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the main issues this technique is facing up to is light scattering due to soil particles. It causes departure in the assumed linear relationship between the absorbance spectrum and the concentration of the chemical components as stated by Beer-Lambert's law, which underpins the linear calibration models.

Therefore it is essential to improve the quality of the measured signal in order to optimize the calibration results. Optics can help to mitigate scattering eect on the signal.

The aims of this study were to test the feasibility of a new optical setup, names PoLiS, coupling linearly polarized light with a VisVNIR (350 -800 nm) spectrometer to free the measured spectra from multiscattering eect.

The measured signals were used to model the chemical absorbance of the soil samples using Dahm's Equation in the frame of the Representative Layer Theory (RLT).

The study was conducted using a set of 52 soil samples collected in France (in the French calcareous Prealps) to predict soil Total Organic Carbon (TOC) content. The PoLiS absorbance signal tended to be more linearly related to the concentration of organic carbon, which is an important prerequisite to perform linear multivariate modeling. In a second step, the PLS models achieved for TOC performed appreciably better than models based 1 1. Introduction With the goal of reducing the amount of greenhouse gases in the atmosphere, policy makers encourage practices intended to sequester carbon in soils (reforestation, changes in farming practices). New methods are required to rapidly and accurately measure soil Carbon at eld-and landscape-scales.

Although Visible and Near Infrared Spectroscopy (VisNIRS) is an analytical technology adapted to these specications and becoming a very popular analytical technology in soil science, it is still steps away from being used as a routine analytical tool, both in eld and laboratory. One of the reasons is that calibration models lack of robustness as soon as inuence factors, which are numerous in soils, interfere. One of the main issues is that soils are highly scattering materials. As a direct consequence, the measurement conditions are far from the ideal conditions stated by Beer-Lambert's law where the absorbance should be linearly related to the chemical concentration [START_REF] Gobrecht | Chapter Four -Major Issues of Diuse Reectance NIR Spectroscopy in the Specic Context of Soil Carbon Content Estimation: A Review[END_REF]. Light scattering depends on the physical structure of the soil samples and directly contributes to the shape of the measured spectrum by hiding (or overlapping) the chemically related information. The absorbance at wavelength λ is not linear with concentration and there is a real contradiction in building calibration models based on linear multivariate methods such as the commonly-used Partial Least Square Regression (PLS). Overcoming this signal quality issue is of great interest because the accuracy of the prediction is directly related to the quality of the measured signal [START_REF] Macdougall | Guidelines for data acquisition and data quality evaluation in environmental chemistry[END_REF].

The most common strategy to reduce scattering eects is spectral pretreatment. This preprocessing step is specically designed to reduce multiplicative and additive eects caused by variations of physical properties [START_REF] Rinnan | Review of the most common pre-processing techniques for near-infrared spectra[END_REF][START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF]. Among them, standard normal variate (SNV) often associated to detrend (Barnes et al., 1989), multiplicative signal correction (MSC) [START_REF] Geladi | Linearization and Scatter-Correction for Near-Infrared Reectance Spectra of Meat[END_REF], Extended MSC (EMSC) [START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF], normalization or Optical Path Length Estimation and Correction (OPLEC) [START_REF] Chen | Extracting Chemical Information from Spectral Data with Multiplicative Light Scattering Eects by Optical Path-Length Estimation and Correction[END_REF][START_REF] Jin | Quantitative Spectroscopic Analysis of Heterogeneous Mixtures: The Correction of Multiplicative Eects Caused by Variations in Physical Properties of Samples[END_REF]. However, these approaches remain questionable: they consider that scattering is nearly constant allover the wavelengths, which is not the case [START_REF] Shi | Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)[END_REF]; they may eliminate chemical-related information, which is very small with regard to scattering eects [START_REF] Martens | Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures[END_REF]; they are inappropriate when light scattering varies greatly from sample to sample [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple 18[END_REF]. As a consequence, the model may sometimes fail when applied on a new set of samples.

