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ENTROPIES FOR A DIFFEOMORPHISM ON A NONCOMPACT

MANIFOLD. APPLICATIONS TO RUELLE’S INEQUALITY AND

PESIN’S FORMULA.

FELIPE RIQUELME

Abstract. In this paper we study different notions of entropy of measure-
preserving dynamical systems defined on noncompact spaces. We see that
some classical results for compact spaces remain partially valid in this setting.
We define a new kind of entropy for dynamical systems defined on noncom-
pact Riemannian manifolds, which satisfies similar properties to the classical
ones. As an application, we prove Ruelle’s inequality for the geodesic flow in
manifolds with pinched negative curvature. We discuss the case of equality
and we give some corollaries.

1. Introduction

Let (X,B, µ, T ) be a measure-preserving dynamical system. The measure theo-
retic entropy of Kolmogorov-Sinäı, denoted by hµ(T ), is an ergodic invariant mea-
suring the exponential growth rate of the complexity of T with respect to µ. When
(X, d) is a metric space and T : X → X is a continuous transformation, it is possi-
ble to measure the dynamical complexity from a metric point of view. For instance,
when X is compact we can consider the exponential growth rate of the cardinality
of a covering of X by dynamical balls, which is called topological entropy. We recall
that for every n ≥ 0 and r > 0, the (n, r)-dynamical ball at x ∈ X , denoted by
Bn(x, r), is the set of points y ∈ X satisfying d(T ix, T ix) < r for all 0 ≤ i ≤ n− 1.

By imitating the definition of topological entropy, Katok considered in [Kat80]
coverings by dynamical balls of sets with strictly positive measure. He showed that,
whenX is compact, the exponential growth rate of the cardinality of those coverings
coincides with the measure theoretic entropy. More precisely, fix 0 < δ < 1 and
denote by N(n, r, δ) the minimal cardinality of a covering by (n, r)-dynamical balls
of a set of µ-measure > 1− δ. He proved that

hµ(T ) = lim
r→0

lim inf
n→∞

1

n
logN(n, r, δ) = lim

r→0
lim sup
n→∞

1

n
logN(n, r, δ).

Another way to understand the complexity of a dynamical system is by consid-
ering the exponential decay of the measure of a generic dynamical ball. In [BK83]
Brin and Katok showed that, when X is compact, then for µ-almost every x ∈ X ,
we have

(1.1) hµ(T ) = lim
r→0

lim inf
n→∞

−
1

n
logµ(Bn(x, r)) = lim

r→0
lim sup
n→∞

−
1

n
logµ(Bn(x, r)).
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In this paper we compare these different notions of entropy when the base-space is
no longer compact. Moreover, we will study the complexity of a measure-preserving
dynamical system from a geometric point of view.

Consider the particular case, where T : M → M is a continuous map defined
on a Riemannian manifold. The Lebesgue measure L induced by the Riemannian
metric gives strictly positive measure to nonempty open sets. Hence, we can always
compute the exponential decay of the Lebesgue measure of a dynamical ball (as
in (1.1) for the Lebesgue measure). Naturally, since the Lebesgue measure is not
necessarily T -invariant, the limits

lim
r→0

lim inf
n→∞

−
1

n
logL(Bn(x, r)) and lim

r→0
lim sup
n→∞

−
1

n
logL(Bn(x, r))

depend on x ∈ M . Since we are particulary interested in the measure theoretic
entropy hµ(T ) of is a T -invariant probability measure µ on M , we should consider
the limits above for µ-generic dynamical balls. Having this in mind, we get

Theorem 1.1. Let T :M →M be a continuous transformation of a complete Rie-
mannian manifold, preserving an ergodic T -invariant probability measure µ. Then,
we have

(1.2) hµ(T ) ≤ sup
K compact

ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logL(Bn(x, r)).

Observe that the measure µ appears in the right-hand term of the inequality
(1.2) only when we consider the µ-essential supremum of the exponential decays of
the volumes of dynamical balls. As in the case of local entropy, we can also take
the limit in the right-hand term of (1.2) by considering the measure µ instead of
L. Following the strategy of the proof of Theorem 1.1, we obtain

Theorem 1.2. Let T :M →M be a continuous transformation of a complete Rie-
mannian manifold, preserving an ergodic T -invariant probability measure µ. Then,
we have

hµ(T ) ≤ sup
K compact

ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logµ(Bn(x, r)).

Consider now a C1-diffeomorphism f : M → M of a Riemannian manifold and
µ an f -invariant probability measure on M . The set of (Lyapunov-Perron) regular
points in M , denoted by Λ, is the set of points where the asymptotic eigenvalues of
the linearized dynamics of df are (somehow) well defined. The logarithm of these
eigenvalues are called the Lyapunov exponents of f (see definition in Section 3).
When M is compact, Ruelle’s inequality says that the measure theoretic entropy
of f , with respect to µ, is bounded from above by the sum of positive Lyapunov
exponents (see [Rue78]). More precisely,

hµ(f) ≤

∫ ∑

λj(x)>0

λj(x) dim(Ej(x))dµ(x).

In [Riq15], we showed that Ruelle’s inequality is not always satisfied when M is
noncompact. However, under reasonable assumptions on the manifold, Ruelle’s
inequality is satisfied for the geodesic flow in negative curvature.

Theorem 1.3. Let X be a complete Riemannian manifold, with dimension at least
2 and pinched sectional curvature. Assume that the derivatives of the sectional
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curvature are uniformly bounded. Then, for all (gt)-invariant probability measures
µ on T 1X, we have

hµ((g
t)) ≤

∫ ∑

λj(v)>0

λj(v) dim(Ej(v))dµ(v).

We discuss under which conditions we have equality in Ruelle’s inequality for the
geodesic flow. Recall that this has been widely studied in [Pes77, LS82, Led84a,
LY85] for generic compact manifolds and C1+α-diffeomorphisms. Following the
strategies in [LS82], [Led84a] and [OP04], we show

Theorem 1.4. Let X be a complete Riemannian manifold, with dimension at least
2 and pinched sectional curvature. Assume that the derivatives of the sectional
curvature are uniformly bounded. Let µ be a (gt)-invariant probability measure on
T 1X. Then µ has absolutely continuous conditional measures on unstable manifolds
if and only if

hµ((g
t)) =

∫ ∑

λj(v)>0

λj(v) dim(Ej(v))dµ(v).

In section 2 we give some general definitions of entropy and we establish, in the
noncompact setting, comparison results that are classical in the compact case. In
section 3 we prove Theorems 1.1 and 1.2. In section 4 we recall some properties of
the geodesic flow in negative curvature and we give the proofs of Theorems 1.3 and
1.4. Some corollaries are also stated at the end of that section.

