and (c.) �nely ground < 0.25 mm) . R2 : coe�cient of de-
termination; SECV: standard error of cross validation; LV: number of latent
variables

Figure 8 : Comparison of the determination coe�cient R2 and the Stan-
dard Error of cross validation (SECV) of the prediction models built on the
three types of samples. Dotted lines correspond to the performances of the
models built with AbsPo(λ).

Figure 9 : Predicted vs measured total organic carbon content. Models
were calibrated with the backscattered absorbance (AbsBS(λ)) and the Po-
LiS Absorbance (AbsPO(λ)) on one particle size class and tested on another
particle size class. (upperline: coarse < 5 mm on sieved < 2 mm and lower
line: sieved < 2 mm on coarse <5 mm ). R2 : coe�cient of determination,
SEPc: standard error of Prediction corrected from the bias in g.kg−1.
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Figure 1
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Figure 1: Schematic diagram of polarized light spectroscopy system (PoLiS).
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Figure 2
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Figure 2: Principle of the measurement of the two components I‖(λ) and I⊥(λ) of the
totally backscattered light by means of linear light polarization
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Figure 3: Mean re�ectance RBS(λ), backscattered absorbance AbsBS(λ), PoLiS ab-
sorbance AbsPO(λ) per quartile of TOC concentration for the three di�erent particle sizes
(a.) coarse < 5mm, (b.) sieved < 2 mm and (c.) ground < 0.25 mm
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Figure 4
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Figure 4: Scores plots of the two principal components of the Principal Component Analy-
sis performed on the absorbance spectra AbsBS(λ) (�rst line) and AbsPO(λ) (second line)
for di�erent data centering (mean centering and centering per sample location) methods.
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Figure 5
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Figure 5: Correlogram between Absorbance and TOC for the wavelength range 400 - 800
nm. Vertical line indicates the wavelength at which the correlation coe�cient for AbsBS(λ)
is the highest.
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Figure 6
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Figure 6: Plot of the backscattered absorbance AbsBS(λ) and the PoLiS absorbance
AbsPO(λ) at wavelength λ vs the TOC concentration (in g · kg−1) for the three di�er-
ent particle sizes: coarse < 5 mm, sieved < 2 mm and ground < 0.25 mm) with linear
�tting. R is the Pearson's coe�cient.
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Figure 7
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Figure 7: Predicted vs measured total organic carbon content from leave-one-out cross
validation models calibrated with backscattered re�ectance spectra (RBS), backscattered
absorbance (AbsBS(λ)) and PoLiS Absorbance (AbsPO(λ)) for the three di�erent particle
sizes: (a.) coarse < 5mm , (b.) sieved < 2 mm and (c.) �nely ground < 0.25 mm) . R2

: coe�cient of determination; SECV: standard error of cross validation; LV: number of
latent variables
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Figure 8
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Figure 8: Comparison of the determination coe�cient R2 and the Standard Error of cross
validation (SECV) of the prediction models built on the three types of samples. Dotted
lines correspond to the performances of the models built with AbsPo(λ).
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Figure 9
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Figure 9: Predicted vs measured total organic carbon content. Models were calibrated
with the backscattered absorbance (AbsBS(λ)) and the PoLiS Absorbance (AbsPO(λ)) on
one particle size class and tested on another particle size class. (upperline: coarse < 5 mm
on sieved < 2 mm and lower line: sieved < 2 mm on coarse <5 mm ). R2 : coe�cient of
determination, SEPc: standard error of Prediction corrected from the bias in g.kg−1.
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