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In the current literature, the dispersion relation of parametrically-forced surface waves is
often identified with that of free unforced waves. We revisit here the theoretical descrip-
tion of Faraday waves, showing that forcing and dissipation play a significant role in the
dispersion relation, rendering it bi-valued. We then determine the instability thresholds
and the wavenumber selection in cases of both short and long waves. We show that the
bifurcation can be either supercritical or subcritical, depending on the depth.
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1. Introduction

Many studies have been devoted to the phenomenon of Faraday waves, which appear at
the free surface of a fluid when the container is submitted to periodic vertical oscillations
(Faraday 1831; Benjamin & Ursell 1954; Miles & Henderson 1990). The interest of this
setup is that it gives rise to the formation of various patterns. According to the forcing
amplitude, frequency and fluid viscosity, the free surface can exhibit standing solitary
waves (Wu et al. 1984; Arbell & Fineberg 2000; Rajchenbach et al. 2011) or patterns
of different symmetry, such as stripes, squares, hexagons, quasicrystalline ordering or
star-shaped waves (Ciliberto & Gollub 1985; Douady & Fauve 1988; Christiansen et
al. 1992; Edwards & Fauve 1994; Kudrolli & Gollub 1996; Rajchenbach et al. 2013).
This symmetry breaking results from the nonlinear couplings between surface waves. For
larger forcing, spatio-temporal chaotic structures are observed (Kudrolli & Gollub 1996),
giving insights into couplings between wave turbulence and bulk turbulence (Francois et
al. 2013). Thus, the study of Faraday waves constitutes an advantageous way to explore
complex nonlinear phenomena by mean of a simple experimental device.

Despite notable advances in the theoretical understanding of Faraday waves (e.g.,
Milner 1991; Kumar & Tuckerman 1994; Kumar 1996; Müller et al. 1997; Zhang & Viñals
1997; Miles 1999; Mancebo & Vega 2004) some of their fundamental properties remain
obscure (Skeldon & Rucklidge 2015). For instance, to the best of our knowledge, the
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dispersion relation (relating angular frequency ω and wavenumber k) of parametrically-
forced water waves has astonishingly not been explicitly established hitherto. Indeed, this
relation is often improperly identified with that of free unforced surface waves, despite
experimental evidence showing significant deviations (see Fig. 7 in Edwards & Fauve
1994). However, the knowledge of the exact dispersion relation is of crucial importance,
for instance, to explore the possibility of multi-wave couplings and therefore to predict
the surface pattern symmetries, since the couplings between waves of wavevectors ki and
angular frequencies ωi require the simultaneous fulfilment of (Phillips 1981; Hammack &
Henderson 1993)

k1 ± · · · ± kN = 0 and ω1 ± · · · ± ωN = 0. (1.1)

Faraday waves are often analysed in analogy with the parametric excitation of a pendu-
lum (Fauve 1998). Although this simple model presents an obvious pedagogical interest,
in particular to introduce the Mathieu equation and to show that the first resonance
corresponds to half of the forcing frequency, use of the parametric pendulum analogy
is often misleading. Indeed, a major difference is that the eigenfrequency of a freely-
oscillating pendulum is unique, whereas free unforced, water waves exhibit a continuous
spectrum of mode frequencies. Therefore, for water waves, there always exists an angular
eigenfrequency ω(k) corresponding exactly to half of the forcing angular frequency Ω
while, for the parametric pendulum, the resonance phenomenon can occur only if the
forcing frequency is sufficiently close to the the resonance frequency ω0, i.e., if nΩ = 2ω0,
n being an integer (Landau & Lifshitz 1976). This drastically changes the way which
these systems should be analysed and interpreted physically.

The first aim of this paper is to establish the actual dispersion relation of Faraday
waves for nonzero forcing and dissipation. As shown below, the dispersion relation of free
unforced waves is significantly altered in the case of parametrically–forced excitations:
two different wavenumbers then correspond to the same angular frequency. The second
aim of this paper is to perform a stability analysis, taking into account the specifics of
water waves and the differences from a pendulum. Our third aim is to discuss the nature
of the bifurcation giving rise to the wavy surface state from the rest state when the
forcing is increased. The threshold of the Faraday instability is established as well as the
selected wavenumbers in cases of both short and long waves.