Acknowledgements. I am very grateful to my adviser Barbara Schapira for many
helpful discussions from the very beginning of this work. I would also like to thank
Samuel Tapie for his inspiring remarks on some results of this paper.

2. Preliminaries

In this section we consider a probability space (X,B, µ) and a measurable trans-
formation T : X → X preserving the measure µ. Recall that µ is ergodic if every
T -invariant measurable set A ⊂ X satisfies µ(A) ∈ {0, 1}.

2.1. Measure theoretic entropy. Let P be a countable measurable partition of
X . The entropy of P with respect to µ, denoted by Hµ(P), is defined as

Hµ(P) = −
∑

P∈P

µ(P ) log µ(P ).

For all n ≥ 0, define the partition Pn as the measurable partition consisting of all
possible intersections of elements of T−iP , for all i = 0, ..., n− 1. The entropy of T
with respect to the partition P is then defined as the limit

hµ(T,P) = lim
n→∞

1

n
Hµ(P

n).

The measure theoretic entropy of T , with respect to µ, is the supremum of the
entropies hµ(T,P) over all measurable finite partitions P of X , i.e.

hµ(T ) = sup
P finite

hµ(T,P).
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2.2. Katok δ-entropies. Suppose now that (X, d) is a metric space, T : X → X
is a continuous transformation and µ is a Borel T -invariant probability measure on
X . For every n ≥ 0 the dynamical distance dn is defined by

dn(x, y) = max
0≤i≤n−1

d(T ix, T iy), for all x, y ∈ X.

The (n, r)-dynamical ball centered at x, denoted by Bn(x, r), is the r-ball centered
at x for the dynamical distance dn. Note that since T is continuous, the (n, r)-
dynamical balls are open subsets of X . Let A be a subset of X . A (n, r)-covering
of A is a covering of A by (n, r)-dynamical balls. A (n, r)-separated set in A is a
subset E of A such that for every x, y ∈ E, if x 6= y then dn(x, y) ≥ r.

Definition 2.1. Let K ⊂ X be a compact set. Denote by

(1) N(n, r,K) the minimal cardinality of a (n, r)-covering of K, i.e. a covering
of K by (n, r)-balls, and

(2) S(n, r,K) the maximal cardinality of a (n, r)-separated set in K.

Lemma 2.2 below is classical (see for instance [Wal82, page 169]). It says that
the cardinalities N(n, r,K) and S(n, r,K) are comparable.

Lemma 2.2. For all compact subsets K ⊂ X, we have

N(n, r,K) ≤ S(n, r,K) ≤ N(n, r/2,K).

Recall that Bowen’s definition of topological entropy, for continuous transforma-
tions on compact metric spaces, is the following:

htop(T ) = lim
r→0

lim sup
n→∞

1

n
logN(n, r,X)

= lim
r→0

lim sup
n→∞

1

n
logS(n, r,X).

From the measure-point of view, Katok proposed the following definition of en-
tropy in [Kat80]. For every 0 < δ < 1, denote by N(n, r, δ) the minimal cardinality
of a (n, r)-covering of a set of µ-measure greater than 1 − δ. Observe that this
number is finite since every compact subset of measure greater than 1− δ admits a
finite (n, r)-covering.

Definition 2.3. Let 0 < δ < 1. The lower and upper δ-entropies of Katok, denoted

respectively by hδµ(T ) and h
δ

µ(T ), are defined as

hδµ(T ) = lim
r→0

lim inf
n→∞

1

n
logN(n, r, δ)

and

h
δ

µ(T ) = lim
r→0

lim sup
n→∞

1

n
logN(n, r, δ).

Proposition 2.4. Let 0 < δ2 ≤ δ1 < 1, then

hδ1µ (T ) ≤ hδ2µ (T ) and h
δ1
µ (T ) ≤ h

δ2
µ (T ).
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Proof. We define Bi, for i = 1, 2, by Bi = {B : µ(B) > 1 − δi}. Since B2 ⊂ B1, we
obtain

hδ1µ (T ) = lim
r→0

lim inf
n→∞

1

n
logmin{N(n, r, B) : B ∈ B1}

≤ lim
r→0

lim inf
n→∞

1

n
logmin{N(n, r, B) : B ∈ B2}

= hδ2µ (T )

The other inequality can be proved similarly. �

Suppose that X is a compact metric space. Katok proved in [Kat80] that the
lower and upper δ-entropies are equal and coincide with the measure theoretic
entropy. In his proof the assumption of compacity for X is only used to show that

h
δ

µ(T ) ≤ hµ(T ). The other inequality is only based on the fact that hµ(T ) can be
approximate by entropies hµ(T,P), with respect to partitions satisfying µ(∂P) = 0,
where ∂P is the union of the boundaries of the elements of P . The validity of this
inequality in the noncompact case has been also remarked in [GK01] to compute
the topological entropy of the geodesic flow in the modular surface.

Theorem 2.5 (Katok). Let X be a complete metric space and let T : X → X be a
continuous transformation. If µ is an ergodic T -invariant probability measure, then
for all 0 < δ < 1, we have

hµ(T ) ≤ hδµ(T ).

2.3. Local entropies of Brin-Katok. The aim of this subsection is to understand
some relations between previous notions of entropy and local entropy. The notion
of local entropy was introduced by Brin and Katok in [BK83].

Definition 2.6. The lower and upper local entropies of T , denoted respectively by

hlocµ (T ) and h
loc

µ (T ), are defined as

hlocµ (T ) = ess inf
x∈X

lim
r→0

lim inf
n→∞

−
1

n
logµ(Bn(x, r))

and

h
loc

µ (T ) = ess sup
x∈X

lim
r→0

lim sup
n→∞

−
1

n
logµ(Bn(x, r)).

Suppose that µ is an ergodic measure. The monotonicity of the functions
r 7→ lim infn −

1
n
logµ(Bn(x, r)) and r 7→ lim supn −

1
n
log µ(Bn(x, r)), together with

Birkhoff’s Ergodic Theorem, imply the following:

Lemma 2.7. Let X be a complete metric space and let T : X → X be a continuous
transformation. If µ is an ergodic T -invariant probability measure on X, then

hlocµ (T ) =

∫
lim
r→0

lim inf
n→∞

−
1

n
logµ(Bn(x, r))dµ(x)

and

h
loc

µ (T ) =

∫
lim
r→0

lim sup
n→∞

−
1

n
log µ(Bn(x, r))dµ(x).

As said above, when X is a compact metric space, the lower and upper local
entropies coincide and are equal to the measure theoretic entropy. As in the case of
δ-entropies, only one inequality in the proof requires the compactness assumption
on X . Thus, in the general case following exactly the proof in [BK83], we obtain
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Theorem 2.8 (Brin-Katok). Let X be a complete metric space and let T : X → X
be a continuous transformation. If µ is an ergodic T -invariant probability measure
on X, then

hµ(T ) ≤ hlocµ (T ).(2.1)

Following Ledrappier, we give sufficient conditions in order to get an equality in
(2.1) for a large class of transformations defined on Riemannian manifolds.