Another option is to acquire the spectrum in a way that separates the part related to chemical absorption from the part related to scattering. Specic experimental techniques, based on the application of the light propagation theory or resolution of the Radiative Transfer Equation [START_REF] Shi | Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)[END_REF] have been proposed: adding-doubling set-ups [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple 18[END_REF][START_REF] Prahl | The adding-doubling method[END_REF][START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory to Remove Multiple Scattering Eects: Application to a Model Two-Component System[END_REF], spatially-resolved spectroscopy [START_REF] Farrell | A diusion theory model of spatially resolved, steady-state diuse reectance for the noninvasive determination of tissue optical properties in vivo[END_REF], time-resolved spectroscopy [START_REF] Chauchard | MADSTRESS: A linear approach for evaluating scattering and absorption coecients of samples measured using time-resolved spectroscopy in reection[END_REF][START_REF] Chauchard | MADSTRESS: A linear approach for evaluating scattering and absorption coecients of samples measured using time-resolved spectroscopy in reection[END_REF] and frequency-resolved spectroscopy [START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF]. Although powerful, these methods have their limitations, particularly when applied on highly scattering samples. First, they may require complex and sometimes expensive optical implementations, which may not be compatible with conventional spectrometers or with highly scattering samples (for which transmission measurement is not possible). Secondly, as they rely on the estimation of absorption and scattering coecients achieved by model inversion, parameters describing the studied medium (sample thickness, refractive index, particle size and shape...) must be known or approximated, which may be a troublesome task as they are often unknown in complex media [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple 18[END_REF][START_REF] Swartling | Comparison of spatially and temporally resolved diuse-reectance measurement systems for determination of biomedical optical properties[END_REF]. [START_REF] Bendoula | Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy[END_REF] proposed to combine light polarization and VIS-NIR reectance spectra acquisitions. The Polarized Light Spectroscopy (Po-LiS) method is an original technique to reduce directly the eects of multiscattering on the measured signal by using the wave theory of light [START_REF] Lu | Comparison of Methods for Reducing the Eects of Scattering in Spectrophotometry[END_REF]Backman et al., 1999). When linearly polarized light interacts with a scattering material, the backscattered light progressively looses its initial 1).

Each sample was prepared to get dierent particle sizes, namely:

-The Coarse form obtained by hand crushing the air-dried soil to get aggregates smaller than 5 mm. This preparation resulted in a large variety of particle and aggregate sizes within and between samples, depending on the type of soil;

-The Sieved form at 2 mm, which is the classical soil preparation prior to spectral acquisition;

-The nely Ground form at 0.25 mm.
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Author Each sample was carefully transferred to an adapted 5cm diameter petri dish and moved in circles to get an even and horizontal surface before spectral analysis.

Table 1 HERE 

Instrumentation

The PoLiS optical setup, schematized in gure 1, was composed of a halogen light source (150 W, Leica Cls) coupled with a 940 µm core diameter optical ber (Numerical Aperture N.A = 0.25, Sedi & ATI). The light delivered by the ber was collimated by an aspheric lens (F220SMA-B -Thorlabs).

The incident beam was a 1.5 cm diameter circular spot with 1 • divergence.

The incident and reected beam were polarized through two broad-band (400 nm800 nm) polarizers (NT52-557, Edmunds Optics). Incident light was linearly polarized and reected light was collected in a narrow cone ( 1 • ). The output from the analyzer was coupled to an optical ber (N.A = 0.25, Sedi & ATI) by an aspheric lens (F220SMA-B -Thorlabs). This ber was connected to a spectrometer (MMS1, Zeiss). Spectral data were collected in the 400 800 nm wavelength range at 3 nm intervals, resulting in measurements at 121 discrete wavelengths per spectrum. A constant angle of 70 o was maintained between the incident and reecting arms. This angle was chosen to optimize intensity of the reected beam.

FIGURE 1 HERE

PoLiS spectral acquisition

Each sample was illuminated with linearly polarized light and the remitted light intensity was measured with the PoLiS setup with the analyzer set respectively parallel, I (λ), and perpendicular, I ⊥ (λ), with respect to the polarization of the illumination light (Figure 2). Dark current, I b (λ), i.e.

signal without light, was systematically recorded for all measured spectra with the same optical conguration and subtracted to each measurement.

All measurements were made in a dark room to limit ambient light eects.