The paper is organised as follows. In section 2, we recall the standard model equations
and the main previous results. In section 3, we derive the exact dispersion relation result-
ing from the model equations.As this dispersion relation is hardly tractable analytically,
a simplified version is derived in section 4 for small forcing and small damping. Thus,
we show that the wavenumber is not unique for a given frequency of the wave. We then
turn to a weakly nonlinear model, introducing an amplitude equation in section 5 and
deriving its stationary solutions in section 6. A stability analysis and the wavenumber
selection are subsequently performed in the section 7.

2. The Mathieu equation for surface waves

We consider a container partly filled with a Newtonian fluid, moving up and down
in a purely sinusoidal motion of angular frequency Ω and amplitude A, so that the
forcing acceleration is Ω2A cos(Ωt). In the (non-Galilean) reference frame moving with
the vessel, the fluid experiences a vertical acceleration due to the apparent gravity G(t) ≡
g−Ω2A cos(Ωt), g being the acceleration due to gravity in the laboratory (Galilean) frame
of reference and t being the time.

Let x = (x1, x2) and y be the respective horizontal and upward vertical Cartesian
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coordinates moving with the vessel. Ordinates y = −d, y = 0 and y = η(x, t) cor-
respond respectively to the horizontal impermeable bottom, the liquid level at rest
and the impermeable free surface. The Fourier transform of the latter is ζ(k, t) ≡∫∫∞
−∞ η(x, t) exp(−ik · x)d2x, where i2 = −1 and k is the wave vector with k = |k|.
For parametrically-driven infinitesimal surface waves, ζ is described by a damped

Mathieu equation (Benjamin & Ursell 1954; Ciliberto & Gollub 1985)

ζtt + 2σ ζt + ω 2
0 [ 1 − F cos(Ωt) ] ζ = 0, (2.1)

where σ = σ(k) is the viscous attenuation, ω0 = ω0(k) is the angular frequency of linear
waves without damping and without forcing, and F = F (k) is a dimensionless forcing.
For pure gravity waves in finite depth, we have

ω 2
0 = g k tanh(kd), F = g−1 Ω2 A, (2.2)

while for capillary-gravity waves of surface tension T

ω 2
0 =

(
g k + ρ−1 T k3

)
tanh(kd), F = ρΩ2 A

(
ρ g + T k2

)−1
. (2.3)

In (2.1), the damping coefficient σ originates from the bulk viscous dissipation and the
viscous friction with the bottom in the case of shallow water. For free gravity waves in
the limit of small viscosity, we have (Hough 1896; Hunt 1964)

σ = ν k2

[
2 +

coth(2kd)

sinh(2kd)

]
+

√
k ν
√
gd

8 d2

2kd

sinh(2kd)
(2.4)

where ν is the fluid kinematic viscosity. The first term on the right-hand side of (2.4)
represents the bulk dissipation, while the second one models the friction with the bottom.
For infinite depth, the dissipation σ reduces to the bulk term 2νk2, while the bottom
wall term becomes prominent in the case of shallow water. More sophisticated dissipation
terms could of course be considered, but the simple model (2.4) is sufficient here.

It should be noted that the damped Mathieu equation (2.1) holds only for infinitesimal
waves. For steep waves, nonlinear effects play a crucial role, but the exact treatment is far
beyond existing mathematical methods. Nonetheless, as shown below, the simple model
(2.1) allows some fundamental physical properties of Faraday waves to be recognised.

3. Periodic solutions of the damped Mathieu equation

It is well known that systems obeying a Mathieu equation with excitation angular
frequency Ω exhibit a series of resonance conditions for response angular frequencies ω
equal to nΩ/2, n being an integer (Abramowitz & Stegun 1965).

Indeed, on introducing the change of independent variable t 7→ τ ≡ Ωt/2 and of depen-
dent variable ζ 7→ ξ ≡ ζ(k, t) exp(σt), equation (2.1) becomes the undamped Mathieu
equation

ξττ + [ p − 2 q cos(2τ) ] ξ = 0, p ≡ 4
(
ω 2

0 − σ2
)

Ω−2, q ≡ 2F ω 2
0 Ω−2. (3.1)

According to the Floquet theorem, equation (3.1) admits solutions of the form

ξ(τ) = exp(−iµτ)P (τ ; p, q), (3.2)

where P is a π-periodic function and the (generally complex) parameter µ = µ(p, q) is
the so-called Floquet exponent which depends on the parameters p and q, themselves
depending on the wavevector k via ω0, F and σ.