Theorem 2.9. Let T : M → M be a Lipschitz transformation of a complete
Riemannian manifold and µ an ergodic T -invariant probability measure. Then

hµ(T ) = hlocµ (T ).

Proof. As consequence of Theorem 2.8, we only need to prove that hµ(T ) ≥ hlocµ (T ).
This follows from Proposition 2.10 below.

Proposition 2.10 (Ledrappier [Led13], Proposition 6.3). Let T : M → M be
a Lipschitz transformation of a complete Riemannian manifold and µ an ergodic
T -invariant probability measure. Then, for every compact set K ⊂ M such that

µ(K) > 0 and all 0 < r < 1, there exists a partition P̂ of K with finite entropy

such that, if P = P̂ ∪ {M \K}, then for µ-almost every x ∈ K, there is a strictly
increasing sequence of positive integers (nk)k≥0 such that

Pnk(x) ⊂ Bnk
(x, r),

for all k ≥ 0.

Let P as in Proposition 2.10. Then, the partition P has finite entropy and for
µ-a.e. x ∈M , we have

lim sup
n→∞

−
1

n
logµ(Pn(x)) ≥ lim inf

n→∞
−
1

n
log µ(Bn(x, r)),(2.2)

Observe that the left-hand side of inequality (2.2) is µ-almost everywhere a limit
because of Shannon-McMillan-Breiman Theorem. By Lemma 2.7, for every ε > 0
there exists r0 > 0 such that for all 0 < r < r0, we have

∫
lim inf
n→∞

−
1

n
log µ(Bn(x, r))dµ(x) ≥ hlocµ (T )− ε.

Using inequality (2.2), together with Shannon-McMillan-Breiman Theorem, we ob-
tain

hµ(T ) ≥ hµ(T,P) =

∫
lim
n→∞

−
1

n
logµ(Pn(x))dµ(x)

≥

∫
lim inf
n→∞

−
1

n
logµ(Bn(x, r))dµ(x) ≥ hlocµ (T )− ε.

Hence, the desired inequality follows when ε→ 0.
�

Remark 2.11. The sequence (nk)k of positive integers given in Proposition 2.10
is by construction the strictly increasing sequence of return times in K, which is
µ-a.e. infinite as a result of Poincaré Recurrence Theorem.
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Lemma 2.12. Let T : M → M be a Lipschitz transformation of a complete Rie-
mannian manifold and µ an ergodic T -invariant probability measure. Then

sup
K

ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logµ(Bn(x, r)) ≤ hµ(T ).

Proof. Since T is Lipschitz, Proposition 2.10, Remark 2.11 and Shannon-McMillan-
Breiman Theorem imply that, for every compact set K ⊂ M such that µ(K) > 0,
and every 0 < r < 1, we have

lim sup
n→∞

Tnx∈K

−
1

n
log µ(Bn(x, r)) ≤ hµ(T ),

for µ-a.e. x ∈ K. This implies the desired inequality. �

To end this subsection we give a relation between the upper δ-entropy and the
upper local entropy in a general setting.

Theorem 2.13. Let T : X → X be a continuous transformation of a metric space
(X, d) and µ an ergodic T -invariant probability measure. Then for all 0 < δ < 1,
we have

h
δ

µ(T ) ≤ h
loc

µ (T ).

Proof. Fix ε > 0 and 0 < r < 1. Define the set X(ε, r, n′) ⊂ X , for n′ ≥ 1, by

X(ε, r, n′) =

{
x ∈ X : −

1

n
logµ(Bn(x, r)) ≤ h

loc

µ (T ) + ε, for all n ≥ n′

}
.

Note that µ(X(ε, r, n′)) goes to 1 when n′ → ∞ and r → 0. Take r > 0 small
enough and n′

0 = n′
0(r) > 0 large enough such that µ(X(ε, r, n′)) > 1− δ for every

n′ ≥ n′
0. Let K ⊂ X(ε, r, n′

0) be a compact set such that µ(K) > 1 − δ. We are
going to find an upper bound of S(n, r,K) (the maximal cardinality of a (n, r)-
separated subset of K), for every n ≥ n′

0. Let E be a maximal (n, r)-separated set
in K. Since (n, r/2)-balls centered at E are disjoint, we have

∑

x∈E

µ(Bn(x, r)) = µ

(
⋃

x∈E

Bn(x, r/2)

)
≤ 1.

As the (n, r)-balls with center in K satisfy µ(Bn(x, r)) ≥ exp
(
−n
(
h
loc

µ (T ) + ε
))

,

it follows that

♯E = S(n, r,K) ≤ exp
(
n
(
h
loc

m (T ) + ε
))

.

Therefore, by Lemma 2.2, we get

lim sup
n→∞

1

n
logN(n, r,K) ≤ lim sup

n→∞

1

n
logS(n, r,K)

≤ h
loc

µ (T ) + ε.

Hence, for every r > 0 small enough we can find a compact K ⊂ X such that
µ(K) > 1− δ and

lim sup
n→∞

1

n
logN(n, r,K) ≤ h

loc

µ (T ) + ε.
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In particular,

h
δ

µ(T ) = lim
r→0

lim sup
n→∞

1

n
logN(n, r, δ)

≤ lim
r→0

lim sup
n→∞

1

n
logN(n, r,K)

≤ h
loc

µ (T ) + ε.

Since ε > 0 is arbitrary, the conclusion follows. �

3. Exponential decay of the volume of dynamical balls

This section is divided in two parts. In the first part we define the Riemannian
local entropy hLµ (T ) and we compare it with the classical measure entropy. In
the second part, inspired by this property, we will show that the sum of positive
Lyapunov exponents equals the exponential decay of the volume of dynamical balls
for the dynamic of df on TM .

3.1. A Riemannian local entropy for Riemannian manifolds. Our goal is
to define a local entropy of a measure µ measuring the Riemannian measure of
a µ-typical dynamical ball. Moreover, we want to be able to compare it with the
classical entropy. It turns out that the essential supremum of the exponential decay
for the Riemannian measure of µ-typical dynamical balls is an interesting quantity
to consider.

Definition 3.1. Let T : M → M be a continuous transformation of a Riemann-
ian manifold, preserving an ergodic T -invariant probability measure µ. For every
compact set K ⊂ M , we define the local Riemannian entropy of T with respect to
µ over K, denoted by hLµ (T,K), as

hLµ (T,K) = ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logL(Bn(x, r)),

where the essential supremum is with respect to the measure µ. We define the local
Riemannian entropy of T with respect to µ, denoted by hLµ (T ), as

hLµ (T ) = sup
K

hLµ (T,K),

where the supremum is taken over all the compact subsets of M .