FIGURE 2 HERE

A diuse reectance gray standard (Spectralon SRS60, Labsphere) was used to collect a reference spectrum, I 0 (λ), to standardize spectra from nonuniformities of all components of the instrumentation (light source, bers, lens, polarizer and spectrometer). From these measurements, the backscattered reectance, R BS (λ), and the weakly scattered reectance, R SS (λ), were computed for each sample according to [START_REF] Bendoula | Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy[END_REF]:

R BS (λ) = I (λ) -I b (λ) + [I ⊥ (λ) -I b⊥ (λ)] [I 0 (λ) -I b0 (λ)] (1) R SS (λ) = I (λ) -I b (λ) -[I ⊥ (λ) -I b⊥ (λ)] [I 0 (λ) -I b0 (λ)]
(2)

PoLiS absorbance Abs P O

As proposed in [START_REF] Gobrecht | Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert Law Absorbance of highly scattering materials[END_REF], the PoLiS absorbance Abs P O (λ) was computed from the backscattered reectance R BS (λ) and low scattered reectance R SS (λ) as :

Abs P O (λ) = -log R SS (λ) + (1 -R SS (λ)) 2 - R SS (λ) R BS (λ) (1 -R BS (λ)) 2 (3) 
For comparison, the backscattered absorbance Abs BS (λ) was also computed from the total backscattered reectance signal R BS (λ) measured with PoLiS.

Abs BS (λ) = -log R BS (λ) (4)

Multivariate Analysis 2.5.1. Principal Component Analysis

An exploratory analysis of the backscattered absorbance spectra Abs BS (λ) and the PoLiS absorbance spectra Abs P O (λ), was carried out using Principal Component Analysis (PCA). In order to evaluate the impact of the soil preparation on the spectra, the spectral data were centered in two dierent ways:

-Mean centered, meaning that the mean spectrum of the entire data set -Centered according to the location: the mean of the three spectra (one for each particle size preparation) measured for each sample collected at one location was subtracted. This centering allowed us to examine the variance within samples having the same TOC content but presenting dierent physical structure. The Wilk's lambda criterion (Λ w ) was applied on the scores of the PCA.

Wilk's Lambda is the ratio of the within class variance to the total variance [START_REF] Roger | Discriminating from highly multivariate data by focal eigen function discriminant analysis; application to NIR spectra[END_REF]. Λ w ranges from 0 to 1. For a low value, the classes are well separated and a value close to one indicates that the classes are confounded.

Calibration with Partial Least Square Regression

Calibration models were built using PLS [START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF], considered as the benchmark chemometric technique used for quantitative analysis of diuse reectance spectra. The dierent types of signals computed, R BS (λ), Abs BS (λ) and Abs P O (λ), were compared on the basis of the performances of leave-one-out cross-validation models built on the each particle size sample set to predict soil Total Organic Content (TOC).

Preprocessing methods such as Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC) and modied Optical Pathlength Estimation and Correction (OPLECm) were applied to the dierent spectra.

Finally, the robustness of the best models obtained in cross-validation for each particle size class was tested by predicting the other particle size sets.

The performances of the cross-validations, and validations using other particle size sets as validation samples, were assessed through the number of latent variables used in the models, the coecient of determination R 2 All the computations were performed with Matlab software (Matlab R2012b, Mathworks).

Results and discussion

Spectral analysis

The dierent meanperquartile spectra measured for samples having different particle sizes are plotted in gure 3. In the studied wavelength range (400 nm -800 nm), spectral signatures are of good quality, with no noise, 8

Author-produced version of the article published in Soil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.still.2015.06.003 even for Abs P O (λ), which have low signal intensities (about 10% of the total absorbance signal). In this wavelength range, soil spectra do not show characteristic spectral features and appear at. Hence, the dierences in the intensity level are related to the brightness of the samples. The reectance intensity is consistent with the total organic carbon content (TOC) of the studied samples, showing that the darker the sample, the higher the TOC content. This observation concerns all particle sizes classes.

The wavelength range of the PoLiS setup is limited to 400 nm -800 nm by the range of the polarizer used. This range is not the optimal Vis-NIR region for soil carbon calibration but Viscarra Rossel et al. (2008), for example, suggest that the visible portion of the spectrum contains more information on the absorbance characteristics of soil organic carbon than the shortwave NIR (700 1100 nm) content. In regard of the objectives of this study, this range is sucient.

FIGURE 3 HERE

Sample preparation, i.e. particle size, has an impact on the intensity level of the backscattered reectance R BS (λ). As commonly seen in NIR diffuse reection [START_REF] Pasikatan | Near infrared reectance spectroscopy for online particle size analysis of powders and ground materials[END_REF], the smaller the particles, the higher the reectance. As a consequence, the absorbance computed as Abs BS (λ) = -log R BS (λ) shows a lower level for ground samples. Therefore, the dierences in the intensity levels are due to the combined eect of the physical structure and the brightness of the soil samples.

