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Abstract. This paper presents a general framework that takes into ac-
count system and components reliability in a Model Predictive Control
(MPC) algorithm. The objective is to deal from an availability point of
view with a closed-loop system combining a deterministic part related
to the system dynamics and a stochastic part related to the system re-
liability. The main contribution of this work consists in integrating the
reliability assessment computed on-line using a Dynamic Bayesian Net-
work (DBN) to compute the weights of the multiobjective cost function
into the MPC algorithm. Also, a comparison between a method based
on the components reliability (local approach) and a method focused
on the system reliability sensitivity analysis (global approach) is consid-
ered. The effectiveness and benefits of the proposed control framework
are shown by its application on a Drinking Water Network (DWN).

Keywords: reliability, dynamic Bayesian Network, Model Predictive
Control

1 Introduction

To improve the system reliability and minimize operational costs, component
health monitoring should be considered in the controlled system [10]. After fail-
ure the control effort can be redistributed among the available actuators to
alleviate the work load and the stress factors on equipments with worst con-
ditions avoiding in this manner their break down [2,3]|. For this purpose, an
appropriate policy should be developed to redistribute this control effort until
maintenance actions can be taken. Over-actuated systems implies an actuator
redundancy, this means that the number of control inputs is larger than the

* This work has been funded by the Spanish Ministry of Economy and Competitiveness
through the CICYT project SHERECS (ref. DPI2011-26243), and by the European
Commission through contract EFFINET (ref. FP7-ICT2011-8-318556).



number of inputs necessary to satisfy the control objective. This characteris-
tic allows several combinations of control inputs that produce the same desired
output which provide the same system performance [9].

Model Predictive Control (MPC) seams to be an efficient technique to man-
age the actuator redundancy. The MPC algorithm allows to include other criteria
in the optimization problem, for example in [7] the authors present an application
of MPC for a Drinking Water Network (DWN) taking into account economic,
service level and degradation criteria. In [12] MPC formulation includes as a
criteria the accumulated actuator usage, its objective is to maintain the accu-
mulated usage under a safe level at the end of the mission. This approach is
exported to several applications, i.e. aeronautics [13], where a reliable MPC is
applied in a helicopter of 2 degrees of freedom and the weighting parameters are
used to maintain the degradation of actuators bellow a safe level.

Reliability is the ability of a system to operate successfully long enough
to complete its assigned mission under stated conditions. The use of Bayesian
Networks (BN) as a modelling method for reliability computing, taking into
account observations (evidences) about the state of the components, has been
recently considered in some works [1,3,14,15].

The purpose of this paper is to present a general framework that takes into
account system and component reliability in a Model Predictive Control (MPC)
algorithm as a part of a Prognosis and Health Management (PHM) strategy. The
proposed PHM scheme uses the reliability information of the system obtained
in real-time from a Dynamic Bayesian Network (DBN).

The main contribution is the integration of the reliability assessment that
is computed on-line using a DBN in the MPC algorithm. The resulting scheme
provides control performance and preserves system reliability. The information
related to reliability of the system components and the system itself obtained
using the DBN through the inference is used in the MPC algorithm. From an
availability point of view, the objective is to deal with a closed-loop system
combining a deterministic part related to the system dynamics and a stochastic
part related to the actuators and system reliability. A comparison between a local
and global approach of reliability computation is proposed. The effectiveness
and benefits of the proposed control framework are shown by its application on
a Drinking Water Network (DWN).

2 Reliability Modelling

2.1 Bayesian Network framework

Performing inferences in BN is particularly useful in control systems working
on real-time, in that case, evidences acquired about a state variable must be
propagated to update the state of the rest of the model. Other advantage of
BN’s is the possibility of model complex systems relatively easy. Basically, the
BN’s compute the distribution probabilities in a set of variables according to the
prior knowledge of some variables and the observation of others [8]. For instance



let A and B be two nodes with two possible states (S; and Ss) as is shown in
Fig. 1. A probability is associated to each state of the node and this probability
is defined a priori for a root node and computed by inference for the others. The
a priori probabilities of node A are P(A=S,4;) and P(A=S 43).