The following theorem shows that the lower δ-entropy of Katok is bounded from
above by the local Riemannian entropy. We stress the fact that the measure µ only
appears in the definition of local Riemannian entropy when considering µ-typical
dynamical balls. We don’t know related results in the literature.

Theorem 3.2. Let T : M → M be a continuous transformation of a complete
Riemannian manifold, preserving an ergodic T -invariant probability measure µ. If
K ⊂ M is a compact set of strictly positive µ-measure, then for all 1 − µ(K)2 <
δ < 1, we have

hδµ(T ) ≤ hLµ (T,K).
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Proof. If hLµ (T,K) = ∞ there is nothing to prove. Suppose that hLµ (T,K) < ∞.
For ε > 0, r > 0 and n′ ≥ 1, we define the set Kε,r,n′ as

Kε,r,n′ = {x ∈ K : L(Bn(x, r)) ≥ exp(−n(hLµ (T,K) + ε)), for every n ≥ n′

such that T nx ∈ K}.

Note that the measure µ(Kε,r,n′) goes to µ(K) when n′ → ∞ and r → 0. For
all 0 < η < µ(K)/2 there exist r > 0 and n′

0 ≥ 1 (depending on r) such that
µ(Kε,r,n′

0
) > µ(K)−η/2. Let K0 ⊂ Kε,r,n′

0
be a compact set with measure µ(K0) >

µ(K)− η. We are going to estimate the cardinality of a minimal (n, r)-covering of
K0 for n ≥ n′

0. The problem is that in general, if x, x′ ∈ K are different, the first
time of return in K is also different for these two points. The ergodicity assumption
for the dynamical system will help us to erase this problem.

Birkhoff’s Ergodic Theorem implies that 1
n

∑n−1
i=0 µ(K0 ∩ T−iK0) converge to

µ(K0)
2. In particular, there is a sequence (φ(n))n strictly increasing of integers

such that µ(K0 ∩ T
−φ(n)K0) converge to L(K0) ≥ µ(K0)

2. Let 0 < λ < L(K0)/2.
Then, there is an integer n1 ≥ 1 such that µ(K0 ∩ T

−φ(n)K0) > L(K0) − λ for all
n ≥ n1. Let δ(K0, λ) = 1 − (µ(K0)

2 − λ) and set Kφ(n) = K0 ∩ T
−φ(n)K0. The

µ-measure of Kφ(n) satisfies, for all n ≥ n1

µ(Kφ(n)) > L(K0)− λ ≥ µ(K0)
2 − λ = 1− δ(K0, λ).

Let E be a maximal set (φ(n), r)-separated in Kφ(n), for n ≥ max{n0, n1}. Then

L(Vr(K)) ≥ L

(
⋃

x∈E

Bφ(n)(x, r/2)

)

≥
∑

x∈E

L(Bφ(n)(x, r/2))

≥ #E exp(−n(hLµ (T,K) + ε)).

Therefore, the cardinality of E is bounded from above by

#E ≤ L(Vr(K)) exp(n(hLµ (T,K) + ε)).

Hence, using Lemma 2.2 and the estimation from above of the cardinality of a
maximal set (φ(n), r)-separated in Kφ(n), we get

lim inf
n→∞

1

n
logN(n, r, δ(K0, λ)) ≤ lim inf

n→∞

1

φ(n)
logN(φ(n), r, δ(K0, λ))

≤ lim inf
n→∞

1

φ(n)
logN(φ(n), r,Kφ(n))

≤ lim inf
n→∞

1

φ(n)
logS(φ(n), r,Kφ(n))

≤ hLµ (T,K) + ε.

In particular, we have shown that for every r > 0 small enough and every n large
enough (depending on r), there exists a compact setKφ(n) of µ-measure µ(Kφ(n)) ≥
δ(K0, λ). Therefore, the sequence of inequalities above implies that

hδ(K0,λ)
µ (T ) = lim

r→0
lim inf
n→∞

1

n
logN(n, r, δ(K0, λ))

≤ hLµ (T,K) + ε.
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Since λ > 0 is arbitrary and from Proposition 2.4, we have hδµ(T ) ≤ hLµ (T,K) + ε

for all 1−µ(K0)
2 < δ < 1. Since η > 0 is arbitrary, we have hδµ(T ) ≤ hLµ (T,K)+ ε,

for all 1 − µ(K)2 < δ < 1. Since ε > 0 is arbitrary, the conclusion of the theorem
follows. �

A direct consequence of Theorem 3.2, by choosing a sequence of compact sets (Kn)n
such that µ(Kn) → 1 when n→ 1, is the following corollary.

Corollary 3.3. Let T :M →M be a continuous transformation of a complete Rie-
mannian manifold, preserving an ergodic T -invariant probability measure µ. Then,
for all 0 < δ < 1, we have

hδµ(T ) ≤ hLµ (T ).

Finally we can prove Theorem 1.1.

Proof of Theorem 1.1. This is a consequence of Theorem 2.5 and Corollary 3.3. �

Remark 3.4. We consider the Riemannian measure in the definition of local Rie-
mannian entropy because it will be useful in the proof of Theorem 1.3. However, we
might also have considered the measure µ as in the case of local entropies. Hence,
for all 0 < δ < 1, we have

(3.1) hδµ(T ) ≤ sup
K

ess sup
x∈K

lim
r→0

lim sup
n→∞

Tnx∈K

−
1

n
logµ(Bn(x, r)).

Proof of Theorem 1.2. This is a consequence of Theorem 2.5 and inequality (3.1).
�

In Theorem 2.9 we established that the measure theoretic entropy and the lower
local entropy, of a Lipschitz transformation defined on complete Riemannian mani-
folds, coincide. We prove now the analogue result for the measure theoretic entropy
and the lower δ-entropies.

Theorem 3.5. Let T : M → M be a Lipschitz transformation of a complete
Riemannian manifold and µ an ergodic T -invariant probability measure. Then, for
all 0 < δ < 1, we have

hµ(T ) = hδµ(T ).

Proof. On the one hand, Theorem 2.5 implies that hµ(T ) ≤ hδµ(T ). On the other

hand, Inequality (3.1) and Lemma 2.12 imply that hδµ(T ) ≤ hµ(T ). �

3.2. Lyapunov exponents and exponential decay of linearized dynamical

balls. Now we will study the dynamics of a smooth transformation of a noncompact
Riemannian manifold. Let (M, g) be a Riemannian manifold and f :M →M a C1-
diffeomorphism. For x ∈M , let ‖·‖x denote the Riemannian norm induced by g on
TxM . The point x is said to be (Lyapunov-Perron) regular if there exist numbers

{λi(x)}
l(x)
i=1 , called Lyapunov exponents, and a decomposition of the tangent space

at x into TxM =
⊕l(x)

i=1 Ei(x) such that for every tangent vector v ∈ Ei(x) \ {0},
we have

lim
n→±∞

1

n
log ‖dxf

nv‖fnx = λi(x).