For the PoLiS absorbance Abs P O (λ), the intensity is about ten times smaller than for backscattered absorbance Abs BS (λ). This is partly due to the fact that the PoLiS optical set up selects only a small part of the signal (the single scattered one). The shape is also slightly dierent, with a small shoulder at 600 nm.

For coarse samples, the absorbance spectra Abs BS (λ) of the highly concentrated samples (quartiles Q3 and Q4) are not clearly separated, meaning that the variance due to particle size dierences, and therefore scattering, dominates the chemically related information in the spectra. On the contrary, the PoLiS absorbance spectra Abs P O (λ) for quartiles Q3 and Q4 are clearly separated. This indicates that part of the spectral information due to the physical structure has been removed. Chemically related information, characterized by the brightness, becomes more visible.

Figure 4 shows the score plots of the PCA performed on dierently centered spectral datasets (Abs BS (λ) and Abs P O (λ)) according to section 2.5.

FIGURE 4 HERE 9
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On the mean-centered data and for both Abs BS (λ) and Abs P O (λ), PC1 explains more than 98 % of the variability. Because of a multiplicative eect, the spectra appear to be organized in a conic pattern represented by the triangle in gure 4. The score plot converges both to a minima close to zero and spreads on the opposite side. This conic pattern represented on gure 4, is characteristic of a multiplicative eect caused by variables of inuence which are a combination of soil brightness (related to TOC) and soil physical structure, i.e. the particle size.

For Abs BS , nely ground samples are clearly separated from the two other particle size classes. For Abs P O (λ), this separation is less obvious. The summit of the cone contains the darker samples of dierent particle size classes. The multiplicative eect is due to TOC content as scattering is supposedly lessen.

The score plot of the data centered per sample location conrms the previous observation: for Abs BS (λ), the ground soils are clearly separated from the two other classes (sieved and coarse) as for Abs P O (λ), the classes appear more confounded. The values of the Wilk's lambda, computed on the scores of the PCA conrm these statements. When particle size classes are separated, the Wilk's lambda is lower.

The PoLiS method corrects, to a certain extent, the eect of scattering on the signal, leading to an absorbance less sensitive to the physical structure of the samples.

Linearity between Absorbance and TOC Concentration

The assumption that, by correcting the signal from part of the multiscattering eect, the PoLiS absorbance Abs P O (λ) is more linearly related to TOC content can be assessed through the Pearson's correlation coecient between the absorbance and the TOC content. The correlograms presented in gure 5 show the correlation between the two absorbance signals (Abs BS (λ) and Abs P O (λ)) and TOC as a function of the wavelength and for each sample preparation.

FIGURE 5 HERE

For coarse and sieved samples, the Pearson's coecient R between the absorbance and the TOC concentration is always higher for Abs P O (λ) than for Abs BS (λ), over all the wavelength range. For ground samples, the two correlogram are similar, although slightly better for Abs P O (λ) between 400 and 600 nm. It is coherent with the general acceptance that preparing the samples (sieving or grinding) has a direct impact on the signal quality and consequently on the quality of the calibration models [START_REF] Morgan | Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diuse reectance spectroscopy[END_REF][START_REF] Bellon-Maurel | Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy[END_REF]. Here, PoLiS method leads to an additional improvement of the correlation between the Absorbance signal and TOC.

Another way to visualize this observation is to plot TOC versus the absorbance value at the optimal wavelength of Abs BS (λ), respectively 450 nm for the coarse samples, 600 nm for the sieved samples and 570 nm for the ground samples (gure 6).

FIGURE 6 HERE

The degree of linearity between Abs P O (λ) and TOC is improved for coarse and sieved samples, but this eect is lessen for ground samples, for which the linear correlation coecient for Abs BS (λ) and Abs P O (λ) are very similar and high (>0.87).

To conclude, this analysis shows that Abs P O (λ) is more linearly related to the TOC concentration (Figure 6) and additionally that the particle size has less impact on its spectral signature (Figure 4). Therefore, calibration conditions are more appropriate for Abs P O (λ) than for Abs BS (λ) to use linear methods like PLS in order to predict TOC in soils.

Model analysis 3.3.1. Quality of the calibration models

Figure 7 shows the quality of the models calibrated on the spectra obtained with the dierent methods : the backscattered reectance spectra (R BS (λ)), the backscattered absorbance spectra (Abs BS (λ)) and the PoLiS absorbance spectra (Abs P O (λ)), with no preprocessing, for each category of particle size.