Since we are interested in periodic solutions of (2.1), they correspond to aperiodic
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solutions of (3.1). From (3.2) and the relation ζ = ξ exp(−2στ/Ω), these solutions are
obviously such that Re(µ) = 2ω/Ω = n (n an integer) and Im(µ) = 2σ/Ω, i.e.,

µ(p, q) = n + 2 iσ /Ω. (3.3)

Equation (3.3) is transcendent and cannot be expressed in a simpler form, in general.
This is the (implicit) dispersion relation relating the wavenumber k = |k| and the angular
frequency ω = nΩ/2 via ω0(k), F (k) and σ(k). A key point here is to recognise that the
wave angular frequency is ω = nΩ/2 and not ω0, as is so often assumed in the literature.
Actually, ω0 is the angular frequency only for unforced undamped waves, i.e., only if
F = σ = 0. Therefore, for Faraday waves, taking the equation ω0(k) = nΩ/2 for the
dispersion relation has led, in the past, to miscalculations of the wavenumber and to
incorrect physical interpretations.

The parameters Ω, n, F and σ being given, the dispersion relation (3.3) generally
admits up to two solutions for ω0. This means that several (two or more depending on how
ω0, F and σ depend on k) wavenumbers are solutions of the dispersion relation for each
response frequency nΩ/2. As the dispersion relation (3.3) involves higher transcendent
functions, this multivaluation can be seen only via intensive numerical computations.
However, as shown below, the exact dispersion relation (3.3) can be approximated by
tractable closed-form expressions in the limit of weak forcing and dissipation.

4. Approximate dispersion relation

For weak forcing and damping, the exact dispersion relation (3.3) can be approximated
by simple closed-form expressions using a standard perturbation scheme (see appendix
A for details). Assuming F � 1 and σ ∼ O(F ), an approximate dispersion for the
sub-harmonic response (n = 1) is

ω0 /ω ≈ 1 ±
√

(F/4)2 − (σ/ω)2 , ω = Ω / 2, (4.1)

where ω0 is related to k via (2.2) or (2.3). One condition to obtain stationary waves
is that ω is real, thus defining a threshold — i.e., F > F↓ with F↓ ≡ 4σ/ω — for the
forcing in order to obtain time-periodic waves. Interestingly, we note that there are two
wavenumbers k corresponding to the same wave angular frequency ω (for Ω, F and σ
given), whatever the relation ω0 = ω0(k).

Assuming now F � 1 and σ ∼ O(F 2), an approximate dispersion for the harmonic
response (n = 2) is

ω0 /ω ≈ 1 + F 2/12 ±
√
F 4/64 − (σ/ω)2 , ω = Ω. (4.2)

The condition of reality for ω defines the threshold F 2 > 8σ/ω to obtain harmonic
surface waves. Similarly, analog approximations for all n can be easily derived. All of
these approximations show that there is more than one ω0 (and therefore more than one
k) for each response frequency ω = nΩ/2.

Despite a limited range of validity, these approximate relations clearly demonstrate
that two wavenumbers (i.e., two ω0 ≡ ω±0 ) correspond to the angular frequency ω = nΩ/2.
Equations (4.1) and (4.2) result from a linear model, hence their validity is restricted to
waves of infinitesimal amplitude. However, nonlinearities play a significant role for waves
of finite amplitude, so we look now at the nonlinear effects in an amplitude equation.
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5. Weakly nonlinear model

Seeking an approximation in the form η(x, t) = Re{A(t)} cos(k ·x)+O
(
A2
)
, assuming

|kA| � 1 together with a weak forcing and dissipation — i.e., F ∼ O(|A|2) and σ ∼
O(|A|2) — an equation for the slowly modulated amplitude A can be derived in the form
(Meron 1987; Milner 1991; Zhang & Viñals 1997)

dA

dt
+ (σ − iω0)A +

iF Ω

8
eiΩtA∗ +

iK Ω k2

2
|A|2A = 0, (5.1)

a star denoting the complex conjugate. It is obvious that the sign of the nonlinear term
in (5.1), via the sign of K, plays a key role in the stability of the solutions. For pure
gravity waves in finite depth, we have (Tadjbakhsh & Keller 1960)

K =
2 − 6 s − 9 s2 − 5 s3

16 (1 + s) (1− s)2
, s ≡ sech(2kd). (5.2)

It is noteworthy that K changes sign with the depth: K > 0 for short waves (K ≈ 1/8 if
kd � 1), K < 0 for long waves (K ≈ −9/64(kd)4 if kd � 1) and K = 0 for kd ≈ 1.058
(with tanh(1.058) ≈ 0.785).