Fig. 1: Basic Bayesian Network.

A Conditional Probability Table (CPT) is associated to node B and defines
the probability P(B|A) of each state of B given the states of A. Thus, the BN
inference computes the marginal distribution P(B=Sp;):

P(B =Sp;) =P(B =Sp1|A =S41)P(A=S41) (1)

+P(B= S31|A = S42)P(A =8Sa2)

It is possible then to compute the probability distribution for each variable
conditioned to the values of the others variables in the graph.

2.2 System reliability

The system reliability can be used as an indicator of the system health and can
be computed from its components reliability through a BN. For this purpose it
is necessary to identify all the minimal success paths present in the system.

A minimal success path is a minimum set of components whose functioning
(i.e. being up) ensures that the system is up (if all elements of the minimal
success path are "Up" then the system is up). The minimal success path cannot
be reduced.

For example, consider the system reliability block diagram shown in Fig.
2a, it is composed by three components and it is clear that with a minimum
of two components (i.e. components 1 and 3 or components 2 and 3) it can
perform its function satisfactorily. With the minimal success paths identified, it
is possible then to build the BN of the system. Fig. 2b shows the BN for the
example system of three components. The components reliability are represented
by nodes e;, those nodes are connected to their corresponding minimal success
path represented by nodes P;. Finally the reliability of the system is represented
by node S [15].

Table 1 shows the CPT of node Py, it depends on the states of the components
ey and e3 and its behaviour corresponds to an AND gate. The CPT of node S is
also shown in Table 1. It depends on the state of success path nodes P; and P»
and has the behaviour of an OR gate. Consequently, the reliability of the system
is expressed as:

R, = P(S = Up) (2)
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Fig. 2: Three components system example.

etr ez Up Dn P, P; Up Dn
Up Up 1 0 Up Up 1 0
Up Dn 0 1 Up Dn 1 0
Dn Up O 1 Dn Up 1 0
Dn Dn 0 1 Dn Dn 0 1

Table 1: CPTs for nodes Py and S.

2.3 Component Reliability

A exponential model for the reliability is used in this work:
Ri(t) =e~ N (3)

where )\; is the failure rate for the ¢h component under. Several mathematical
models have been proposed to define the failure level in order to estimate the
failure rate A. In [5], the failure rate is modeled as:

A= X0 x (6, ) (4)

where \? represents the baseline failure rate (nominal failure rate) for the ith
component and g(¢,v) is a load function (independent of time) also known as
covariate, that represents the effect of stress on the component failure rate. ¢
represents an image of the load applied and ¥ is a component parameter.

Different definitions of function g(¢, ) exists in the literature. However, the
exponential form is the most commonly used. In [10] the authors propose the
load function based on the root-mean-square of the applied control input (u;)
until the end of the mission (¢5/), and an actuator parameter defined from the
upper and lower saturation bounds of ;. This load function is used to distribute
the control efforts between the redundant actuators, and the control action is
calculated using a reliable state feedback. In this paper, it is assumed that the
failure rate is provided by the following equation (5):

Ai = /\? 9i(us) (5)
where g;(u;) corresponds to the following normalized control action:
w; (k) — u;
i(ug) = ——— 6
() = 0 ©)

u; (k) is the control effort at time k, u; and @; are the minimum and maximum
control efforts allowed for the ith actuator and represents the amount of load on



the actuator. The major actuator load corresponds to w;(k) = u;, which leads
to the worst failure rate \; = \?, through equation (5).

This behaviour can be modeled using a DBN taking advantage in the fact
that the knowledge of the distribution probabilities and the CPT allows the
calculation of the distribution probabilities at time k + 1 which is conditional
independent of the past given the present k, and it can be exploited in an iterative
process by using the information of time k& 4+ 1 to compute the distribution
probabilities of time k + 2 and so on as shown in Fig. 3.