Let Λ be the set of regular points. By Oseledec’s Theorem ([Ose68], [Led84b]), if
µ is an f -invariant probability measure on M such that log ‖df±1‖ is µ-integrable,



ENTROPIES FOR A DIFFEOMORPHISM ON A NONCOMPACT MANIFOLD 11

then the set Λ has full µ-measure. Moreover, the functions x 7→ λj(x) and x 7→
dim(Ej(x)) are µ-measurable and f -invariant. In particular, if µ is ergodic, they
are µ-almost everywhere constant. In that case, we denote by {λj}

l
j=1 the Lya-

punov exponents. Note that for µ-a.e. x ∈ M , for every v ∈ TxM \ {0} the limit
limn→±∞

1
n
log ‖dxf

n(v)‖fnx exists. More precisely, if v =
∑

j vj is the Oseledec’s
decomposition of v, then

lim
n→±∞

1

n
log ‖dxf

n(v)‖fnx =: λ(x, v)

is the largest Lyapunov exponent associated to a vector vj 6= 0.
Let x ∈ Λ. Define Esu(x) as

Esu(x) =
⊕

λj(x)>0

Ej(x).

Consider the function χ+ : M → R defined as χ+(x) =
∑

λj(x)>0 λj(x) dim(Ej(x))

if x ∈ Λ and χ+(x) = 0 otherwise. If µ is an ergodic f -invariant probability measure
onM , we denote by χ+(µ) (or simply χ+ when there is no ambiguity) the essential
value of the function χ+(x) with respect to µ.

Denote by Bx(0, r) the r-ball centered at 0 in (TxM, gx).

Definition 3.6. We define the tangent (n, r)-dynamical ball C(x, n, r) on TxM as

C(x, n, r) =
n−1⋂

i=0

(dxf
i)−1(Bfix(0, r)) ⊂ TxM.

Let volx be the Euclidean volume on TxM induced by gx. Theorem 3.7 below
says that the Lyapunov exponents describe the exponential decay of the volx-volume
of a tangent dynamical ball, as follows

Theorem 3.7. Let (M, g) be a Riemannian manifold and f : M → M a C1-
diffeomorphism. Suppose that µ is an f -invariant probability measure such that
log ‖df±1‖ ∈ L1(µ). Then, for µ-a.e. x ∈M , we have

lim
r→0

lim inf
n→∞

−
1

n
log volx(C(x, n, r)) = lim

r→0
lim sup
n→∞

−
1

n
log volx(C(x, n, r))

= χ+(x).

Before giving a proof of Theorem 3.7, we need the following technical lemma.

Lemma 3.8. Let (M, g) be a Riemannian manifold of dimension d and f :M →M
a C1-diffeomorphism. Suppose that µ is an ergodic f -invariant probability measure
such that log ‖df±1‖ ∈ L1(µ). Then, for every ε > 0, there exists a compact set
K ⊂M such that for every x ∈ K there is a sequence (tn)n of strictly positive real
numbers such that

(1) the µ-measure of K is greater than 1− ε,
(2) the exponential decay of tn is smaller than 2ε, i.e.

lim sup−
1

n
log tn ≤ 2ε,
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(3) for every r > 0 there exist constants C,C′ > 0 (depending on K, r and l)
such that, for every integer n ≥ 0 and every x ∈ K, we have

volx(C(x, n, r)) ≥ Ctdn
∏

λj>0

exp(−n dim(Ej(x))(λj + ε))(3.2)

and

volx(C(x, n, r)) ≤ C′
∏

λj>0

exp(−n dim(Ej(x))(λj − ε)).(3.3)

Proof. Let ε > 0 be such that ε ≤ min{|λj | : λj 6= 0}/100. For every integer k ≥ 1,
define the set Mε,k as

Mε,k = {x ∈ Λ : ∀v ∈ T 1
xM, ∀|i| ≥ k,

exp(i(λ(x, v) − ε)) ≤ ‖dxf
iv‖ ≤ exp(i(λ(x, v) + ε))}.

Oseledec’s Theorem implies that µ(M \ Mε,k) goes to 0 when k goes to infin-
ity. In particular, there exists k0 ≥ 1 such that µ(M \ Mε,k0

) ≤ ε/2. Since
µ is a Borel measure, there is a compact K ⊂ Mε,k0

such that µ(K) > 1 − ε,∫
M\K

log+ ‖df±1‖dµ < ε and the maps x 7→ Ej(x) are continuous over K. For

x ∈ K and n ≥ 0, define the sets of integers Ix,n and Icx,n as

Ix,n = {k0 ≤ i ≤ n : f ix ∈ K}

and

Icx,n = {0 ≤ i ≤ n : f ix 6∈ K}.

From the definition of a tangent dynamical ball, we have

C(x, n, r) = CK(x, n, r) ∩ CKc(x, n, r),

where

CK(x, n, r) =
⋂

i∈Ix,n

(dfixf
−i)(Bfix(0, r)), and

CKc(x, n, r) =
⋂

i∈Ic
x,n

(dfixf
−i)(Bfix(0, r)).

To estimate the volume volx(C(x, n, r)) we will use that

(dxf
i)(Bx(0, r)) ⊂ Bfix(0, ‖dxf

i‖r) ⊂ TfixM,(3.4)

and

Bx(0, ‖dxf
i‖−1r) ⊂ (dfixf

−i)(Bfix(0, r)).(3.5)

By continuity of the maps x 7→ Ej(x) on K, we can assume that there exists α > 0
such that for every x ∈ K and every pair (j1, j2), with j1 6= j2, we have

∠(Ej1 (x), Ej2 (x)) ≥ α.(3.6)

Part I: Upper bound of the volume. Inequality (3.3) follows directly from
C(x, n, r) ⊂ CK(x, n, r). Let w = (dfixf

−i)v, where v ∈ Bfix(0, r) ∩ Ej(f
ix),

1 ≤ j ≤ s and i ∈ Ix,n. Using (3.4), we have

‖w‖ = ‖dfixf
−iv‖ ≤ exp(−i(λ(f ix, v)− ε))‖v‖

= exp(−i(λj − ε))‖v‖.



ENTROPIES FOR A DIFFEOMORPHISM ON A NONCOMPACT MANIFOLD 13

Let v ∈ Bz(0, r), for z ∈ K, and let v =
∑

j vj be the Oseledec’s decomposition of
v. The law of sines implies

‖vj‖z ≤
‖v‖z
sin(α)

.

