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Abstract. This work presents a general framework taking into account
system and components reliability in a Model Predictive Control (MPC)
algorithm. The objective is to deal from an availability point of view with
a closed-loop system combining a deterministic part related to the system
dynamics and a stochastic part related to the system reliability. The main
contribution of this work consists in integrating the reliability assessment
computed on-line using a Dynamic Bayesian Network (DBN) through
the weights of the multiobjective cost function of the MPC algorithm. A
comparison between a method based on the components reliability (local
approach) and a method focused on the system reliability sensitivity
analysis (global approach) is considered. The effectiveness and benefits
of the proposed control framework are presented through a Drinking
Water Network (DWN) simulation.

Keywords: reliability, model predictive control, dynamic Bayesian net-
work

1 Introduction

To improve the system reliability and minimize operational costs, component
health monitoring should be considered in a controlled system [14]. After fail-
ure, the control effort can be redistributed among the available actuators to
alleviate the work load and the stress factors on equipments with worst con-
ditions avoiding in this manner their break down [2, 3]. For this purpose, an
appropriate method should be developed to redistribute this control effort un-
til maintenance actions can be taken. Over-actuated systems implies actuator
redundancy, this means that the number of control inputs is larger than the
number of inputs necessary to satisfy the control objective. This characteristic
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allows for several combinations of control inputs that produce the same desired
output and provide the same system performance [13].

Model Predictive Control (MPC) is an efficient technique to manage actuator
redundancy [18]. The MPC algorithm allows to include several criteria in the
optimization problem. For example in [10] the authors present an application of
MPC to a Drinking Water Network (DWN) taking into account economic, service
level and degradation criteria. In [23], MPC formulation includes as a criteria the
accumulated actuator usage. Its objective is to maintain the accumulated usage
under a safe level at the end of the mission. This approach is exported to several
applications, like in [24] where a MPC is applied to a two degree of freedom
helicopter and the weighting parameters are used to maintain the degradation
of actuators below a safe level.

Reliability is the ability of a system to operate successfully long enough to
complete its assigned mission under stated conditions. It can be modelled as
an exponential function [7, 30], a Weibull function [3, 12] or a Gamma function
[15,17,20], among others.

System reliability can be expressed as a stochastic process [22]. For example
it is common to use Markov Chains (MC) to model the reliability of compo-
nents [29]. Unfortunately, in practice the complexity of the system leads to a
combinatorial explosion of states resulting in a MC with a very large size.

The use of Bayesian Networks (BN) as a modelling method for reliability
computing, taking into account observations (evidences) about the state of the
components, has been recently considered in some works [1, 3, 24,26,27].

The application of BNs to reliability started at the end of 90’s. In [25] the
authors present the advantages of BNs in comparison with reliability block di-
agrams (RBD). In [5] the authors propose to model a fault tree using a BN. A
comparison between MC and Dynamic Bayesian Networks (DBN) application
to reliability is presented in [28]. In this work a BN is used to model the global
system reliability.DBNs are interesting because they allow to model the system
reliability with a factorization of the MC states leading to a compact model.

The main objective of this MPC framework is to preserve the system reli-
ability providing control performance. Two approaches are proposed to achieve
the goal. A local approach, which is focused in the component reliability, and a
global approach, that is focused in the system reliability.

From an availability point of view, the objective is to deal with a closed-loop
system combining a deterministic part related to the system dynamics and a
stochastic part related to the actuators and system reliability. The effectiveness
and benefits of the proposed control framework are shown by its application on
a drinking water network.

The rest of the work is organized as follows: Section 2 deals with reliability
and its modelling using a DBN. Section 3 describes the formulation used in
the MPC problem. Section 4 presents the case study, and the proposed MPC
formulation with reliability integration is given. In Section 5 some results of
the control application are discussed. Finally, in Section 6 some conclusions are
provided.



2 Reliability Modelling

2.1 Bayesian Network framework

Basically, BNs compute the probability distribution in a set of variables accord-
ing to the prior knowledge of some variables and the observation of others [11].
For instance, let A and B be two nodes with two possible states (S1 and S2) as
is shown in Fig. 1. A probability is associated to each state of the node and this
probability is defined a priori for a root node and computed by inference for the
others. The a priori probabilities of node A are P(A=SA1) and P(A=SA2).

Fig. 1. Basic Bayesian Network.

