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RUELLE’S INEQUALITY AND PESIN’S ENTROPY FORMULA

FOR THE GEODESIC FLOW ON NEGATIVELY CURVED

NONCOMPACT MANIFOLDS

FELIPE RIQUELME

Abstract. In this paper we study different notions of entropy of measure-
preserving dynamical systems defined on noncompact spaces. We see that
some classical results for compact spaces remain partially valid in this setting.
We define a new kind of entropy for dynamical systems defined on noncompact
Riemannian manifolds, which satisfies similar properties to the classical ones.
As an application, we prove Ruelle’s inequality and Pesin’s entropy formula
for the geodesic flow in manifolds with pinched negative sectional curvature.

1. Introduction

1.1. Motivation and statements of main results. Ruelle’s inequality [Rue78]
is an important result in ergodic theory for smooth dynamical systems relating
two fundamental concepts: measure-theoretic entropy and Lyapunov exponents. It
precisely states that if f : M →M is a C1-diffeomorphism of a compact Riemannian
manifold and µ is an f -invariant probability measure on M , then the measure-
theoretic entropy hµ(f) is bounded from above by the sum of the positive Lyapunov
exponents, i.e.

(1.1) hµ(f) ≤

∫ ∑

λj(x)>0

λj(x) dim(Ej(x))dµ(x),

where {λj(x)} is the set of Lyapunov exponents at x ∈ M and dim(Ej(x)) is the
multiplicity of λj(x).

Once inequality (1.1) is established, the question about the equality case, known
as Pesin’s entropy formula, arises naturally. For C1+α-diffeomorphisms F. Ledrap-
pier and L.-S. Young showed in [LY85] that an f -invariant probability measure
verifies Pesin’s entropy formula if and only if it is absolutely continuous along un-
stable manifolds (see also [Pes77], [LS82] and [Led84a]).

Surprisingly, Ruelle’s inequality can fail to be true on noncompact manifolds.
To be more precise, in [Riq15] we proved that there exist smooth dynamical sys-
tems having (arbitrary) positive measure-theoretic entropy whereas the sum of the
positive Lyapunov exponents is equal to zero. This implies in particular that, even
for smooth enough dynamical systems, Ruelle’s inequality is not always satisfied
when the manifold is not compact. Therefore, it becomes an important question to
investigate in which (noncompact) manifolds this inequality is verified.
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2 FELIPE RIQUELME

The aim of this paper is to prove Ruelle’s inequality and Pesin’s entropy formula
for the geodesic flow on the unit tangent bundle of a negatively curved noncompact
manifold satisfying reasonable assumptions. The necessity of these assumptions
will be clarified in the core of the text.

Theorem 1.1. Let X be a complete Riemannian manifold with dimension at least
2 and pinched negative sectional curvature. Assume that the derivatives of the sec-
tional curvature are uniformly bounded. Then, for every (gt)-invariant probability
measure µ on T 1X, we have

hµ((g
t)) ≤

∫ ∑

λj(v)>0

λj(v) dim(Ej(v))dµ(v).

Our second main result treats the equality case on Ruelle’s inequality as in
[LY85]. No additional assumptions to those of Theorem 1.1 are needed.

Theorem 1.2. Let X be a complete Riemannian manifold with dimension at least
2 and pinched negative sectional curvature. Assume that the derivatives of the sec-
tional curvature are uniformly bounded. Let µ be a (gt)-invariant probability mea-
sure on T 1X. Then µ has absolutely continuous conditional measures on unstable
manifolds if and only if

hµ((g
t)) =

∫ ∑

λj(v)>0

λj(v) dim(Ej(v))dµ(v).

1.2. Structure of the paper. Section 2 will be devoted to study deeply the con-
cept of entropy. We are particularly interested in the interaction between two
notions, namely measure-theoretic entropy and Brin-Katok local entropy for con-
tinuous transformations defined on complete metric spaces. When the space is
compact, these two values coincide [BK83]. We extend this equality to the non-
compact case as follows. Consider a continuous transformation T : M → M of a
complete Riemannian manifold. Let d be the Riemannian distance on M . Recall
that for every n ≥ 1 and r > 0, the (n, r)-dynamical ball centered at x ∈ M ,
denoted by Bn(x, r), is the set of points y ∈ M satisfying d(T ix, T ix) < r for all
0 ≤ i ≤ n− 1.

Theorem 1.3. Let T : M → M be a Lipschitz transformation of a complete Rie-
mannian manifold and µ an ergodic T -invariant probability measure on M . Then

hµ(T ) = sup
K

ess sup
x∈K

lim
r→0

lim inf
n→∞

−
1

n
logµ(Bn(x, r)),(1.2)

where the supremum is taken over all the compact subsets K of M having positive
µ-measure.

In Section 3 we observe the following phenomenon. The exponential decay of the
volume of generic dynamical balls for C1-diffeomorphisms at the level of the tangent
space of the manifold is equal to the sum of the positive Lyapunov exponents (see
Theorem 3.7). Inspired by this result, we relate the measure-theoretic entropy with
the exponential decay of the volume of classical dynamical balls as in equation (1.2)
but taking the Riemannian measure L instead of µ. More precisely, we prove
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Theorem 1.4. Let T :M →M be a continuous transformation of a complete Rie-
mannian manifold, preserving an ergodic T -invariant probability measure µ. Then

(1.3) hµ(T ) ≤ sup
K

ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logL(Bn(x, r)),

where the supremum is taken over all the compact subsets K of M having positive
µ-measure.

It is interesting to remark that the measure µ appears in the right-hand term of
inequality (1.3) only when we consider the µ-essential supremum of the exponential
decays of the volumes of dynamical balls. Therefore, this result allows to relate a
purely dynamical value, measure-theoretic entropy, with a dynamical/geometrical
one, exponential decay of the Riemannian measure of a dynamical ball. As a con-
sequence, it is natural to ask ourselves if Ruelle’s inequality is true under “nice”
linearization assumptions. Despite not having a conclusive result in this direction
for arbitrary diffeomorphisms, under the assumptions of Theorem 1.1 we can es-
timate the volume of a dynamical ball for the geodesic flow on the unit tangent
bundle of a Riemannian manifold X with negative curvature (see Section 4). More
precisely, the Liouville measure, which is the Lebesgue measure on M = T 1X , sat-
isfies the Gibbs property for the geometric potential (see Proposition 4.2). Using
this last fact together a well-known relation between the geometric potential and
the positive Lyapunov exponents, Ruelle’s inequality is proved.

Finally, using the strategies exhibited in [LS82], [Led84a] to prove Pesin’s entropy
formula for C1+α-diffeomorphisms in the compact case, adapted as in [OP04] to the
case of the geodesic flow in the noncompact setting, we prove Theorem 1.2. Some
direct corollaries of Theorem 1.1 are stated at the end of the paper.

Acknowledgements. I am very grateful to my adviser Barbara Schapira for many
helpful discussions from the very beginning of this work. I would also like to thank
Samuel Tapie for his inspiring remarks on some results of this paper, and Godofredo
Iommi for some nice suggestions that improved the presentation of this work.