Therefore,

(dfixf
−i)(Bfix(0, r)) ⊆ (dfixf

−i)




l∏

j=1

Bj

fix
(0, r/ sin(α))




⊆

l∏

j=1

(dfixf
−i)(Bj

fix
(0, r/ sin(α)))

⊆



∏

λj≤0

Bj(0, r/ sin(α))


 ×



∏

λj>0

Bj(0, exp(−i(λj − ε))r/ sin(α))


 .

The last term above is a parallelepiped (of dimension d). His volume is comparable
to the volume of a rectangular parallelepiped whose sides have the same lengths
that the original one. The constant of comparison depends only on the angle of
the sides, which is greater than α by (3.6). Therefore, there exists a constant

C̃′ = C̃′(α) > 0, such that

volx(C(x, n, r)) ≤ C̃′(r/ sin(α))d
∏

λj>0

exp(−n dim(Ej(x))(λj − ε)).

In particular, Inequality (3.3) is deduced for C′ = C̃′(r/ sin(α))d.

Part II: Lower bound of the volume. As we have no control on the behavior of
the differential on M \K, we need to reduce the estimation problem of the volume
of C(x, n, r) to a problem of estimation of the volume of CK(x, n, r). For i ∈ Ix,n,
define j(i) as the number of consecutive indices greater than i belonging to Icx,n,
that is,

j(i) =

{
max{j ≥ 1 : i+m ∈ Icx,n, ∀1 ≤ m ≤ j}, if i + 1 ∈ Icx,n
0, otherwise.

Let i ∈ Ix,n and suppose j(i) ≥ 1. By definition, we have i +m ∈ Icx,n for every
1 ≤ m ≤ j(i) and i+ j(i) + 1 ∈ Ix,n. Using inclusion (3.5), it follows

dfi+mxf
−(i+m)(Bfi+mx(0, r)) = dfixf

−idfi+mxf
−m(Bfi+mx(0, r))

⊃ dfixf
−iBfix(0, ‖dfixf

m‖−1r)

⊃ dfixf
−iBfix

(
0,

(
m−1∏

m′=0

min{1, ‖dfi+m′
xf‖

−1}

)
r

)

⊃ dfixf
−iBfix


0,



∏

k∈Ic
x,n

min{1, ‖dfkxf‖
−1}


 r


 .
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The above sequence of inclusions implies that every set of the form dfkxf
−k(Bfkx(0, r)),

for k ∈ Icx,n, contains a set of the form (dfixf
−i)(Bfix(0, tnr)), where i ∈ Ix,n∪{0}

and tn =
∏

k∈Ic
x,n

min{1, ‖dfk−1xf‖
−1}. Thus,

C(x, n, r) ⊃ CK(x, n, tnr).(3.7)

Claim (2) follows from Birkhoff’s Ergodic Theorem. More precisely,

−
1

n
log tn = −

1

n

∑

k∈Ic
x,n

logmin{1, ‖dfkxf‖
−1}

≤ −
1

n

n−1∑

k=0

1Kc(fkx) logmin{1, ‖dfkxf‖
−1}

≤

∫

M\K

log+ ‖df‖dµ+ ε

≤ 2ε

for every n large enough.

Let i ∈ Ix,n. For w = (dfixf
−i)v, where v ∈ Bfix(0, r) ∩Ej(f

ix) and 1 ≤ j ≤ l,
we have w ∈ Ej(x). In particular, by definition of Mε,k0

, we obtain for i ≥ k0 the
following

‖w‖ = ‖dfixf
−iv‖ ≥ exp(−i(λ(f ix, v) + ε))‖v‖

= exp(−i(λj + ε))‖v‖.
(3.8)

Consider now Bj
x(0, r) the r-ball centered at 0 on Ej(x), for the norm gx|Ej(x),

for all 1 ≤ j ≤ l. Thus, using (3.8), it follows

(dfixf
−i)(Bfix(0, r)) ⊇ (dfixf

−i)




l∏

j=1

Bj

fix
(0, r/l)




=

l∏

j=1

(dfixf
−i)(Bj

fix
(0, r/l))

⊃
l∏

j=1

Bj
x(0, exp(−i(λj + ε))r/l)

⊃


∏

λj≤0

Bj
x(0, r/l)


×


∏

λj>0

Bj
x(0, exp(−i(λj + ε))r/l)


 .

The same arguments of Part I for the upper bound of the volume allow to show the
existence of a constant C̃ = C̃(α) > 0 such that

volx


∏

λj≤0

Bj
x(0, r/l)×

∏

λj>0

Bj
x(0, exp(−i(λj + ε))r/l)



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is greater than

C̃(r/l)d
∏

λj>0

exp(−n dim(Ej(x))(λj + ε)).

The inequality above together (3.7) implies (3.2) for C = C̃(r/l)d. It concludes the
proof of Lemma 3.8. �

We will use Lemma 3.8 to prove Theorem 3.7 for ergodic measures. This is
sufficient because of the ergodic decomposition of a measure.

Proof of Theorem 3.7. Suppose that µ is an ergodic measure and let ε > 0 be small
enough as in Lemma 3.8. Let K = K(ε, k0) be the compact given by Lemma 3.8.
Then, for every x ∈ K, we have

lim
r→0

lim sup
n→∞

−
1

n
log volx(C(x, n, r)) ≤ lim sup

n→∞
−
1

n
log tn +

∑

λj>0

dim(Ej(x))(λj + ε)

≤ 2dε+
∑

λj>0

dim(Ej(x))(λj + ε)

and

lim
r→0

lim inf
n→∞

−
1

n
log volx(C(x, n, r)) ≥

∑

λj>0

dim(Ej(x))(λj − ε).

Since we can choose K = K(ε) such that µ(K) → 1 when ε→ 0, the conclusion of
Theorem 3.7 follows. �

Let x ∈M . Denote by rinj(x) the injectivity radius at x. For 0 < r ≤ rinj(x) we
define the linearized (n, r)-dynamical ball as Cn(x, r) = expx(C(x, n, r)). Observe
that (expx)∗volx is locally comparable with the Riemannian measure L, therefore
Theorem 3.7 implies

Corollary 3.9. Let M be a Riemannian manifold and let f : M → M be a C1-
diffeomorphism. Suppose that µ is an f -invariant probability measure such that
log ‖df±1‖ ∈ L1(µ). Then, for µ-a.e. x ∈M , we have

lim
r→0

lim inf
n→∞

−
1

n
logL(Cn(x, r)) = lim

r→0
lim sup
n→∞

−
1

n
logL(Cn(x, r))

= χ+(x).