A Conditional Probability Table (CPT) is associated to node B and defines
the probability P(B|A) of each state of B given the states of A. Thus, the BN
inference computes the marginal distribution P(B=SB1):

P(B = SB1) =P(B = SB1|A = SA1)P(A = SA1)

+ P(B = SB1|A = SA2)P(A = SA2)
(1)

It is possible then to compute the probability distribution for each variable
conditioned by the values of the other variables in the graph.

2.2 System reliability

System reliability can be computed from its components reliability through a
BN. For this purpose it is necessary to identify all the minimal success paths
present in the system.

A minimal success path is a minimum set of components whose functioning
(i.e. being up) ensures that the system is up (if all elements of the minimal
success path are "Up" then the system is up). The minimal success path cannot
be reduced.

For example, consider the system reliability block diagram shown in Fig. 2a,
it is composed by three components and it is clear that with a minimum of two
components (i.e. components 1 and 3 or components 2 and 3) it can perform its
function satisfactorily.

With the minimal success paths identified, it is possible then to build the BN
of the system. Fig. 2b shows the BN that corresponds to the three components
example. The components reliabilities are represented by nodes ei. Those nodes
are connected to their corresponding minimal success paths represented by nodes
Pi. Finally, the system state (Up, Down) is represented by the binary random
variable S [27].



(a) Minimal paths. (b) Bayesian Network of sys-
tem reliability.

Fig. 2. Three components system example.

Table 1 shows the CPT of node P1. It depends on the states of the components
e1 and e3 and its behaviour corresponds to an AND gate, i.e. all the components
in a success path should be available for the system to be available.

The CPT of node S is also shown in Table 2. It depends on the state of success
path nodes P1 and P2 and has the behaviour of an OR gate, i.e. if there is at
least one success path available, then the system will be available. Consequently,
the reliability of the system is expressed as:

Rs = P(S = Up) (2)

Table 1. CPT for node P1.

P1

e1 e3 Up Dn

Up Up 1 0
Up Dn 0 1
Dn Up 0 1
Dn Dn 0 1

Table 2. CPT for node S.

S

P2 P3 Up Dn

Up Up 1 0
Up Dn 1 0
Dn Up 1 0
Dn Dn 0 1

2.3 Importance factors

In order to take into account the global reliability of the system, the use of
an importance factor is proposed. Importance factors are criteria used as an
evaluation of the components impact over the system. One of them involves
determining the system reliability sensitivity against changes in the reliability
of the ith component, also known as the Marginal Importance Factor (MIF) [4].
The sensitivity can be computed using the DBN [2,3], as:

MIFi =
∂Rs
∂Ri

= P(S = Up|ei = Up)− P(S = Up|ei = Dn) (3)



where Rs is the system reliability, Ri is the component reliability.
The Diagnostic Importance Factor (DIF) [8] can also be used. This factor

represents the probability that the functioning of component i contributes to
the functioning of the system provided that the system is not faulty. DIF can be
computed using the DBN [2,3], as:

DIFi = P(ei = Up|S = Up) (4)

Thus, if component i has a DIF equal to 1, it means that component i
becomes critical for the functioning of the system, and if it fails, the system will
fail. DIFi criteria involves that components with more importance in the system
structure are relieved to mitigate the system reliability decrease.

2.4 Component Reliability

Several mathematical models have been proposed to define the failure rate of a
component [9]. In [6], the failure rate is modelled as:

λi = λ0i × g(`, ϑ) (5)

where λ0i represents the baseline failure rate (nominal failure rate) for the ith
component and g(`, ϑ) is a load function (independent of time) also known as
covariate, that represents the effect of stress on the component failure rate. `
represents an image of the load applied and ϑ is a component parameter.

The baseline failure rate can be modelled using a Weibull function [2] as:

λ0i =
βi(k − γi)β1 − 1

ηβi

i

(6)

where β is a shape parameter, γ is a location parameter, and η is a scale param-
eter. In this work, a constant baseline failure rate λ0i is assumed.

Different definitions of function g(`, ϑ) exists in the literature. However, the
exponential form is the most commonly used. In [13, 14] the authors propose a
load function based on the root-mean-square of the applied control input (ui)
until the end of the mission (tM ), and an actuator parameter defined from the
upper and lower saturation bounds of ui. This load function is used to distribute
the control efforts between the redundant actuators, and the control action is
calculated using a reliable state feedback.