FIGURE 7 HERE

First, the prediction models built with the backscattered reectance R BS (λ) are not satisfying. They show a characteristic banana shaped regression curve, typical of non-linearity. However, ground and sieved samples produce better predictions than coarse samples. The latter present a high structural variability which aects the spectra. The scattering eect dominates in the spectral information but in a dierent manner for all the samples. This conrms the discussion of the previous section: sieving or grinding soils improves the PLS models.

The logtransformation of the backscattered reectance R BS (λ) into backscattered absorbance, {Abs BS (λ) = -log R BS (λ)}, improves the quality of the models. Theoretically, the linear relation is between absorbance and concentration and not between reectance and the concentration. In our case, the 11

Author-produced version of the article published in Soil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.still.2015.06.003 log also plays the role of a mathematical preprocessing method as it transforms multiplicative eects (due to scattering) into additive eects [START_REF] Hadoux | Comparison of the ecacy of spectral pre-treatments for wheat and weed discrimination in outdoor conditions[END_REF]. The PLS algorithm is capable to discard this additive eect in the regression process. R 2 and SECV are improved but need a high number of latent variables to build the models (10 for the ground samples and 8 for the sieved samples). According to the principle of parsimony, there is a risk that models will lack in robustness [START_REF] Bellon-Maurel | Near-infrared (NIR) and midinfrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils -Critical review and research perspectives[END_REF][START_REF] Seasholtz | The parsimony principle applied to multivariate calibration[END_REF].

The models built with Abs P O (λ) outperform all the other models built with R BS (λ) and Abs BS (λ), whatever the particle size. R 2 and SECV are improved and, in addition, the number of latent variables decreases. However, soil sample preparation still impacts the results. PoLiS method also takes benet from sample preparation (ground or sieved). For coarse samples, predictions are not so good, although improved compared to the predictions of the models built with the backscattered absorbance Abs BS .

Comparison of optical and mathematical spectral preprocessing

The PoLiS method can be considered as an optical preprocessing method: prior to the calibration step, the dierent components of the total spectra are selected in order to compute an absorbance spectrum. The main objective of this optical preprocessing step is to enhance the quality of the signal by reducing the eect of multiscattering. We compared the calibration results using the PoLiS method with three mathematical preprocessing methods (SNV, MSC and modied OPLEC) usually applied on spectra to reduce the multiplicative and additive eects due to scattering.

Figure 8 present the R 2 and the SECV values for each models built.

FIGURE 8 HERE

The TOC prediction models built with the PoLiS absorbance spectra Abs P O (λ) always show better gures of merit than for the models built with R BS (λ) and Abs BS (λ), even when they are preprocessed.

The backscattered reectance spectra R BS (λ) are highly impacted by light scattering. Hence, the preprocessing methods improve the performances of the prediction models, in particular for the sieved and ground samples.

SNV and MSC have almost the same behavior on these spectral data, which is often stressed out by authors [START_REF] Fearn | On the geometry of SNV and MSC[END_REF]. Modied OPLEC gives good results and seems to be a promising preprocessing method as it specifically removes the multiplicative eect. For coarse samples however, none of the preprocessing methods applied did signicantly increase the quality parameters. These samples present a high sampletosample heterogeneity and as a consequence, dierent levels of light matter interactions, which are more dicult to capture and correct by the dierent preprocessing method.

Preprocessing the backscattered absorbance spectra Abs BS does not significantly changes the quality of the models, although the number of latent variables decreases from 10 to 7.

For Abs P O (λ), none of the preprocessing methods have a positive impact on the gures of merit compared to the raw absorbance spectra. On the contrary, preprocessing the PoLiS absorbance Abs P O (λ) highly degrades the quality of the models. It is known that mathematical preprocessing methods suppresses part of the spectral information, sometimes not exclusively due to physical inuence but which can also be related to chemical information.

As a conclusion, the PoLiS method produces an optimal absorbance signal, which does not need to be preprocessed prior calibration as the models built from Abs P O (λ) always outperform the other models, for all the particle sizes.