2. Preliminaries

In this section we consider a probability space (X,B, µ) and a measurable trans-
formation T : X → X preserving the measure µ. Recall that µ is ergodic if every
T -invariant measurable set A ⊂ X satisfies µ(A) ∈ {0, 1}.

2.1. Measure-theoretic entropy. Let P be a countable measurable partition of
X . The entropy of P with respect to µ, denoted by Hµ(P), is defined as

Hµ(P) = −
∑

P∈P

µ(P ) log µ(P ).

For all n ≥ 0, define the partition Pn as the measurable partition consisting of all
possible intersections of elements of T−iP , for all i = 0, ..., n− 1. The entropy of T
with respect to the partition P is then defined as the limit

hµ(T,P) = lim
n→∞

1

n
Hµ(P

n).
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The measure-theoretic entropy of T , with respect to µ, is the supremum of the
entropies hµ(T,P) over all measurable finite partitions P of X , i.e.

hµ(T ) = sup
P finite

hµ(T,P).

2.2. Katok δ-entropies. Suppose now that (X, d) is a metric space, T : X → X
is a continuous transformation and µ is a Borel T -invariant probability measure on
X . For every n ≥ 1 the dynamical distance dn is defined by

dn(x, y) = max
0≤i≤n−1

d(T ix, T iy), for all x, y ∈ X.

The (n, r)-dynamical ball centered at x, denoted by Bn(x, r), is the r-ball centered
at x for the dynamical distance dn. Note that since T is continuous, the (n, r)-
dynamical balls are open subsets of X . Let A be a subset of X . A (n, r)-covering
of A is a covering of A by (n, r)-dynamical balls. A (n, r)-separated set in A is a
subset E of A such that for every x, y ∈ E, if x 6= y then dn(x, y) ≥ r.

Definition 2.1. Let K ⊂ X be a compact set. Denote by

(1) N(n, r,K) the minimal cardinality of a (n, r)-covering of K, i.e. a covering
of K by (n, r)-balls, and

(2) S(n, r,K) the maximal cardinality of a (n, r)-separated set in K.

Lemma 2.2 below is classical (see for instance [Wal82, page 169]). It says that
the cardinalities N(n, r,K) and S(n, r,K) are comparable.

Lemma 2.2. Let n ≥ 1 and r > 0. Then for all compact subsets K ⊂ X, we have

N(n, r,K) ≤ S(n, r,K) ≤ N(n, r/2,K).

Recall that Bowen’s definition of topological entropy of a continuous transfor-
mation on a compact metric space is the following:

htop(T ) = lim
r→0

lim sup
n→∞

1

n
logN(n, r,X)

= lim
r→0

lim sup
n→∞

1

n
logS(n, r,X).

From the measure point of view, Katok proposed the following definition of en-
tropy in [Kat80]. For every 0 < δ < 1, denote by Nµ(n, r, δ) the minimal cardinality
of a (n, r)-covering of a set of µ-measure greater than 1−δ. Observe that this num-
ber is finite since every compact subset of measure greater than 1−δ admits a finite
(n, r)-covering.

Definition 2.3. Let 0 < δ < 1. The lower and upper δ-entropies relative to µ,

denoted respectively by hδµ(T ) and h
δ

µ(T ), are defined as

hδµ(T ) = lim
r→0

lim inf
n→∞

1

n
logNµ(n, r, δ)

and

h
δ

µ(T ) = lim
r→0

lim sup
n→∞

1

n
logNµ(n, r, δ).

Proposition 2.4. Let 0 < δ2 ≤ δ1 < 1, then

hδ1µ (T ) ≤ hδ2µ (T ) and h
δ1
µ (T ) ≤ h

δ2
µ (T ).
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Proof. We define Bi, for i = 1, 2, by Bi = {B : µ(B) > 1 − δi}. Since B2 ⊂ B1, we
obtain

hδ1µ (T ) = lim
r→0

lim inf
n→∞

1

n
logmin{N(n, r, B) : B ∈ B1}

≤ lim
r→0

lim inf
n→∞

1

n
logmin{N(n, r, B) : B ∈ B2}

= hδ2µ (T )

The other inequality can be proved similarly. �

Suppose that X is a compact metric space. Katok proved in [Kat80, Theorem
1.1] that the lower and upper δ-entropies are equal and coincide with the measure-
theoretic entropy. In his proof the assumption of compacity for X is only used to

show that h
δ

µ(T ) ≤ hµ(T ). The other inequality is only based on the fact that
hµ(T ) can be approximate by entropies hµ(T,P), with respect to a partition P
satisfying µ(∂P) = 0, where ∂P is the union of the boundaries of the elements of
P1. So one can conclude the following:

Theorem 2.5 (Katok). Let X be a complete metric space and let T : X → X be a
continuous transformation. If µ is an ergodic T -invariant probability measure, then
for all 0 < δ < 1, we have

hµ(T ) ≤ hδµ(T ).

2.3. Local entropies of Brin-Katok. The aim of this subsection is to understand
some relations between previous notions of entropy and local entropy. The notion
of local entropy was introduced by Brin and Katok in [BK83].

Definition 2.6. The lower and upper local entropies of T relative to µ, denoted

respectively by hlocµ (T ) and h
loc

µ (T ), are defined as

hlocµ (T ) = ess inf
x∈X

lim
r→0

lim inf
n→∞

−
1

n
logµ(Bn(x, r))

and

h
loc

µ (T ) = ess sup
x∈X

lim
r→0

lim sup
n→∞

−
1

n
logµ(Bn(x, r)).

Lemma 2.7. Let X be a complete metric space and let T : X → X be a continuous
transformation. If µ is an ergodic T -invariant probability measure on X, then

hlocµ (T ) =

∫
lim
r→0

lim inf
n→∞

−
1

n
logµ(Bn(x, r))dµ(x)

and

h
loc

µ (T ) =

∫
lim
r→0

lim sup
n→∞

−
1

n
log µ(Bn(x, r))dµ(x).

Proof. For the sake of simplicity, for each x ∈ X we denote by hlocµ (T, x) the limit

lim
r→0

lim inf
n→∞

−
1

n
logµ(Bn(x, r)).

1The validity of this inequality in the noncompact case has been also remarked in [GK01] to
compute the topological entropy of the geodesic flow in the modular surface.
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Since T (Bn+1(x, r)) ⊂ Bn(Tx, r) for every n ≥ 1, the T -invariance of µ implies
that

(2.1) hlocµ (T, Tx) ≤ hlocµ (T, x),

for every x ∈ X . Define η(x) as η(x) = infk≥0 h
loc
µ (T, T kx). By definition η is a

T -invariant function, so it is µ-a.e. constant equal to some constant η(µ). Note

that η(µ) is also equal to the essential infimum of hlocµ (T, x). On the other hand,
inequality (2.1) implies that

η(x) = lim
n→∞

1

n

n−1∑

k=0

hlocµ (T, T kx),

for every x ∈ X . Using Birkhoff’s Ergodic Theorem, we conclude that

η(µ) =

∫
hlocµ (T, x)dµ(x),

which is exactly the first desired equality. The second equality follows from the
same strategy by considering the supremum instead of the infimum in every involved
term. �

As said above, when X is a compact metric space, the lower and upper local
entropies coincide and are equal to the measure-theoretic entropy. As in the case of
δ-entropies, only one inequality in the proof requires the compactness assumption
on X . Thus, in the general case following exactly the proof in [BK83], we obtain

Theorem 2.8 (Brin-Katok). Let X be a complete metric space and let T : X → X
be a continuous transformation. If µ is an ergodic T -invariant probability measure
on X, then

hµ(T ) ≤ hlocµ (T ).(2.2)

Following Ledrappier [Led13], we now prove the equality case in (2.2) for Lips-
chitz transformations defined on (noncompact) Riemannian manifolds.