In this work, it is assumed that the failure rate is provided by the following
equation (7):

λi = λ0i gi(ui) (7)

where gi(ui) corresponds to the following normalized control action:

gi(ui) =
ui(k)− ui
ui − ui

(8)



where ui(k) is the control effort at time k, ui and ui are the minimum and
maximum control efforts allowed for the ith actuator and represents the amount
of load on the actuator. The major actuator load corresponds to ui(k) = ui,
which leads to the worst failure rate λi = λ0i , through (7).

This behaviour can be modelled using a DBN [26] taking advantage of the
fact that the knowledge of the distribution probabilities and the CPT allows the
computation of the distribution probabilities at time k+1. This computation is
conditionally independent of the past given the present k, and can be exploited
in an iterative process by using the information of time k + 1 to compute the
distribution probabilities of time k + 2 and so on, as shown in Fig. 3.

Fig. 3. DBN for component reliability.

Remark that with the inclusion of the amount of load in the failure rate, the
DBN models becomes a 1/2 MC [1]. Table 3 shows the discretized CPT for the
DBN model with a sample time Ts.

Table 3. CPT for node ei,k+1.

ei,k+1

ei,k Up Dn
Up 1-(λ0

iTs gi(ui)) λ
0
iTs gi(ui)

Dn 0 1

Therefore, the component reliability can be expressed as:

Ri(k + 1) = P(ei(k + 1) = Up) (9)

3 Reliability-aware MPC

3.1 MPC formulation

Consider the following linear discrete-time model described in state-space form
of an over actuated system with p actuators:

x(k + 1) = Ax(k) +Bu(k) + Eε(k)

y(k) = Cx(k)
(10)



where x(k) ∈ Rn is the state vector, u(k) ∈ Rp is the control input vector
with u(k) ≥ 0 ∀ k, y(k) ∈ Rq is the measured output vector, ε(k) ∈ Rm is the
disturbance vector, A ∈ Rn×n is the state matrix, B ∈ Rq×p input matrix, E ∈
Rn×m is the disturbance matrix, and C ∈ Rq×n is the output matrix.

MPC technique is considered to distribute the control effort among the actu-
ators. In this work, the multiobjective optimization problem [21] is formulated
as follows:

min
(∆û(k|k),...,

∆û(k+Hc−1|k))

J(k) =

Hp−1∑
j=0

q∑
i=1

αi(k)[ŷi(k + j|k)− yrefi (k + j|k)]2

+

Hc−1∑
j=0

p∑
i=1

∆ûi(k + j|k)2 +
Hc−1∑
j=0

p∑
i=1

ρi(k)ûi(k + j|k)2

subject to u ≤ û(k + j|k) ≤ u j = 0, ..,Hc − 1

x ≤ x̂(k + i|k) ≤ x i = 1, ..,Hp

(11)

where ŷi and y
ref
i are the predicted output and the set-point for a Hp horizon

respectively, αi(k) and ρi(k) are weighting parameters, u and u denote the min-
imum and maximum actuator capacities, and x and x denote the minimum and
maximum state values. The notation k + i|k allows a future time instant k + i
to be referred at current time instant k, and the optimization problem consists
in minimizing ∆ûi(k) defined as ûi(k)− ûi(k − 1) over a control horizon Hc.

This multiobjective cost function considers three control objectives. The first
term of the objective function aims to minimize the tracking error, which is
weighted by αi(k). The second aims a smooth pump operation and the third
term penalizes pump operation according to ρi(k). For instance, in [21], ρi(k)
represents the economic cost of pumping, which depends on the variable electric
tariffs along a day.

3.2 Enhancing MPC with reliability information

In this work a reliability-aware MPC design approach which aim is to preserve as
much as possible the system reliability is proposed. Such an objective is achieved
by incorporating in the control design the importance factors seen in Section 2.3
to effectively manage the control inputs in order to reduce the loss of system
reliability.

The control inputs managing is performed by the correct choice of the weights
in the MPC cost function (11). The weights ρi(k) are used then to build the
weighting matrix Du, that distributes the control effort among the actuators,
this is:

Dui,k =f(Γi:p,k) := diag(ρ1, ρ2, ..., ρi) (12)

where Γ is the criterion by which the control action is distributed among the
available actuators. Different definition for Γ criteria are proposed.



The local approach focuses on component reliability Ri(k) provided by the
DBN using inference at each time instant. This definition tries to preserve sys-
tem reliability through preserving components reliability, setting the weights as
follows:

ρi(k) = 1−Ri(k) (13)

With this criteria the aim is to find the optimal control actions and distribute
it among the available actuators in a way that actuators with lower reliability
level are relieved. Hence, the use of highly reliable components is prioritized.