Behaviour of the PoLiS method regarding particle size

The main assumption made for the PoliS method is that it reduces the multiscattering eect on the absorbance spectra. Yet, multiscattering is dependent of the particle size of the sample. In section 3.1, the PCA analysis on the data concluded that Abs P O (λ) is less impacted by the preparation of the samples than Abs BS (λ), although, the ground samples still behave differently. Table 2 show the quality parameter (R 2 , bias and Standard Error of Prediction corrected from the bias (SEP c ) and slope) of the models built on one particle size class and applied to another particle size class. The aim of this study was to verify the assumptions underpinning the PoLiS method. We can make following statements and concluding remarks :

-On soil samples, the method produced spectral signatures of good quality, with no noise, despite the low intensity in the PoLiS wavelength range;

-Removing part of the multiscattering improved the degree of linearity between the PoLiS absorbance and the TOC, over all the wavelength range (400 -800 nm) for coarse and sieved samples.
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-TOC prediction models build with the PoLiS absorbance always outperformed the models built with the backscattered absorbance, even when mathematically preprocessed. This is an important result conrming that a signal of better quality improves the quality of the prediction models.

-The PoLiS absorbance is less impacted by a change of particle size of the samples but an eect is still visible, particularly for ground samples. As a consequence, the predictive potential of the PoLiS absorbance when only the physical structure of the sample changes is higher than the backscattered absorbance, when the particle size is > 2 mm. For nely ground samples, PoLiS seems to reach it limits.

This study conrms the high potential of the PoLiS method for the spectral analysis of soil properties. Solving the technical limits which would make the PoLiS method work beyond 800 nm, would allow to take an important step in the metrological quality of the soil carbon content measurement by NIRS.
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  and the Standard Error of Cross-Validation (SECV) and Standard error of prediction (SEP) corrected from the bias (Bellon-Maurel et al., 2010).

  These results show that PoLiS is a promising measurement technique in the perspective of reducing the sample preparation as it is less sensitive to changes of the physical structure of the samples and well adapted to low processed samples.4. ConclusionsFor the rst time, the issue of light scattering in Vis-NIR spectroscopy applied to soils has been studied from an optical point of view. In this study, PoLiS, an original optical setup based on light polarization spectroscopy, was used to select backscattered light being less impacted by multiscattering eects due to particles composing soil samples. The absorbance signal computed from the PoLiS measurements was compared to the absorbance traditionally computed by taking the log of the backscattered reectance.
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 legend1 Figure legend Figure 1 : Schematic diagram of polarized light spectroscopy system (Po-LiS).
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 2 Figure 2 : Principle of the measurement of the two components I (λ) and I ⊥ (λ) of the totally backscattered light by means of linear light polarization Figure 3 : Mean reectance R BS (λ), backscattered absorbance Abs BS (λ), PoLiS absorbance Abs P O (λ) per quartile of TOC concentration for the three dierent particle sizes (a.) coarse < 5mm, (b.) sieved < 2 mm and (c.) ground < 0.25 mm Figure 4 : Scores plots of the two principal components of the Principal Component Analysis performed on the absorbance spectra Abs BS (λ) (rst line) and Abs P O (λ) (second line) for dierent data centering (mean centering and centering per sample location) methods.

Figure 5 :

 5 Figure 5 : Correlogram between Absorbance and TOC for the wavelength range 400 -800 nm. Vertical line indicates the wavelength at which the correlation coecient for Abs BS (λ) is the highest.Figure6: Plot of the backscattered absorbance Abs BS (λ) and the PoLiS absorbance Abs P O (λ) at wavelength λ vs the TOC concentration (in g • kg -1 ) for the three dierent particle sizes: coarse < 5 mm, sieved < 2 mm and ground < 0.25 mm) with linear tting. R is the Pearson's coecient.

Figure 7 :

 7 Figure 7 : Predicted vs measured total organic carbon content from leaveone-out cross validation models calibrated with backscattered reectance spectra (R BS ), backscattered absorbance (Abs BS (λ)) and PoLiS Absorbance (Abs P O (λ)) for the three dierent particle sizes: (a.) coarse < 5mm , (b.) sieved < 2 mm and (c.) nely ground < 0.25 mm) . R 2 : coecient of determination; SECV: standard error of cross validation; LV: number of latent variables Figure 8 : Comparison of the determination coecient R 2 and the Standard Error of cross validation (SECV) of the prediction models built on the three types of samples. Dotted lines correspond to the performances of the models built with Abs P o (λ).
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 9 Figure9: Predicted vs measured total organic carbon content. Models were calibrated with the backscattered absorbance (Abs BS (λ)) and the Po-LiS Absorbance (Abs P O (λ)) on one particle size class and tested on another particle size class. (upperline: coarse < 5 mm on sieved < 2 mm and lower line: sieved < 2 mm on coarse <5 mm ). R 2 : coecient of determination, SEP c : standard error of Prediction corrected from the bias in g.kg -1 .
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	early related to TOC ;	
	-evaluate the benet of using the PoLiS absorbance in TOC calibration
	models ;	
	-compare this optical preprocessing method to commonly used math-
	ematical preprocessing methods.
	2. Material and Methods	
	2.1. Soil samples	
	layer). The litter layer, when present, was removed prior to sampling.
	After collection, soil samples were air dried and stored at 4	• C until chem-
	ical and spectral analysis.	Total Organic Carbon was measured by dry
	combustion after decarbonation according to NF ISO 10694, using a N/C-
	Analyzer (Thermo Scientic, FLASH 2000 NC Analyzer, France) (AFNOR,
	1995) (Table	