Theorem 2.9. Let T : M → M be a Lipschitz transformation of a complete
Riemannian manifold and µ an ergodic T -invariant probability measure. Then

hµ(T ) = hlocµ (T ).

Proof. As consequence of Theorem 2.8, we only need to prove that hµ(T ) ≥ hlocµ (T ).
This follows from Proposition 2.10 below.

Proposition 2.10 (Ledrappier [Led13], Proposition 6.3). Let T : M → M be
a Lipschitz transformation of a complete Riemannian manifold and µ an ergodic
T -invariant probability measure. Then, for every compact set K ⊂ M such that

µ(K) > 0 and all 0 < r < 1, there exists a partition P̂ of K with finite entropy

such that, if P = P̂ ∪{M \K}, then for µ-almost every x ∈ K the sequence (nk)k≥0

of return times of x into K satisfies

Pnk(x) ⊂ Bnk
(x, r),

for all k ≥ 0.
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Let P be as in Proposition 2.10. Using the ergodicity of µ, for µ-a.e. x ∈ M
there exists an integer k < 0 such that T kx ∈ K. We know from the construction of
P that the inclusion Pn(T kx) ⊂ Bn(T

kx, r) is satisfied for infinitely many integers
n. In particular, we deduce that Pn+k(x) ⊂ T−kBn(T

kx, r) is also satisfied for
infinitely many n’s. Therefore

lim
n→∞

−
1

n
log µ(Pn(x)) ≥ lim inf

n→∞
−
1

n
logµ(T−kBn(T

kx, r))

= lim inf
n→∞

−
1

n
logµ(Bn(T

kx, r))

≥ lim inf
n→∞

−
1

n
logµ(Bn(x, r)).

Thus, for µ-a.e. x ∈M , we have

lim sup
n→∞

−
1

n
logµ(Pn(x)) ≥ lim inf

n→∞
−
1

n
log µ(Bn(x, r)).(2.3)

Recall that P has finite entropy, then the left-hand side of inequality (2.3) is µ-
almost everywhere a limit because of Shannon-McMillan-Breiman Theorem. By
Lemma 2.7 and Monotone Convergence Theorem, for every ε > 0 there exists
r0 > 0 such that for all 0 < r < r0, we have

∫
lim inf
n→∞

−
1

n
log µ(Bn(x, r))dµ(x) ≥ hlocµ (T )− ε.

Using inequality (2.3) together with Shannon-McMillan-Breiman Theorem, we ob-
tain

hµ(T ) ≥ hµ(T,P) =

∫
lim
n→∞

−
1

n
logµ(Pn(x))dµ(x)

≥

∫
lim inf
n→∞

−
1

n
logµ(Bn(x, r))dµ(x) ≥ hlocµ (T )− ε.

Hence, the desired inequality follows when ε→ 0. �

Lemma 2.11. Let T : M → M be a Lipschitz transformation of a complete Rie-
mannian manifold and µ an ergodic T -invariant probability measure. Then

sup
K

ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logµ(Bn(x, r)) ≤ hµ(T ).

Proof. Since T is Lipschitz, Proposition 2.10 and Shannon-McMillan-Breiman The-
orem imply that, for every compact set K ⊂ M such that µ(K) > 0, and every
0 < r < 1, we have

lim sup
n→∞

Tnx∈K

−
1

n
logµ(Bn(x, r)) ≤ hµ(T,P) ≤ hµ(T ),

for µ-a.e. x ∈ K. This implies the desired inequality. �

We now prove Theorem 1.3. Observe first that we always have the following
inequality

(2.4) hlocµ (T ) ≤ sup
K

ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logµ(Bn(x, r)).
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Proof of Theorem 1.3. This follows from Theorem 2.8, inequality (2.4) and Lemma
2.11. �

To end this subsection, for completeness of this section we give a relation between
the upper δ-entropy and the upper local entropy in a general setting.

Theorem 2.12. Let T : X → X be a continuous transformation of a metric space
(X, d) and µ an ergodic T -invariant probability measure. Then for all 0 < δ < 1,
we have

h
δ

µ(T ) ≤ h
loc

µ (T ).

Proof. Fix ε > 0 and 0 < r < 1. Define the set X(ε, r, n′) ⊂ X , for n′ ≥ 1, by

X(ε, r, n′) =

{
x ∈ X : −

1

n
logµ(Bn(x, r)) ≤ h

loc

µ (T ) + ε, for all n ≥ n′

}
.

Note that µ(X(ε, r, n′)) goes to 1 when n′ → ∞ and r → 0. Take r > 0 small
enough and n′

0 = n′
0(r) > 0 large enough such that µ(X(ε, r, n′)) > 1− δ for every

n′ ≥ n′
0. Let K ⊂ X(ε, r, n′

0) be a compact set such that µ(K) > 1 − δ. We are
going to find an upper bound of S(n, r,K) (the maximal cardinality of a (n, r)-
separated subset of K), for every n ≥ n′

0. Let E be a maximal (n, r)-separated set
in K. Since (n, r/2)-balls centered at E are disjoint, we have

∑

x∈E

µ(Bn(x, r)) = µ

(
⋃

x∈E

Bn(x, r/2)

)
≤ 1.

As the (n, r)-balls with center in K satisfy µ(Bn(x, r)) ≥ exp
(
−n
(
h
loc

µ (T ) + ε
))

,

it follows that

#E = S(n, r,K) ≤ exp
(
n
(
h
loc

m (T ) + ε
))

.

Therefore, by Lemma 2.2, we get

lim sup
n→∞

1

n
logN(n, r,K) ≤ lim sup

n→∞

1

n
logS(n, r,K)

≤ h
loc

µ (T ) + ε.

Hence, for every r > 0 small enough we can find a compact K ⊂ X such that
µ(K) > 1− δ and

lim sup
n→∞

1

n
logN(n, r,K) ≤ h

loc

µ (T ) + ε.

In particular,

h
δ

µ(T ) = lim
r→0

lim sup
n→∞

1

n
logN(n, r, δ)

≤ lim
r→0

lim sup
n→∞

1

n
logN(n, r,K)

≤ h
loc

µ (T ) + ε.

Since ε > 0 is arbitrary, the conclusion follows. �
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3. Exponential decay of the volume of dynamical balls

This section is divided in two parts. In the first part we define the Riemannian
local entropy hLµ (T ) and we compare it with the classical measure entropy. In
the second part, inspired by this property, we will show that the sum of positive
Lyapunov exponents of a diffeomorphism f :M →M equals the exponential decay
of the volume of dynamical balls for the dynamic of df on TM .