The local approach assumes an equivalent contribution of component relia-
bility to system reliability. However, this is hardly ever true. In fact, the DBN
reliability model can intrinsically explain this relation.

A global approach using MIF criteria is proposed. It is expected that com-
ponents with a greater contribution to the system reliability are used less with
respect to the others. Its aim is to preserve system reliability by setting the
weights as follows:

ρi(k) = MIFi(k) (14)

Hence, the use of those components with a smaller sensitivity is prioritized.
Components with a bigger sensitivity are expected to greatly penalize system
reliability, so they are assigned a higher cost.

Another possibility consists in combining MIF and DIF, to take advantage
of both as follows:

ρi(k) = MIFi(k)×DIFi(k) (15)

This takes into account the sensitivity and critically of the components, i.e.
components with less impact in the system reliability and less critical to the
system functioning will be charged more.

4 Case study: Drinking Water Network

4.1 DWN description

The proposed MPC framework is applied to a part of a Drinking Water Network
(DWN) system (Fig. 4) [27]. A DWN is a network which is composed by sources
(water supplies), sinks (water demand sectors) and pipelines that link sources
to sinks. It also contains active elements like pumps and valves.

Concerning the DWN reliability study, sources, sinks, tanks and pipelines are
considered perfectly reliable whereas active elements are not.



Fig. 4. Drinking water network diagram.

The water demand forecast can be computed using statistical data, in this
case it is assumed known and presents a pattern that repeats every 4 days as
shows Fig. 5.

Fig. 5. Water demand.

Remark that, it is assumed that with a single source it is possible to supply
the required water demand.

4.2 System reliability using a Dynamic Bayesian Network model

To compute the system and components reliability a DBN is used. The first step
before modelling the DBN is to identify all the system components. The system
has 10 pumps, 5 sources, 4 tanks and several pipes, Sources, tanks and pipes are
considered perfectly reliable and are not subject to loss of reliability. Then, it



is necessary to determine the quantity and composition of each minimal success
path. In the case of the DWN system, it has 9 success paths. The availability
of each success path depends on the reliability state of its components. So, the
second step is to make a list of the components that are involved in each success
path (Table 4).

Table 4. Success paths components.

s1 s2 s3 s4 s5 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
P1 × × ×
P2 × × ×
P3 × × ×
P4 × × × ×
P5 × × × ×
P6 × × × × ×
P7 × × × ×
P8 × × × ×
P9 × × × × ×

The resulting DBN of the DWN is shown in Fig. 6 where nodes ei and Ai
are drawn for each component (i.e. pump pi and source si, respectively). These
nodes are interconnected to their corresponding minimal success path nodes Pi
using arcs.

Fig. 6. Bayesian network model of the DWN.



Each minimal success path is linked to the corresponding source availabil-
ity node A′i. This layer provides the availability of each source with respect to
the availability of their corresponding minimal success paths considering that
sources are assumed perfectly reliable, i.e. P(Ai = Up) = 1. Finally, the source
availability nodes are interconnected to the system reliability node S [27].

Initially, at instant k = 0, the pumps and the system are assumed to be fully
reliable i.e. their reliability is 1. Then, the probability of each node is computed
using its CPT. In the case of minimal success paths nodes (Pi) their CPT follows
an AND gate behaviour, the availability nodes (A′i) CPT behaviour corresponds
to an OR gate as well as the behaviour of the system node S. At each sample
time, the reliability Ri of each pump is computed according to its failure rate
using the λi values of Table 5 in a MC (shaded blue layers in Fig. 6) using the
BNT toolbox for Matlab [19] and simulated as discussed in Section 2.4.

Table 5. Pumps failure rate values.

Failure rate λ0 [hours−1 × 10−4]

9.85 10.70 10.50 1.40 0.85 0.80 11.70 0.60 0.74 0.78

The failure rate for each pump is assumed to be known and it could be
obtained from statistical data concerning failures that have already occurred.

As the pumps failure rates depend on the control action through (5) then,
each time that the control action is reconfigured according to Γ their corre-
sponding importance factor is updated.

5 Results

A hierarchical control structure is assumed, where the MPC formulation pro-
posed in Section 3 produces at every sample time a set of set-points for the
lower level flow controllers. Figure 5 displays the daily profile of the forecast
water demand that has been taken into account. The initial tank volumes have
been set to x0. Table 6 provides the simulation parameters.