Remark that with the inclusion of the amount of load in the failure rate, the
DBN models become in a 1/2 MC [1]. The CPT showed in Table 2 defines the
discretized stochastic process of (3) in the DBN model.

- Table 2: CPT for node e; ;1.
S
Up Dn

€i,k
Up 1-(NTs gi(wi)) NV g (wi
Fig. 3: DBN for component reliability. Dﬁ (A Og () 19 ()

Therefore, the component reliability can be expressed as:

Ri(k+1) =P(ei(k +1) = Up) (7)

2.4 Importance factors

In order to take into account the global reliability of the system, the use of
an importance factor is proposed. The importance factors are criteria used as
an evaluation of components impact over the system. One of them involves de-
termining the system reliability sensitivity against changes in the reliability of
its components, this is also known as the Marginal Importance Factor (MIF),
introduced by [4]. The sensitivity can be computed using the DBN |2, 3], as:

MIF; = —=
OR;

where S is a binary random variable that represents the system state {Up, Down}.

Other factors like the Diagnostic Importance Factor (DIF) [6] can be used.
This factor represents the probability that the functioning of component i con-
tributes to the functioning of the system given that the system is not faulty. The
DIF can be computed using the DBN [2,3], as:

This is, if component i has a DIF equal to 1, it means that component ¢
becomes critical for the functioning of the system, and if it fails the system will
fail. DIF; criteria is intended to produce that components with more importance
in the system structure are relieved to mitigate the system reliability decrease.



3 Reliability-aware MPC

3.1 MPC formulation

Consider the following linear discrete-time model described in state-space form
of an over actuated system with p actuators:
z(k +1) = Az(k) + Bu(k) + Ee(k)
y(k) = Cx(k)

where (k) € R™ is the state vector, u(k) € RP is the control input vector
with u(k) > 0V k, y(k) € R? is the measured output vector, (k) € R™ is the
disturbance vector, A € R™*™ is the state matrix, B € R?*P input matrix, E €
R™ ™ is the disturbance matrix, and C' € R?*" is the output matrix.

MPC technique is considered in order to distribute the control effort among
the actuators. In this paper, the multiobjective optimization problem [11] is
formulated as follows:

(10)

Hp_l q
ain TR = 3 3G+ k) — o (1K)
Ad(k+He—1|k)) J=0 i=1
H.—1 p H.—1 p
+ 30 S Adtk 2+ 30 pilk)aalk + k)2 (11)
Jj=0 =1 Jj=0 1i=1
subject to u<ulk+jlk)<u j=0,..,H.—1
z<z(k+ilk) <z t=1,.,H,

where g; and y, ¢/ are the predicted output and the set-point for a H,, horizon
respectively, a; and p;(k) are weighting parameters, u and @ denote the mini-
mum and maximum actuator capacities, and x and T denote the minimum and
maximum state values. The notation k + i|k allows a future time instant k + @
to be referred at current time instant k£, and the optimization problem consists
in minimizing A¢;(k) defined as 4;(k) — @;(k — 1) over a control horizon H,.

3.2 Enhancing MPC with reliability information

An approach to reliability-aware control will be provided. The aim of this ap-
proach is to preserve as much as possible the system reliability and is focused
on the p;(k) weights given in the cost function (11), those weights are used then
to build the weighting matrix D,,, that distributes the control effort among the
actuators, this is:
Du; . =f(Lip k) := diag(p1, p2, .-, pi) (12)
where I is the criterion by which the control action is distributed among the
available actuators. Different definition for I' criteria are proposed.
The local approach focuses on component reliability R;(k) provided by the
DBN using inference at each time instant. This definition tries to preserve sys-
tem reliability through preserving components reliability, setting the weights as

follows:
pi(k) =1— R;(k) (13)



With this criteria the aim is to find the optimal control actions and distribute
it among the available actuators in a way that actuators with low reliability level
are relieved. Hence, the use of highly reliable components is prioritized.