3.1. A Riemannian local entropy for Riemannian manifolds. Our goal is
to define a local entropy of a measure µ measuring the Riemannian measure L
of a µ-typical dynamical ball. Moreover, we want to be able to compare it with
the measure-theoretical entropy. It turns out that the essential supremum of the
exponential decay for the Riemannian measure of µ-typical dynamical balls is an
interesting quantity to consider.

Definition 3.1. Let T :M →M be a continuous transformation of a Riemannian
manifold, preserving an ergodic T -invariant probability measure µ. For every com-
pact set K ⊂M verifying µ(K) > 0, we define the local Riemannian entropy of T
relative to µ over K, denoted by hLµ (T,K), as

hLµ (T,K) = ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logL(Bn(x, r)),

where the essential supremum is with respect to the measure µ. We define the local
Riemannian entropy of T relative to µ, denoted by hLµ (T ), as

hLµ (T ) = sup
K

hLµ (T,K),

where the supremum is taken over all the compact subsets K ofM verifying µ(K) >
0.

The following theorem shows that the lower δ-entropy of Katok is bounded from
above by the local Riemannian entropy. We stress the fact that the measure µ only
appears in the definition of local Riemannian entropy when considering µ-typical
dynamical balls. For the best of our knowledge there are no related results in the
literature.

Theorem 3.2. Let T : M → M be a continuous transformation of a complete
Riemannian manifold, preserving an ergodic T -invariant probability measure µ. If
K ⊂ M is a compact set of strictly positive µ-measure, then for all 1 − µ(K)2 <
δ < 1, we have

hδµ(T ) ≤ hLµ (T,K).

Proof. If hLµ (T,K) = ∞ there is nothing to prove. Suppose that hLµ (T,K) < ∞.
For ε > 0, r > 0 and n′ ≥ 1, we define the set Kε,r,n′ as

Kε,r,n′ = {x ∈ K : L(Bn(x, r)) ≥ exp(−n(hLµ (T,K) + ε)), for every n ≥ n′

such that T nx ∈ K}.

Note that the measure µ(Kε,r,n′) goes to µ(K) when n′ → ∞ and r → 0. For
all 0 < η < µ(K)/2 there exist r > 0 and n′

0 ≥ 1 (depending on r) such that
µ(Kε,r,n′

0
) > µ(K)−η/2. Let K0 ⊂ Kε,r,n′

0
be a compact set with measure µ(K0) >

µ(K)− η. We are going to estimate the cardinality of a minimal (n, r)-covering of
K0 for n ≥ n′

0. The problem is that in general, if x, x′ ∈ K are different, the first
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time of return in K is also different for these two points. The ergodicity assumption
for the dynamical system will help us to erase this problem.

Birkhoff’s Ergodic Theorem implies that 1
n

∑n−1
i=0 µ(K0 ∩ T−iK0) converge to

µ(K0)
2. In particular, there is a sequence (φ(n))n strictly increasing of integers

such that µ(K0 ∩ T
−φ(n)K0) converge to L(K0) ≥ µ(K0)

2. Let 0 < λ < L(K0)/2.
Then, there is an integer n1 ≥ 1 such that µ(K0 ∩ T

−φ(n)K0) > L(K0) − λ for all
n ≥ n1. Let δ(K0, λ) = 1 − (µ(K0)

2 − λ) and set Kφ(n) = K0 ∩ T
−φ(n)K0. The

µ-measure of Kφ(n) satisfies, for all n ≥ n1

µ(Kφ(n)) > L(K0)− λ ≥ µ(K0)
2 − λ = 1− δ(K0, λ).

Let E be a maximal set (φ(n), r)-separated in Kφ(n), for n ≥ max{n0, n1}. Then

L(Vr(K)) ≥ L

(
⋃

x∈E

Bφ(n)(x, r/2)

)

≥
∑

x∈E

L(Bφ(n)(x, r/2))

≥ #E exp(−n(hLµ (T,K) + ε)).

Therefore, the cardinality of E is bounded from above by

#E ≤ L(Vr(K)) exp(n(hLµ (T,K) + ε)).

Hence, using Lemma 2.2 and the estimation from above of the cardinality of a
maximal set (φ(n), r)-separated in Kφ(n), we get

lim inf
n→∞

1

n
logN(n, r, δ(K0, λ)) ≤ lim inf

n→∞

1

φ(n)
logN(φ(n), r, δ(K0, λ))

≤ lim inf
n→∞

1

φ(n)
logN(φ(n), r,Kφ(n))

≤ lim inf
n→∞

1

φ(n)
logS(φ(n), r,Kφ(n))

≤ hLµ (T,K) + ε.

In particular, we have shown that for every r > 0 small enough and every n large
enough (depending on r), there exists a compact setKφ(n) of µ-measure µ(Kφ(n)) ≥
δ(K0, λ). Therefore, the sequence of inequalities above implies that

hδ(K0,λ)
µ (T ) = lim

r→0
lim inf
n→∞

1

n
logN(n, r, δ(K0, λ))

≤ hLµ (T,K) + ε.

Since λ > 0 is arbitrary and from Proposition 2.4, we have hδµ(T ) ≤ hLµ (T,K) + ε

for all 1−µ(K0)
2 < δ < 1. Since η > 0 is arbitrary, we have hδµ(T ) ≤ hLµ (T,K)+ ε,

for all 1 − µ(K)2 < δ < 1. Since ε > 0 is arbitrary, the conclusion of the theorem
follows. �

A direct consequence of Theorem 3.2, by choosing a sequence of compact sets (Kn)n
such that µ(Kn) → 1 when n→ 1, is the following corollary.
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Corollary 3.3. Let T :M →M be a continuous transformation of a complete Rie-
mannian manifold, preserving an ergodic T -invariant probability measure µ. Then,
for all 0 < δ < 1, we have

hδµ(T ) ≤ hLµ (T ).

Finally we can prove Theorem 1.4.

Proof of Theorem 1.4. This is a consequence of Theorem 2.5 and Corollary 3.3. �

We have considered the Riemannian measure in the definition of local Riemann-
ian entropy because we can ensure always that it gives positive measure to µ-typical
dynamical balls, regardless of the measure µ. Moreover, it will be very useful in
the proof of Theorem 1.1. However, we might also have considered the measure µ
as in the case of local entropies, and nothing in the proof of Theorem 1.4 changes.
Hence, for all 0 < δ < 1, we have

(3.1) hδµ(T ) ≤ sup
K

ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logµ(Bn(x, r)).

Theorem 3.4. Let T : M → M be a Lipschitz transformation of a complete
Riemannian manifold and µ an ergodic T -invariant probability measure. Then, for
all 0 < δ < 1, we have

hµ(T ) = hδµ(T ).

Proof. On the one hand, Theorem 2.5 implies that hµ(T ) ≤ hδµ(T ). On the other

hand, Lemma 2.11 (or Theorem 1.3) imply that hδµ(T ) ≤ hµ(T ). �

We now can now summarize Theorems 1.3, 2.9 and 3.4 in one single statement.