Theorem 1.1 and Corollary 3.9 are a first step in order to prove Ruelle’s inequality
for “nice” diffeomorphisms of noncompact manifolds. Heuristically speaking, if a
dynamical ball Bn(x, r) is comparable with the linearized dynamical ball Cn(x, r),
then Ruelle’s inequality should arise in a natural way since the limits in Corollary
3.9 look like the Riemannian local entropy.

4. Geodesic flow in negative curvature

LetX be a complete Riemannian manifold, with dimension at least 2 and pinched
sectional curvature at most -1. Let T 1X his unit tangent bundle. Recall that the
Liouville measure L on T 1X is the Riemannian volume of the Sasaki metric on
T 1X (see for instance [Bal95] for details). It is invariant under the action of the
geodesic flow (gt) on T 1X . Let v ∈ T 1X and t ∈ R. Denote by Esu(v) the tangent
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space of the strong unstable manifold at v. Denote by Jsu(v, t) the Jacobian of the
linear map dvg

t|Esu(v). The geometric potential F su : T 1X → R is then defined by

F su(v) = −
d

dt |t=0
log Jsu(v, t).

Theorem 4.1 (Paulin-Pollicott-Schapira). Let X be a complete Riemannian man-
ifold, with dimension at least 2 and pinched sectional curvature at most -1. Assume
that the derivatives of the sectional curvature are uniformly bounded. Then F su is
Hölder-continuous and bounded.

The potential F su is intimately related to the Lyapunov exponents. Let µ be
a probability measure on T 1X invariant under the geodesic flow (gt). Since the
sectional curvature is pinched, the norm ‖dg±1‖ is bounded. Hence, log ‖dg±1‖ is
µ-integrable. Oseledec’s Theorem implies that µ-almost every v ∈ T 1X is regular.
In particular, for µ-almost every v ∈ T 1X , the tangent space of the strong unstable
manifold at v coincides with

⊕
λj(v)>0Ej(v). This fact justifies the notation E

su(v)

for the direct sum of the spaces Ej(v) associated to λj(v) > 0. Moreover, we have

lim
n→+∞

1

n

∫ n

0

F su(gtv)dt = − lim
n→+∞

1

n
log Jsu(v, n) = −χ+(v).

The key fact that will allow us to prove Ruelle’s inequality for the geodesic
flow is the Gibbs property of the Liouville measure for the potential F su ([PPS12,
Proposition 7.9]). Recall that a (gt)-invariant measure m on T 1X satisfies the
Gibbs property for the potential F : T 1X → R with constant c(F ) if and only if
for every compact subset K of T 1X , for every r > 0, there exists C = C(K, r) ≥ 1,
such that for every T ≥ 0, for every v ∈ K ∩ g−TK, we have

C−1 ≤
m(BT (v, r))

exp(
∫ T

0
(F (gtv)− c(F ))dt)

≤ C.

Proposition 4.2 (Paulin-Pollicott-Schapira). Let X be a complete Riemannian
manifold, with dimension at least 2 and pinched sectional curvature at most -1.
Assume that the derivatives of the sectional curvature are uniformly bounded. Then
the Liouville measure on T 1X satisfies the Gibbs property for the potential F su and
the constant c(F su) = 0.

4.1. Ruelle’s inequality and Pesin’s formula. Let X be a complete Riemann-
ian manifold satisfying the assumptions of Theorems 1.3 and 1.4. By simplicity we
will always consider in the proofs an ergodic (gt)-invariant probability measure µ.
The proofs of the theorems in the non-ergodic case are consequence of the ergodic
decomposition of such a measure. We can also assume that g = g1 is an ergodic
transformation with respect to µ. If it is not the case, then we can choose an
ergodic-time τ for µ (see [LS79, Theorem 3.2]) and prove Theorem 1.3 and Theo-
rem 1.4 for the map gτ . The validity of Theorems 1.3 and 1.4 for gτ implies the
validity of both theorems for g since hµ(g

τ ) = τhµ(g) and the Lyapunov exponents
of gτ are τ -multiples of the Lyapunov exponents for g.
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Proof of Theorem 1.3. Let K be a subset of T 1X of measure 0 < µ(K) < 1. Since
F su is µ-integrable, Proposition 4.2 implies

hvolµ (g,K) = ess sup
v∈K

lim
r→0

lim sup
n→∞

gnv∈K

−
1

n
logL(Bn(v, r))

≤ ess sup
v∈K

lim
r→0

lim sup
n→∞

gnv∈K

−
1

n
log

(
C−1 exp

(∫ n

0

F su(gtv)dt

))

= −

∫
F sudµ

= χ+.

Last equality is a consequence of Birkhoff’s Ergodic Theorem. Thus, hvolµ (g) ≤ χ+

and Theorem 1.1 implies directly that

hµ(g) ≤ χ+.

�

The proof of Theorem 1.4 is similar to those in [LS82], [Led84a] and [LY85].
We only need to corroborate that all technical hypotheses hold. These technical
hypotheses are consequences of the assumption on the derivatives of the sectional
curvature since it implies the Hölder regularity of strong unstable and strong sta-
ble distributions (see for instance [PPS12, Theorem 7.3]). In [OP04] the authors
use the regularity of the strong unstable foliation to prove the existence of nice
measurable partitions. They follow the ideas in [LS82] and [Led84a] adapted to
the geodesic flow in negative curvature. We remark that in [OP04] the authors use
the Hölder regularity of strong unstable and strong stable foliations omitting the
hypothesis on the derivatives of the sectional curvatures.

Recall that a measurable partition ξ of T 1X is subordinate to the W su-foliation
if for µ-a.e. v ∈ T 1X , we have

(i) the atom ξ(v) is contained in W su(v), and
(ii) the atom ξ(v) contains a neighborhood of v, open for the submanifold

topology on W su(v).

Let volv be the volume on W su(v) induced by the Sasaki metric on T 1X restricted
to the strong unstable manifold W su(v). The measure µ has absolutely continu-
ous conditional measures on unstable manifolds if for every µ-measurable partition
ξ subordinate to W su, the conditional measure µξ(v) of µ on ξ(v) is absolutely
continuous with respect to volv.

Proposition 4.3. Let X be a complete Riemannian manifold, with dimension at
least 2 and pinched sectional curvature at most -1. Assume that the derivatives
of the sectional curvature are uniformly bounded. Let µ an ergodic (gt)-invariant
probability measure and suppose that g = g1 is ergodic. Then, there exists a µ-
measurable partition ξ of T 1X, such that

(1) the partition ξ is decreasing, i.e. (g−1ξ)(v) ⊂ ξ(v) for µ-a.e. v ∈ T 1X,
(2) the partition

∨
n≥0 g

−nξ is the partition into points,

(3) the partition ξ is subordinate to the W su-foliation,
(4) for µ-a.e. v, we have

⋃
n∈Z

gnξ(gnv) =W su(v),



18 FELIPE RIQUELME

(5) for all measurable sets B ⊂ T 1X, the map

ψB(v) = volv(ξ(v) ∩B)

is measurable and µ-a.e. finite,
(6) for µ-a.e. v ∈ T 1X, if w,w′ ∈ ξ(v), then the infinite product

∆(w,w′) =

∏∞
n=0 J

su(g−nw, 1)∏∞
n=0 J

su(g−nw′, 1)

converges, and
(7) there exist constants C > 0 and 0 < α < 1 such that, if w ∈ ξ(v), then

| log∆(v, w)| ≤ C(d(v, w))α.