Table 6. Simulation parameters

parameter value
Hp / Hc 24 / 8

Ts / TM [h] 1 / 2000
ρi {1, 1−Ri, MIFi, MIFi×DIFi}
αi 0

u [m3/s] 0.75 0.75 0.75 1.20 0.85 1.60 1.70 0.85 1.70 1.60
u [m3/s] 0 0 0 0 0 0 0 0 0 0
x [m3] 65200 3100 14450 11745
x [m3] 25000 2200 5200 3500
x0 [m3] 45100 2650 9825 7622



Figures 7 and 8 present the weights evolution under the studied criteria. As
expected, under 1−Ri criteria the pumps with a higher failure rate, i.e. 1, 2, 3
and 7 (see Table 5), are greatly penalized in order to decrease their reliability
loss (see Fig. 7).

Fig. 7. MPC weights for the case ρi = 1−Ri.

Figure 8 shows the MPC weights evolution under MIFi criteria. It is clear
that the weight of pump 6 is bigger than the weights corresponding to the others.
This is due to the importance of pump 6 in the operation of the system. In the
case of MIFi×DIFi criteria, the weights evolution presents a similar behaviour
as in the case of MIFi.

Fig. 8. MPC weights for the case ρi =MIFi.



Figure 9 shows the evolution of the pumps control effort corresponding to
the scenarios where ρi criteria is 1, 1 − Ri, MIFi and MIFI×DIFi. Notice that
the plots corresponding to MIFi and MIFi×DIFi are overlapped.

Fig. 9. Pump commands corresponding to ρi = 1 (blue), ρi = 1 − Ri (red), and
ρi =MIF (black), ρi =MIF×DIFi (green).

In order to compare the results, the cumulative pump usage Ucum index is
defined. It is the measure of the pump energy consumption, expressed as:

Ucum = Ts

TM/Ts∑
k=0

[
u(k)Tu(k)

]
(16)

The indexes results are presented in Table 7.



Table 7. Results summary.

ρi Rs at TM Ucum

1 0.97530 1.55685×106
1−Ri 0.97903 2.02009×106
MIFi 0.99794 4.20501×106

MIFi×DIFi 0.99811 4.22680× 106

Figure 10 shows system reliability (Rs) evolution for scenarios ρi = 1, ρi =
1−Ri, ρi =MIFi, and ρi =MIF×DIF.

Fig. 10. System reliability: ρi = 1 (asterisk black line), ρi = 1−Ri (dashed green line),
ρi =MIFi (diamond blue line), ρi =MIF×DIF (circle red line).

For ρi =MIFi the system reliability is improved compared to the other crite-
ria, and a small improvement is obtained using MIFi×DIFi. Remark also that
an improvement of system reliability in the scenarios MIFi and MIFi×DIFi in-
volves an increase of the energy consumption in the system. This also occurs in
the 1 − Ri scenario, where the reliability improvement is not significant. This
certifies that, improving system reliability can lead to an increase of energy con-
sumption and the fact that focusing on the reliability of components is not the
best strategy to preserve system reliability.

6 Conclusions

An MPC scheme was proposed using the reliability information of the system
obtained in real-time from a DBN and tested in a DWN case study. A DBNmodel
of the DWN is used to define the weights of the multiobjective cost function.



Three weights assignments have been proposed. In the first approach, com-
ponent reliability is targeted, whereas in the second and third approach system
reliability is focused using MIF and DIF criteria. It has been shown that focusing
on the reliability of components does not guarantee the best system reliability,
which was the ultimate goal.

In order to preserve system reliability as much as possible, its sensitivity
to component reliability must be preferably accounted for, through MIF and
DIF criteria. Analytical computation of this sensitivity is not trivial but a DBN
model can provide it easily. The analytical computation needs a model of the
system and the DBN offers the possibility to compute it through inference.

In this work the reliability is modelled using an MC. In the case of non-
observable degradation it can be modelled using a Hidden Markov Model (HMM)
or in the case of exogenous events (i.e. humidity, temperature), those variables
can be modelled using Markov Switching Models (MSM) or using Input-Output
HMM (IOHMM) [1].

In future research, it could be interesting to consider system availability in-
stead of system reliability. Another issue would involve evaluating system unre-
liability through other importance factors, such as risk achievement worth and
risk reduction worth [16].
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