Corollary 3.5. Let T : M → M be a Lipschitz transformation of a complete
Riemannian manifold and µ an ergodic T -invariant probability measure. Then

hµ(T ) = hδµ(T ) = hlocµ (T ) = sup
K

ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logµ(Bn(x, r))

3.2. Lyapunov exponents and exponential decay of linearized dynamical

balls. Now we will study the dynamics of a smooth transformation of a noncompact
Riemannian manifold. Let (M, g) be a Riemannian manifold and f :M →M a C1-
diffeomorphism. For x ∈M , let ‖·‖x denote the Riemannian norm induced by g on
TxM . The point x is said to be (Lyapunov-Perron) regular if there exist numbers

{λi(x)}
l(x)
i=1 , called Lyapunov exponents, and a decomposition of the tangent space

at x into TxM =
⊕l(x)

i=1 Ei(x) such that for every tangent vector v ∈ Ei(x) \ {0},
we have

lim
n→±∞

1

n
log ‖dxf

nv‖fnx = λi(x),

and

lim
n→±∞

1

n
log | det(dxf

n)| =

l(x)∑

i=1

λi(x)dim(Ei(x)).

Let Λ be the set of regular points. By Oseledec’s Theorem ([Ose68], [Led84b]), if
µ is an f -invariant probability measure on M such that log ‖df±1‖ is µ-integrable,
then the set Λ has full µ-measure. Moreover, the functions x 7→ λj(x) and x 7→
dim(Ej(x)) are µ-measurable and f -invariant. In particular, if µ is ergodic, they
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are µ-almost everywhere constant. In that case, we denote by {λj}
l
j=1 the Lya-

punov exponents. Note that for µ-a.e. x ∈ M , for every v ∈ TxM \ {0} the limit
limn→±∞

1
n
log ‖dxf

n(v)‖fnx exists. More precisely, if v =
∑

j vj is the Oseledec’s
decomposition of v, then

lim
n→±∞

1

n
log ‖dxf

n(v)‖fnx =: λ(x, v)

is the largest Lyapunov exponent associated to a vector vj 6= 0.
Let x ∈ Λ. Define Esu(x) as

Esu(x) =
⊕

λj(x)>0

Ej(x).

Consider the function χ+ : M → R defined as χ+(x) =
∑

λj(x)>0 λj(x) dim(Ej(x))

if x ∈ Λ and χ+(x) = 0 otherwise. If µ is an ergodic f -invariant probability measure
onM , we denote by χ+(µ) (or simply χ+ when there is no ambiguity) the essential
value of the function χ+(x) with respect to µ.

Denote by Bx(0, r) the r-ball centered at 0 in (TxM, gx).

Definition 3.6. We define the tangent (n, r)-dynamical ball C(x, n, r) on TxM as

C(x, n, r) =
n−1⋂

i=0

(dxf
i)−1(Bfix(0, r)) ⊂ TxM.

Let volx be the Euclidean volume on TxM induced by gx. Theorem 3.7 below
says that the Lyapunov exponents describe the exponential decay of the volx-volume
of a tangent dynamical ball, as follows

Theorem 3.7. Let (M, g) be a Riemannian manifold and f : M → M a C1-
diffeomorphism. Suppose that µ is an f -invariant probability measure such that
log ‖df±1‖ ∈ L1(µ). Then, for µ-a.e. x ∈M , we have

lim
r→0

lim inf
n→∞

−
1

n
log volx(C(x, n, r)) = lim

r→0
lim sup
n→∞

−
1

n
log volx(C(x, n, r))

= χ+(x).

Before giving a proof of Theorem 3.7, we need the following technical lemma.

Lemma 3.8. Let (M, g) be a Riemannian manifold of dimension d and f :M →M
a C1-diffeomorphism. Suppose that µ is an ergodic f -invariant probability measure
such that log ‖df±1‖ ∈ L1(µ). Then, for every ε > 0, there exists a compact set
K ⊂M such that for every x ∈ K there is a sequence (tn)n of strictly positive real
numbers such that

(1) the µ-measure of K is greater than 1− ε,
(2) the exponential decay of tn is smaller than 2ε, i.e.

lim sup−
1

n
log tn ≤ 2ε,

(3) for every r > 0 there exist constants C,C′ > 0 (depending on K, r and l)
such that, for every integer n ≥ 0 and every x ∈ K, we have

volx(C(x, n, r)) ≥ Ctdn
∏

λj>0

exp(−n dim(Ej(x))(λj + ε))(3.2)
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and

volx(C(x, n, r)) ≤ C′
∏

λj>0

exp(−n dim(Ej(x))(λj − ε)).(3.3)

Proof. Let ε > 0 be such that ε ≤ min{|λj | : λj 6= 0}/100. For every integer k ≥ 1,
define the set Mε,k as

Mε,k = {x ∈ Λ : ∀v ∈ T 1
xM, ∀|i| ≥ k,

exp(i(λ(x, v) − ε)) ≤ ‖dxf
iv‖ ≤ exp(i(λ(x, v) + ε))}.

Oseledec’s Theorem implies that µ(M \ Mε,k) goes to 0 when k goes to infin-
ity. In particular, there exists k0 ≥ 1 such that µ(M \ Mε,k0

) ≤ ε/2. Since
µ is a Borel measure, there is a compact K ⊂ Mε,k0

such that µ(K) > 1 − ε,∫
M\K log+ ‖df±1‖dµ < ε and the maps x 7→ Ej(x) are continuous over K. For

x ∈ K and n ≥ 0, define the sets of integers Ix,n and Icx,n as

Ix,n = {k0 ≤ i ≤ n : f ix ∈ K}

and

Icx,n = {0 ≤ i ≤ n : f ix 6∈ K}.

From the definition of a tangent dynamical ball, we have

C(x, n, r) = CK(x, n, r) ∩ CKc(x, n, r),

where

CK(x, n, r) =
⋂

i∈Ix,n

(dfixf
−i)(Bfix(0, r)), and

CKc(x, n, r) =
⋂

i∈Ic
x,n

(dfixf
−i)(Bfix(0, r)).

To estimate the volume volx(C(x, n, r)) we will use that

(dxf
i)(Bx(0, r)) ⊂ Bfix(0, ‖dxf

i‖r) ⊂ TfixM,(3.4)

and

Bx(0, ‖dxf
i‖−1r) ⊂ (dfixf

−i)(Bfix(0, r)).(3.5)

By continuity of the maps x 7→ Ej(x) on K, we can assume that there exists α > 0
such that for every x ∈ K and every pair (j1, j2), with j1 6= j2, we have

∠(Ej1 (x), Ej2 (x)) ≥ α.(3.6)

Part I: Upper bound of the volume. Inequality (3.3) follows directly from
C(x, n, r) ⊂ CK(x, n, r). Let w = (dfixf

−i)v, where v ∈ Bfix(0, r) ∩ Ej(f
ix),

1 ≤ j ≤ s and i ∈ Ix,n. Using (3.4), we have

‖w‖ = ‖dfixf
−iv‖ ≤ exp(−i(λ(f ix, v)− ε))‖v‖

= exp(−i(λj − ε))‖v‖.