The local approach assumes an equivalent contribution of component relia-
bility to system reliability. However, this is hardly ever true. In fact, the DBN
reliability model can intrinsically explain this relation. A global approach using
MIF; criteria is proposed, it is expected that components with more contribution
to the system reliability are used less with respect to the others. In others words,
its aim is to preserve system reliability by setting the weights as follows:

pi(k) = MIF; (k) (14)
Hence, the use of those components with a smaller sensitivity is prioritized.
Components with a bigger sensitivity are expected to greatly penalize system

reliability, so they are assigned a higher cost. Another possibility consists in
combining the MIF and DIF to take advantage of both of them as follows:

pi(k) = MIF;(k) x DIF;(k) (15)

4 Case study: Drinking Water Network

4.1 DWN description

The proposed MPC framework is applied to a part of a Drinking Water Network
(DWN) system [15]. A DWN is a network which is composed by sources (water
supplies), sinks (water demand sectors) and pipelines that link sources to sinks.
It also contains active elements like pumps and valves. Concerning the DWN
reliability study, sources, sinks, tanks and pipelines are considered perfectly reli-
able whereas active elements are not. In this paper, a subsystem of the Barcelona
water transport network is used as a case study (see Fig. 4a).

It is assumed that the demand forecast at the sink is known (see Fig. 4b),
and that any single source can satisfy this required water demand.

Different definition of I criterion computed using the Dynamic Bayesian
Network are used to set the MPC weights.

4.2 System reliability using a Dynamic Bayesian Network model

The system has 10 pumps, 5 sources, 4 tanks and several pipes, Sources, tanks
and pipes are considered perfectly reliable and are not subject to loss of relia-
bility. Then, it is necessary to determine the quantity and composition of each
minimal success path (Table 3).

Table 3: Components and success paths relationship.

S1 | 82 | 83 | S4 |55 |p1 | P2 | P3| P4 |P5 | P6 | P7|Ps | P9 |Pro
P | x X X

P, X X X

Ps X X X

Py X X X X

Ps X X X X
Ps X X X X X
Py X X | x X

Py X X X X
Py X X | x X X
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Time [h]
(a) Drinking water network diagram. (b) Drinking water demand.

Fig. 4: Drinking Water Network application.

The DBN is built following the procedure described in Sections 2.3 and 2.2.
The resulting DBN of the DWN is shown in Fig. 5 where nodes e; and A; are
drawn for each component (i.e. pump p; and source s;, respectively). These nodes
are interconnected to their corresponding minimal success path nodes P; using
arcs. Each minimal success path is linked to the corresponding source availabil-
ity node Aj. This layer provides the availability of each source with respect to
the availability of their corresponding minimal success paths considering that
sources are assumed perfectly reliable, this is P(A4;=Up)=1. Finally, the source
availability nodes are interconnected to the system reliability node S [15].

Fig. 5: Bayesian network model of the DWN.

Initially, at instant k£ = 0, the pumps and the system are assumed to be fully
reliable i.e. their reliability is 1. Then, the probability of each node is computed
using its CPT. In the case of minimal success paths nodes (P;) their CPT follows
an AND gate behaviour, the availability nodes (A}) CPT behaviour corresponds



to an OR gate as well as the behaviour of the system node S. At each sample
time, the reliability R; of each pump is computed according to its failure rate
using the A; values of Table 4 in a MC (shaded blue layers in Fig. 5) as discussed
in Section 2.3.

Table 4: Failure rate for pumps.

Failure rate A° [hours™ ' x 107 7]
9.8510.7010.50 1.40 0.850.80 11.70 0.60 0.74 0.78

5 Results

A hierarchical control structure is assumed where the MPC formulation proposed
in Section 3 produces every sample time a set of set-points for the lower level
flow controllers according to the forecast water demand (Fig. 4b) that exhibits
a daily profile. The initial tank volumes have been set to x. Table 5 provides

the simulation parameters used.