The existence of µ-measurable partitions satisfying (1)− (4) is proved in [OP04].
Properties (5)− (7) are consequence of the regularity of the strong unstable distri-
bution and the regularity of Jsu, following the same proof of [Led84a, Proposition
3.1].

The class of µ-measurable partitions satisfying (1)−(4) contains somehow all the
complexity of the dynamics of the geodesic flow in the sense that every partition in
this class maximises the measure theoretic entropy. This result is proved in [OP04]
following the ideas in [Led84a] and [LY85].

Proposition 4.4 (Ledrappier-Young/Otal-Peigné). Let X be a complete Riemann-
ian manifold, with dimension at least 2 and pinched sectional curvature at most -1.
Assume that the derivatives of the sectional curvature are uniformly bounded. Let
µ an ergodic (gt)-invariant probability measure and suppose that g = g1 is ergodic.
If ξ is a partition as in Proposition 4.3, then

hµ(g) = hµ(g, ξ).

Proof of Theorem 1.4. We remark that the computation of the entropy appears in
[LS82], but as this fact is not stated explicitly, we give the general idea behind. Sup-
pose that µ has absolutely continuous conditional measures on unstable manifolds.
Let ξ be a µ-measurable partition as in Proposition 4.3. We only have to prove that
hµ(g, ξ) = χ+. This is equivalent to show that Hµ(g

−1ξ|ξ) =
∫
log Jsu(v, 1)dµ(v).

Define the measure ν on T 1X by

ν(B) =

∫
volw(ξ(w) ∩B)dµ(w),

for every measurable subset B of T 1X . Property (5) in Proposition 4.3 implies that
ν is σ-finite. Since µξ(v) is absolutely continuous with respect to volv, the measure
µ is absolutely continuous with respect to ν. Moreover, the Radon-Nikodym de-
rivative κ = dµ/dν coincide with dµξ(v)/dvolv, volv-almost everywhere on ξ(v), for

µ-almost every v ∈ T 1X (see [LS82, Proposition 4.1]).
Recall that

Hµ(g
−1ξ|ξ) =

∫
Iµ(g

−1ξ|ξ)dµ,

where Iµ(g
−1ξ|ξ)(v) = − logµξ(v)((g

−1ξ)(v)). Thus,

Iµ(g
−1ξ|ξ)(v) = − log

∫

(g−1ξ)(v)

κ(w)dvolv(w).
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Using Change of Variables Theorem, it follows∫

(g−1ξ)(v)

κ(w)dvolv(w) =

∫

ξ(gv)

κ(g−1w)
1

Jsu(g−1w, 1)
dvolgv(w).

From [LS82, Proposition 4.2], the application L(w) = κ(w)
κ(g−1w)J

su(g−1w, 1) is con-

stant on the atoms of the partition ξ. Therefore,
∫

ξ(gv)

κ(g−1w)
1

Jsu(g−1w, 1)
dvolgv(w) =

∫

ξ(gv)

κ(w)

L(w)
dvolgv(w)

=
1

L(gv)

∫

ξ(gv)

κ(w)dvolgv(w)

=
1

L(gv)

∫

ξ(gv)

dµξ(gv)(w)

=
1

L(gv)
.

Putting all together, we have shown that Iµ(g
−1ξ|ξ) = log Jsu(v, 1) + log κ(gv)

κ(v) .

Since Iµ(g
−1ξ|ξ) ≥ 0 and log Jsu(v, 1) is µ-integrable, it follows that the negative

part of log κ(gv)
κ(v) is µ-integrable. In particular, its µ-integral is equal to zero (see

[LS82, Proposition 2.2]), thus

hµ(g) =

∫
Iµ(g

−1ξ|ξ)dµ =

∫
log Jsu(v, 1)dµ(v) = χ+.

The converse statement is just the conclusion of [Led84a, Theorem 3.4] under
the hypothesis obtained in Proposition 4.4, for a µ-measurable partition ξ as in
Proposition 4.3. �

4.2. Commentaries. We discuss now some consequences of Theorem 1.3 in ther-
modynamic formalism. The topological pressure of (gt) for a potential F : T 1X →
R, denoted by P(gt)(F ) (or simply P (F )), is defined as

P (F ) = sup
µ
P (F, µ),

where P (F, µ) = hµ((g
t))+

∫
T 1X

Fdµ and µ is a (gt)-invariant probability measure

on T 1X . A (gt)-invariant probability measurem on T 1X is said to be an equilibrium
state for F , if

P (F ) = P (F,m).

In [PPS12] the authors construct a Gibbs measure for every bounded Hölder-
continuous potential F , with constant c(F ) equal to the topological pressure P (F ).
We remark that if a Gibbs measure is finite, its normalization is an equilibrium
state for the potential.

As a consequence of Theorem 4.1, there exists a Gibbs measure for F su under
the hypotheses of Theorem 1.3, which is denoted by mF su . In terms of thermody-
namical formalism, Ruelle’s inequality can be stated as:

Corollary 4.5. Let X be a complete Riemannian manifold, with dimension at
least 2 and pinched sectional curvature at most -1. Assume that the derivatives
of the sectional curvature are uniformly bounded. Then, for every (gt)-invariant
probability measure µ on T 1X, we have

(4.1) P (F su, µ) ≤ 0.
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In particular, we can remove inequality (4.1) as a redundant assumption in
[PPS12, Theorem 7.2], which gives us

Corollary 4.6. Let X be a complete Riemannian manifold, with dimension at
least 2 and pinched sectional curvature at most -1. Assume that the derivatives
of the sectional curvature are uniformly bounded. If the geodesic flow on T 1X is
conservative with respect to the Liouville measure L, then L is proportional to the
Gibbs measure mF su associated to the geometric potential F su. Furthermore, the
topological pressure P (F su) is equal to zero.

In particular, we also have

Corollary 4.7. Let X be a complete Riemannian manifold, with dimension at least
2 and pinched sectional curvature at most -1. Assume that the derivatives of the
sectional curvature are uniformly bounded. If X has finite volume, then

mF su

mF su(T 1X)
=

L

L(T 1X)
.
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