polarization and oscillates randomly in all the planes. Using the principle of polarization subtraction,

[START_REF] Bendoula | Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy[END_REF] 

measured a reectance spectra being less impacted by multiscattering. In

[START_REF] Gobrecht | Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert Law Absorbance of highly scattering materials[END_REF]

, the signals measured with the PoLiS method were processed in the frame of Dahm's Representative Layer Theory

[START_REF] Dahm | Interpreting Diuse Reectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials[END_REF] 

to propose a model of the absorbing power. The method was successfully tested on model particulate samples (sand + dye) showing that the newly computed absorbance signal is more linearly related to the concentration of dye in the sample.

The aim of this study is to test the PoLiS method on real soil samples to predict Total Organic Carbon (TOC)content in order to:

-validate that PoLiS absorbance measured on soil samples is more lin-4 The 52 studied soil samples, provided by Irstea EMGR research unit are a subset of a soil sample collection used in a previous research work published in Saenger et al. (2013). The samples were collected in the Vercors High Plateau Natural Reserve (VHPNR) a protected mountainous area in the French calcareous Prealps (44 • 97N -5 • 42E). Soils of the VHPNR developed on Urgonien limestones and are generally neutral or basic. They comprise humiferous and very shallow Cambisols, Leptosols, Umbirsols and Anthroposols (FAO/IUSS/ISRIC 200). Detailed information on vegetation and soil types of the study area are provided in Saenger et al. (2013). The samples were collected from the Topsoil (0-10 cm) from the A horizon (Organo-mineral

TABLE 2 HERE

 2 First, each time nely ground samples (< 0.25 mm) are involved, either in the calibration set or in the test set, PoLiS method do not produce better predictions. R 2 is lower with Abs P O (λ) than with Abs BS (λ) and the SEP c , the bias and the slope are worse. We previously observed that for ground samples, Abs BS (λ) and Abs P O (λ) show a very similar correlogram, meaning that both absorbance signals show a relative linearity with TOC. Here, the PoLiS method seems to reach its limits when the particle size of the particulate samples are very small. Grinding nely the samples aects the way light travels in the samples and probably also the depolarization process. As a consequence, the backscattered reectance R BS (λ) and the low scattered reectance R SS (λ) used to compute the PoliS absorbance Abs P O (λ) (equation13Author-produced version of the article published inSoil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.still.2015.06.003 applied on the sieved samples. Moreover, the bias, which is a good indicator of robustness, remains small. On the other way, when the model built on sieved samples is applied on coarse samples, the gures of merit are not as good as in cross validation, but still, the results are much better with Abs P O (λ) than with Abs BS (λ). And again, the bias is very small for Abs P O (λ) compared to the high bias value for Abs BS (λ).

	3) are not completely reliable.
	When particle sizes are larger that 2 mm, i.e. sieved or coarse, the models
	built with Abs P O (λ) always produce better results than with Abs BS (λ), as
	shown in gure 9.
	FIGURE 9 HERE
	Although the PoLiS calibration model built on coarse samples was the less
	performant in cross-validation (see gure 7), the prediction are not degraded
	when it is

Table legend :

 legend 

	Table 1 : Total Organic Carbon (g.kg	-1 ) descriptive statistics for the
	whole dataset. Q1, Q2 and Q3 correspond respectively to the rst quartile,
	the median and the upper quartile. SD: standard deviation.