Table 5: Simulation parameters

parameter value parameter value
H, / H. 24 /8 w [m?°/s] 0.750.750.751.20.851.61.70.851.71.6
T, [h] 1 wlm3/s) 0 0 0 0 0O 0 0 O 0 O
Tsim R 2000 T [m® 65200 3100 14450 11745
pi {1,1 — R;, MIF;, MIF,; xDIF;} =z [m®] 25000 2200 5200 3500
a; 0 xo [m?] 45100 2650 9825 7622

Fig. 6 and 7 present the weights evolution for the studied criteria. As expected
in the scenario with 1 — R; criteria the pumps with higher failure rate i.e. 1, 2, 3
and 7 (see Table 4) are greatly penalized in order to decrease its reliability loss

as can be seen in Fig. 6.
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Fig.6: MPC weights for the case p; =1 — R;.

Fig. 7 shows the MPC weights evolution for scenario with MIF; criteria.
It is clear that weights of pump 6 is elevated compared to the weights of the
others pumps. This is due to the importance of pump 6 in the operation of
the system. In the case of MIF; xDIF; criteria the weights evolution presents a
similar behaviour as the case MIF;.
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Fig. 7: MPC weights for the case p; =MIF;.

Fig. 8 shows the evolution of the control effort of the system pumps for
scenarios where p; criteria is 1, 1 — R;, MIF; and MIF; xDIF; (the evolutions in
the case of MIF; and MIF; xDIF; are overlapped). In these scenarios the control
maintains the effort between the min and max limits.
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=
g o1 0.1
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Fig. 8: Pumping commands corresponding to p;

1 (blue), p; =1 — R; (red),
and p; =MIF (black), p; =MIFxDIF; (green).

In order to compare the results, the following indexes are defined: the system
reliability Rs at the end of the simulation, the cumulative pump usage Ucuym
defined as a measure of the pump energy consumption (16) and the joint pump
reliability index JPR as a measure of the overall pump set reliability (17). The
results of these indexes are shown in Table 6.

Tsim/Ts

=T, Z [u(k:)Tu(k:)]

k=0

Ucum (16)



JPR = ﬁ R, (17)

i=1

Table 6: Results summary.

pi Rs at Tsim Ucum JPR at Tsim

1 0.97530  1.55685x 10° 0.09492
1-R; 0.97903  2.02009x10° 0.21895
MIF; 0.99794  4.20501x10° 0.18376

MIF; xDIF; 0.99811 4.22680 x 10°  0.18408

Figure 9 shows system reliability (Rs) evolution for scenarios p; = 1, p; =
1-—- Ri7 Pi :MIF,L', and Pi =MIF xDIF.

" T

0.9951
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0.985[

System Reliability R

0.98
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Time [h]

Fig.9: System reliability: p; = 1 (asterisk black line), p; = 1 — R; (dashed green
line), p; =MIF; (diamond blue line), p; =MIFxDIF (circle red line).

For p; =MIF; the system reliability is improved compared to the others
criteria, but there is a small improvement using MIF; x DIF;. It can also be seen
that an improvement of system reliability in the scenarios MIF; and MIF; x DIF;
involves an increment of the energy consumption in the system, this also occurs in
the scenario of 1 — R; where besides the reliability improvement is not significant.
This certifies that, improving system reliability can lead to an increase of energy
consumption and the fact that focusing on the reliability of components is not
the best strategy to preserve system reliability.

6 Conclusions

A PHM scheme was proposed using the reliability information of the system ob-
tained in real-time from a DBN and tested in a DWN case study. A DBN model
of DWN is used to define the weights of the multiobjective cost function. Three
weights assignments have been proposed. In the first approach, component reli-
ability is targeted, whereas in the second and third approach system reliability
is focused using MIF and DIF criteria. It has been shown that focusing on the
reliability of components does not guarantee the best system reliability, which
was the ultimate goal. In order to preserve system reliability as much as pos-
sible, its sensitivity to component reliability must be preferably accounted for.



Analytical computation of this sensitivity is not trivial but a DBN model can
provide it easily. The analytical computation needs a model of the system and
the DBN offers the possibility to compute it through inference.
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