Let v ∈ Bz(0, r), for z ∈ K, and let v =
∑

j vj be the Oseledec’s decomposition of
v. The law of sines implies

‖vj‖z ≤
‖v‖z
sin(α)

.
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Therefore,

(dfixf
−i)(Bfix(0, r)) ⊆ (dfixf

−i)




l∏

j=1

Bj

fix
(0, r/ sin(α))




⊆

l∏

j=1

(dfixf
−i)(Bj

fix
(0, r/ sin(α)))

⊆


∏

λj≤0

Bj(0, r/ sin(α))


 ×


∏

λj>0

Bj(0, exp(−i(λj − ε))r/ sin(α))


 .

The last term above is a parallelepiped (of dimension d). His volume is comparable
to the volume of a rectangular parallelepiped whose sides have the same lengths
that the original one. The constant of comparison depends only on the angle of
the sides, which is greater than α by (3.6). Therefore, there exists a constant

C̃′ = C̃′(α) > 0, such that

volx(C(x, n, r)) ≤ C̃′(r/ sin(α))d
∏

λj>0

exp(−n dim(Ej(x))(λj − ε)).

In particular, Inequality (3.3) is deduced for C′ = C̃′(r/ sin(α))d.

Part II: Lower bound of the volume. As we have no control on the behavior of
the differential on M \K, we need to reduce the estimation problem of the volume
of C(x, n, r) to a problem of estimation of the volume of CK(x, n, r). For i ∈ Ix,n,
define j(i) as the number of consecutive indices greater than i belonging to Icx,n,
that is,

j(i) =

{
max{j ≥ 1 : i+m ∈ Icx,n, ∀1 ≤ m ≤ j}, if i + 1 ∈ Icx,n
0, otherwise.

Let i ∈ Ix,n and suppose j(i) ≥ 1. By definition, we have i +m ∈ Icx,n for every
1 ≤ m ≤ j(i) and i+ j(i) + 1 ∈ Ix,n. Using inclusion (3.5), it follows

dfi+mxf
−(i+m)(Bfi+mx(0, r)) = dfixf

−idfi+mxf
−m(Bfi+mx(0, r))

⊃ dfixf
−iBfix(0, ‖dfixf

m‖−1r)

⊃ dfixf
−iBfix

(
0,

(
m−1∏

m′=0

min{1, ‖dfi+m′
xf‖

−1}

)
r

)

⊃ dfixf
−iBfix


0,



∏

k∈Ic
x,n

min{1, ‖dfkxf‖
−1}


 r


 .

The above sequence of inclusions implies that every set of the form dfkxf
−k(Bfkx(0, r)),

for k ∈ Icx,n, contains a set of the form (dfixf
−i)(Bfix(0, tnr)), where i ∈ Ix,n∪{0}
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and tn =
∏

k∈Ic
x,n

min{1, ‖dfk−1xf‖
−1}. Thus,

C(x, n, r) ⊃ CK(x, n, tnr).(3.7)

Claim (2) follows from Birkhoff’s Ergodic Theorem. More precisely,

−
1

n
log tn = −

1

n

∑

k∈Ic
x,n

logmin{1, ‖dfkxf‖
−1}

≤ −
1

n

n−1∑

k=0

1Kc(fkx) logmin{1, ‖dfkxf‖
−1}

≤

∫

M\K

log+ ‖df‖dµ+ ε

≤ 2ε

for every n large enough.

Let i ∈ Ix,n. For w = (dfixf
−i)v, where v ∈ Bfix(0, r) ∩Ej(f

ix) and 1 ≤ j ≤ l,
we have w ∈ Ej(x). In particular, by definition of Mε,k0

, we obtain for i ≥ k0 the
following

‖w‖ = ‖dfixf
−iv‖ ≥ exp(−i(λ(f ix, v) + ε))‖v‖

= exp(−i(λj + ε))‖v‖.
(3.8)

Consider now Bj
x(0, r) the r-ball centered at 0 on Ej(x), for the norm gx|Ej(x),

for all 1 ≤ j ≤ l. Thus, using (3.8), it follows

(dfixf
−i)(Bfix(0, r)) ⊇ (dfixf

−i)




l∏

j=1

Bj

fix
(0, r/l)




=
l∏

j=1

(dfixf
−i)(Bj

fix
(0, r/l))

⊃

l∏

j=1

Bj
x(0, exp(−i(λj + ε))r/l)

⊃


∏

λj≤0

Bj
x(0, r/l)


×


∏

λj>0

Bj
x(0, exp(−i(λj + ε))r/l)


 .

The same arguments of Part I for the upper bound of the volume allow to show the
existence of a constant C̃ = C̃(α) > 0 such that

volx



∏

λj≤0

Bj
x(0, r/l)×

∏

λj>0

Bj
x(0, exp(−i(λj + ε))r/l)




is greater than

C̃(r/l)d
∏

λj>0

exp(−n dim(Ej(x))(λj + ε)).
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The inequality above together (3.7) implies (3.2) for C = C̃(r/l)d. It concludes the
proof of Lemma 3.8. �

We will use Lemma 3.8 to prove Theorem 3.7 for ergodic measures. This is
sufficient because of the ergodic decomposition of a measure.

Proof of Theorem 3.7. Suppose that µ is an ergodic measure and let ε > 0 be small
enough as in Lemma 3.8. Let K = K(ε, k0) be the compact given by Lemma 3.8.
Then, for every x ∈ K, we have

lim
r→0

lim sup
n→∞

−
1

n
log volx(C(x, n, r)) ≤ lim sup

n→∞
−
1

n
log tn +

∑

λj>0

dim(Ej(x))(λj + ε)

≤ 2dε+
∑

λj>0

dim(Ej(x))(λj + ε)

and

lim
r→0

lim inf
n→∞

−
1

n
log volx(C(x, n, r)) ≥

∑

λj>0

dim(Ej(x))(λj − ε).

Since we can choose K = K(ε) such that µ(K) → 1 when ε→ 0, the conclusion of
Theorem 3.7 follows. �

Let x ∈M . Denote by rinj(x) the injectivity radius at x. For 0 < r ≤ rinj(x) we
define the linearized (n, r)-dynamical ball as Cn(x, r) = expx(C(x, n, r)). Observe
that (expx)∗volx is locally comparable with the Riemannian measure L, therefore
Theorem 3.7 implies the following:

Corollary 3.9. Let M be a Riemannian manifold and let f : M → M be a C1-
diffeomorphism. Suppose that µ is an f -invariant probability measure such that
log ‖df±1‖ ∈ L1(µ). Then, for µ-a.e. x ∈M , we have

lim
r→0

lim inf
n→∞

−
1

n
logL(Cn(x, r)) = lim

r→0
lim sup
n→∞

−
1

n
logL(Cn(x, r))

= χ+(x).

Theorem 1.4 and Corollary 3.9 are a first step in order to prove Ruelle’s inequality
for “nice” diffeomorphisms of noncompact manifolds. Heuristically speaking, if a
dynamical ball Bn(x, r) is comparable with the linearized dynamical ball Cn(x, r),
then Ruelle’s inequality should arise in a natural way since the limits in Corollary
3.9 look like the Riemannian local entropy.