Table 2 :

 2 Performance of the models built with Abs BS (λ) and Abs P O (λ) on one particle size sample set and tested on another particle size sample set. L.V. is the number of latent variables used for the calibration model, R 2 is the coecient of determination, SEP c is standard error of prediction corrected form the bias in g.kg -1 .20Author-produced version of the article published inSoil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.comDoi: 10.1016Doi: 10. /j.still.2015.06.003 .06.003 

	Table 1								
		n	Mean	SD	Min	Q1	Q2	Q3	Max	Skewness
	TOC	52	88.6	48.04	11.4	50.20	88.75	115.0	248.0	0.86

Table 1 :

 1 Descriptive statistics for the whole dataset. Q1, Q2 and Q3 correspond respectively to the rst quartile, the median and the upper quartile. SD: standard deviation for TOC: Total Organic Carbon (g.kg -1 )

Table 2

 2 

			Signal	L.V.	R 2	SEP c Bias Slope
	Particle size of the	Particle size of				
	Calibration set	the Test set				
	Coarse	Sieved Ground	Abs BS (λ) 5 Abs P O (λ) 5 Abs BS (λ) 5 Abs P O (λ) 5	0.64 0.76 0.67 0.62	-6.5 0.74 -5.7 0.86 -44 0.70 -33 0.50
	Sieved	Coarse Ground	Abs BS (λ) 8 Abs P O (λ) 5 Abs BS (λ) 8 Abs P O (λ) 5	0.53 0.67 0.75 0.70	24.5 6.0 -20 0.72 0.78 0.72 -34 0.54
	Ground	Coarse Sieved	Abs BS (λ) 10 Abs P O (λ) 4 Abs BS (λ) 10 Abs P O (λ) 4	0.45 0.50 0.70 0.69	12 23 11 31	0.8 1.1 0.84 1.28

Table 2 :

 2 Performance of the models built with Abs BS (λ) and Abs P O (λ) on one particle size sample set and tested on another particle size sample set. L.V. is the number of latent variables used for the calibration model, R 2 is the coecient of determination, SEP c is standard error of prediction corrected form the bias in g.kg -1 .Author-produced version of the article published inSoil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.comDoi: 10.1016Doi: 10. /j.still.2015.06.003 .06.003 
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  Scores plots of the two principal components of the Principal Component Analysis performed on the absorbance spectra Abs BS (λ) (rst line) and Abs P O (λ) (second line) for dierent data centering (mean centering and centering per sample location) methods. Author-produced version of the article published in Soil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.still.2015.06.003Figure 5: Correlogram between Absorbance and TOC for the wavelength range 400 -800 nm. Vertical line indicates the wavelength at which the correlation coecient for Abs BS (λ) is the highest.Author-produced version of the article published inSoil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.still.2015.06.003 .06.003 

	Abs BS Abs PO 400 0.6 Figure 4: Figure 5 Wilk's lambda = 0.61 MEAN CENTERED Wilk's lambda = 0.78 500 600 700 800 Wavelength (nm) Coarse samples 400 0.6 0.65 0.7 0.75 0.8 0.85 0.9 Linear correlation coe cient R Linear correlation coe cient R 0.65 0.7 0.75 0.8 0.85 0.9	Ground Sieved Wilk's lambda = 0.14 Coarse SOIL SAMPLE CENTERED Wilk's lambda = 0.31 600 700 800 Wavelength (nm) 500 Sieved samples 400 500 600 700 800 Wavelength (nm) Ground samples 0.6 0.65 0.7 0.75 0.8 0.85 Linear correlation coe cient R 0.9	Abs PO Abs BS
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  g • kg -1 ) for the three dierent particle sizes: coarse < 5 mm, sieved < 2 mm and ground < 0.25 mm) with linear tting. R is the Pearson's coecient.Author-produced version of the article published inSoil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.comDoi: 10.1016Doi: 10. /j.still.2015.06.003 .06.003 
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  Predicted vs measured total organic carbon content from leave-one-out cross validation models calibrated with backscattered reectance spectra (R BS ), backscattered absorbance (Abs BS (λ)) and PoLiS Absorbance (Abs P O (λ)) for the three dierent particle sizes: (a.) coarse < 5mm , (b.) sieved < 2 mm and (c.) nely ground < 0.25 mm) . R 2 : coecient of determination; SECV: standard error of cross validation; LV: number of latent variables 30 Author-produced version of the article published in Soil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.com Doi: 10.1016/j.still.2015.06.003 Comparison of the determination coecient R 2 and the Standard Error of cross validation (SECV) of the prediction models built on the three types of samples. Dotted lines correspond to the performances of the models built with Abs P o (λ).Author-produced version of the article published inSoil & Tillage Research, 2016, N°155, p.461-470. The original publication is available at http://www.sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.still.2015.06.003 .06.003 
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