4. Geodesic flow in negative curvature

Let X be a complete Riemannian manifold with dimension at least 2 and pinched
negative sectional curvature at most -1. Let T 1X his unit tangent bundle. Recall
that the Liouville measure L on T 1X is the Riemannian volume of the Sasaki metric
on T 1X (see for instance [Bal95] for details). It is invariant under the action of the
geodesic flow (gt) on T 1X . Let v ∈ T 1X and t ∈ R. Denote by Esu(v) the tangent
space of the strong unstable manifold at v. Denote by Jsu(v, t) the Jacobian of the
linear map dvg

t|Esu(v). The geometric potential F su : T 1X → R is then defined by

F su(v) = −
d

dt |t=0
log Jsu(v, t).



RUELLE’S INEQUALITY FOR THE GEODESIC FLOW 17

Theorem 4.1 (Paulin-Pollicott-Schapira). Let X be a complete Riemannian man-
ifold with dimension at least 2 and pinched negative sectional curvature at most -1.
Assume that the derivatives of the sectional curvature are uniformly bounded. Then
F su is Hölder-continuous and bounded.

The potential F su is intimately related to the Lyapunov exponents. Let µ be
a probability measure on T 1X invariant under the geodesic flow (gt). Since the
sectional curvature is pinched, the norm ‖dg±1‖ is bounded. Hence, log ‖dg±1‖ is
µ-integrable. Oseledec’s Theorem implies that µ-almost every v ∈ T 1X is regular.
In particular, for µ-almost every v ∈ T 1X , the tangent space of the strong unstable
manifold at v coincides with

⊕
λj(v)>0Ej(v). This fact justifies the notation E

su(v)

for the direct sum of the spaces Ej(v) associated to λj(v) > 0. Moreover, we have

lim
n→+∞

1

n

∫ n

0

F su(gtv)dt = − lim
n→+∞

1

n
log Jsu(v, n) = −χ+(v), µ− a.e.

The key fact that will allow us to prove Ruelle’s inequality for the geodesic
flow is the Gibbs property of the Liouville measure for the potential F su ([PPS12,
Proposition 7.9]). Recall that a (gt)-invariant measure m on T 1X satisfies the
Gibbs property for the potential F : T 1X → R with constant c(F ) if and only if
for every compact subset K of T 1X , for every r > 0, there exists C = C(K, r) ≥ 1,
such that for every T ≥ 0, for every v ∈ K ∩ g−TK, we have

C−1 ≤
m(BT (v, r))

exp(
∫ T

0
(F (gtv)− c(F ))dt)

≤ C.

Proposition 4.2 (Paulin-Pollicott-Schapira). Let X be a complete Riemannian
manifold with dimension at least 2 and pinched negative sectional curvature at most
-1. Assume that the derivatives of the sectional curvature are uniformly bounded.
Then the Liouville measure on T 1X satisfies the Gibbs property for the potential
F su and the constant c(F su) = 0.

Note that the assumption on the derivatives of the sectional curvature is crucial.
It implies in particular that the strong unstable and strong stable distributions are
Hölder-continuous (see for instance [PPS12, Theorem 7.3]), and therefore that L
locally decomposes into a product of Lebesgue measures along unstable and stable
manifolds (see [PPS12, Theorem 7.6]). This last fact is the cornerstone in order to
estimate the Liouville measure of a dynamical ball.

4.1. Ruelle’s inequality and Pesin’s formula. Let X be a complete Riemann-
ian manifold satisfying the assumptions of Theorems 1.1 and 1.2. By simplicity we
will always consider in the proofs an ergodic (gt)-invariant probability measure µ.
The proofs of the theorems in the non-ergodic case are consequence of the ergodic
decomposition of such a measure. We can also assume that g = g1 is an ergodic
transformation with respect to µ. If it is not the case, then we can choose an
ergodic-time τ for µ (see [LS79, Theorem 3.2]) and prove Theorem 1.1 and Theo-
rem 1.2 for the map gτ . The validity of Theorems 1.1 and 1.2 for gτ implies the
validity of both theorems for g since hµ(g

τ ) = τhµ(g) and the Lyapunov exponents
of gτ are τ -multiples of the Lyapunov exponents for g.
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Proof of Theorem 1.1. Let K be a subset of T 1X of measure 0 < µ(K) < 1. Since
F su is µ-integrable, Proposition 4.2 implies

hLµ (g,K) = ess sup
v∈K

lim
r→0

lim sup
n→∞

gnv∈K

−
1

n
logL(Bn(v, r))

≤ ess sup
v∈K

lim
r→0

lim sup
n→∞

gnv∈K

−
1

n
log

(
C−1 exp

(∫ n

0

F su(gtv)dt

))

= −

∫
F sudµ

= χ+(µ).

Last equality is a consequence of Birkhoff’s Ergodic Theorem. Thus, hLµ (g) ≤ χ+

and Theorem 1.4 implies directly that

hµ(g) ≤ χ+.

�

The proof of Theorem 1.2 is similar to those in [LS82], [Led84a] and [LY85]. We
only need to corroborate that all technical hypotheses hold, for instance the Hölder
regularity of strong unstable and strong stable distributions. As said before, these
technical hypotheses are consequence of the assumption on the derivatives of the
sectional curvature. In [OP04] the authors use the regularity of the strong unstable
foliation to prove the existence of nice measurable partitions. They follow the ideas
in [LS82] and [Led84a] adapted to the geodesic flow in negative curvature. We
stress that in [OP04] the authors use the Hölder regularity of strong unstable and
strong stable foliations omitting the hypothesis on the derivatives of the sectional
curvatures, even if it is necessary to ensure such regularity (we refer to [BBB87]
where the authors construct a finite volume Riemannian surface with pinched neg-
ative sectional curvatures whose strong stable foliation is not Hölder-continuous).

Recall that a measurable partition ξ of T 1X is subordinate to the W su-foliation
if for µ-a.e. v ∈ T 1X , we have

(i) the atom ξ(v) is contained in W su(v), and
(ii) the atom ξ(v) contains a neighborhood of v, open for the submanifold

topology on W su(v).

Let volv be the volume on W su(v) induced by the Sasaki metric on T 1X restricted
to the strong unstable manifold W su(v). The measure µ has absolutely continu-
ous conditional measures on unstable manifolds if for every µ-measurable partition
ξ subordinate to W su, the conditional measure µξ(v) of µ on ξ(v) is absolutely
continuous with respect to volv.

Proposition 4.3. Let X be a complete Riemannian manifold with dimension at
least 2 and pinched negative sectional curvature at most -1. Assume that the
derivatives of the sectional curvature are uniformly bounded. Let µ an ergodic
(gt)-invariant probability measure and suppose that g = g1 is ergodic. Then, there
exists a µ-measurable partition ξ of T 1X, such that

(1) the partition ξ is decreasing, i.e. (g−1ξ)(v) ⊂ ξ(v) for µ-a.e. v ∈ T 1X,
(2) the partition

∨
n≥0 g

−nξ is the partition into points,

(3) the partition ξ is subordinate to the W su-foliation,
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(4) for µ-a.e. v, we have
⋃

n∈Z
gnξ(gnv) =W su(v),

(5) for all measurable sets B ⊂ T 1X, the map

ψB(v) = volv(ξ(v) ∩B)

is measurable and µ-a.e. finite,
(6) for µ-a.e. v ∈ T 1X, if w,w′ ∈ ξ(v), then the infinite product

∆(w,w′) =

∏∞
n=0 J

su(g−nw, 1)∏∞
n=0 J

su(g−nw′, 1)

converges, and
(7) there exist constants C > 0 and 0 < α < 1 such that, if w ∈ ξ(v), then

| log∆(v, w)| ≤ C(d(v, w))α.

Proof. The existence of µ-measurable partitions satisfying (1) − (4) is proved in
[OP04]. Properties (5) − (7) are consequence of the regularity of the strong un-
stable distribution and the regularity of Jsu, following the same proof of [Led84a,
Proposition 3.1]. �

The class of µ-measurable partitions satisfying (1)−(4) contains somehow all the
complexity of the dynamics of the geodesic flow in the sense that every partition in
this class maximises the measure-theoretic entropy. This result is proved in [OP04]
following the ideas in [Led84a] and [LY85].

Proposition 4.4 (Ledrappier-Young/Otal-Peigné). Let X be a complete Riemann-
ian manifold with dimension at least 2 and pinched negative sectional curvature
at most -1. Assume that the derivatives of the sectional curvature are uniformly
bounded. Let µ an ergodic (gt)-invariant probability measure and suppose that
g = g1 is ergodic. If ξ is a partition as in Proposition 4.3, then

hµ(g) = hµ(g, ξ).

Proof of Theorem 1.2. We remark that the computation of the entropy appears in
[LS82], but as this fact is not stated explicitly, we give the general idea behind. Sup-
pose that µ has absolutely continuous conditional measures on unstable manifolds.
Let ξ be a µ-measurable partition as in Proposition 4.3. We only have to prove that
hµ(g, ξ) = χ+. This is equivalent to show that Hµ(g

−1ξ|ξ) =
∫
log Jsu(v, 1)dµ(v).

Define the measure ν on T 1X by

ν(B) =

∫
volw(ξ(w) ∩B)dµ(w),

for every measurable subset B of T 1X . Property (5) in Proposition 4.3 implies that
ν is σ-finite. Since µξ(v) is absolutely continuous with respect to volv, the measure
µ is absolutely continuous with respect to ν. Moreover, the Radon-Nikodym de-
rivative κ = dµ/dν coincide with dµξ(v)/dvolv, volv-almost everywhere on ξ(v), for

µ-almost every v ∈ T 1X (see [LS82, Proposition 4.1]).
Recall that

Hµ(g
−1ξ|ξ) =

∫
Iµ(g

−1ξ|ξ)dµ,

where Iµ(g
−1ξ|ξ)(v) = − logµξ(v)((g

−1ξ)(v)). Thus,

Iµ(g
−1ξ|ξ)(v) = − log

∫

(g−1ξ)(v)

κ(w)dvolv(w).
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Using Change of Variables Theorem, it follows∫

(g−1ξ)(v)

κ(w)dvolv(w) =

∫

ξ(gv)

κ(g−1w)
1

Jsu(g−1w, 1)
dvolgv(w).

From [LS82, Proposition 4.2], the application L(w) = κ(w)
κ(g−1w)J

su(g−1w, 1) is con-

stant on the atoms of the partition ξ. Therefore,
∫

ξ(gv)

κ(g−1w)
1

Jsu(g−1w, 1)
dvolgv(w) =

∫

ξ(gv)

κ(w)

L(w)
dvolgv(w)

=
1

L(gv)

∫

ξ(gv)

κ(w)dvolgv(w)

=
1

L(gv)

∫

ξ(gv)

dµξ(gv)(w)

=
1

L(gv)
.

Putting all together, we have shown that Iµ(g
−1ξ|ξ) = log Jsu(v, 1) + log κ(gv)

κ(v) .

Since Iµ(g
−1ξ|ξ) ≥ 0 and log Jsu(v, 1) is µ-integrable, it follows that the negative

part of log κ(gv)
κ(v) is µ-integrable. In particular, its µ-integral is equal to zero (see

[LS82, Proposition 2.2]), thus

hµ(g) =

∫
Iµ(g

−1ξ|ξ)dµ =

∫
log Jsu(v, 1)dµ(v) = χ+.

The converse statement is just the conclusion of [Led84a, Theorem 3.4] under
the hypothesis obtained in Proposition 4.4, for a µ-measurable partition ξ as in
Proposition 4.3. �

4.2. Further comments. We discuss now some consequences of Theorem 1.1 in
thermodynamic formalism. The topological pressure of (gt) for a potential F :
T 1X → R, denoted by P(gt)(F ) (or simply P (F )), is defined as

P (F ) = sup
µ
P (F, µ),

where P (F, µ) = hµ((g
t)) +

∫
T 1X

Fdµ and µ is an (gt)-invariant probability mea-

sure on T 1X . An (gt)-invariant probability measure m on T 1X is said to be an
equilibrium state for F , if

P (F ) = P (F,m).

In [PPS12] the authors construct a Gibbs measure for every bounded Hölder-
continuous potential F , with constant c(F ) equal to the topological pressure P (F ).
We remark that if a Gibbs measure is finite, its normalization is an equilibrium
state for the potential.

As a consequence of Theorem 4.1, there exists a Gibbs measure for F su under
the hypotheses of Theorem 1.1, which is denoted by mF su . In terms of thermody-
namical formalism, Ruelle’s inequality can be stated as:

Corollary 4.5. Let X be a complete Riemannian manifold with dimension at least
2 and pinched negative sectional curvature at most -1. Assume that the derivatives
of the sectional curvature are uniformly bounded. Then, for every (gt)-invariant
probability measure µ on T 1X, we have

(4.1) P (F su, µ) ≤ 0.
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In particular, we can remove inequality (4.1) as a redundant assumption in
[PPS12, Theorem 7.2]. Recall that the geodesic flow is conservative with respect to
a finite or infinite measure m on T 1X if every wandering set has m-measure zero.

Corollary 4.6. Let X be a complete Riemannian manifold with dimension at least
2 and pinched negative sectional curvature at most -1. Assume that the derivatives
of the sectional curvature are uniformly bounded. If the geodesic flow on T 1X is
conservative with respect to the Liouville measure L, then L is proportional to the
Gibbs measure mF su associated to the geometric potential F su. Furthermore, the
topological pressure P (F su) is equal to zero.

In particular, we also have

Corollary 4.7. Let X be a complete Riemannian manifold with dimension at least
2 and pinched negative sectional curvature at most -1. Assume that the derivatives
of the sectional curvature are uniformly bounded. If X has finite volume, then

mF su

mF su(T 1X)
=

L

L(T 1X)
.
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[OP04] Jean-Pierre Otal and Marc Peigné, Principe variationnel et groupes kleiniens, Duke
Math. J. 125 (2004), no. 1, 15–44.

[Ose68] V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of

dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210.
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E-mail address: felipe.riquelme@univ-rennes1.fr