Introducing B ≡ A exp( i
4π −

i
2Ωt), (5.1) is recast into the autonomous equation

dB

dt
=

(
iω0 +

Ω

2 i
− σ

)
B +

F Ω

8
B∗ +

K Ω k2

2 i
|B|2B, (5.3)

which is a more convenient form for the subsequent analysis.

6. Stationary weakly nonlinear solutions

We focus now on two solutions of (5.3) that are of special interest here: the rest
solution B = 0 and the standing wave of constant amplitude. The first one is trivial and
we investigate its stability below. The second one is obtained by seeking solutions of the
form B = a exp( i

4π − iδ), a and δ being constant. Equation (5.3) yields thus

ω0

ω
= 1 + K (ka)2 ±

√
F 2

16
− σ2

ω2
, sin(2δ) =

4σ

ω F
, (6.1a,b)

with ω = Ω/2. As a→ 0, the approximate dispersion relation (4.1) is recovered. As before,
we denote ω±0 the two solutions of (6.1a). If F = σ = 0, the dispersion relation of weakly
nonlinear unforced standing waves in finite depth is recognised too. Therefore, compared
with free nonlinear waves, the dispersion relation of parametrically-forced waves is char-
acterised by the shift in angular frequency ∆ω = ±

√
(Fω/4)2 − σ2. It should be noted

that this shift is independent of the wave amplitude a.
In the subsequent discussion, we consider that the parameters F , σ, ω = Ω/2 and K

are fixed. We also limit our study to the case K > 0 (for K < 0 the analysis is similar
replacing ω0 − ω by ω − ω0). According to the equation (6.1a), we have

K (ka)2 = ω0 /ω − 1 ∓
√

(F/4)2 − (σ/ω)2, (6.2)

with the constraint that K(ka)02 must be real and positive. As the last term in the
right-hand side of (6.2) is real, the forcing F must exceed a minimum value F↓ = 4σ/ω
to generate at least one stationary non–zero amplitude wave, as already mentioned in
the previous section. The condition F > F↓ being fulfilled, we have moreover

(i) if ω0 − ω >
√

(ωF/4)2 − σ2, or equivalently

F < F↑ with F↑ ≡ 4ω−1
√

(ω0 − ω)2 + σ2 , (6.3)
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there are two stationary solutions of nonzero amplitude of the dispersion relation (6.1a)
(in addition to the solutions with the opposite phase and to the rest solution B = 0);

(ii) if ω0 − ω < −
√

(ωF/4)2 − σ2 there are no solutions of the dispersion relation;

(iii) if −
√

(ωF/4)2 − σ2 < ω0 − ω <
√

(ωF/4)2 − σ2 (i.e. F > F↑), there is only one
solution of (6.1a) (the one with the minus sign).

An important question to address now is whether or not these stationary solutions are
stable.

7. Stability analysis

In order to perform a stability analysis of the stationary solutions of the amplitude
equation (5.3), we introduce a small perturbation to the solutions, and we look for the
eigenvalues of the linearised system of the dynamical equations obeyed by the perturba-
tion. The stability analysis that we conduct below resembles that carried out by Fauve
(1998) for the parametric pendulum. Nonetheless, the relevance of this comparison is
limited. Indeed, a major difference is that the eigenfrequency of a freely-oscillating pen-
dulum is unique, whereas free unforced, water waves exhibit a continuous spectrum of
mode frequencies. Moreover, and contrary to the case of the pendulum equation where
the nonlinear terms merely proceed from the series expansion of the sine function, the
sign of the nonlinear terms in the water wave equation depends on the depth.

7.1. Bifurcation from rest

First, we study the bifurcation from rest (i.e., the stability of the trivial solution B = 0).
The linearised equation (5.3) has two eigenvalues λ1 and λ2 such that

λj = −σ + (−1)j
√

(F ω / 4)
2 − (ω − ω0)

2
. (7.1)

If (Fω/4)2 < (ω − ω0)2 + σ2, the real parts of both eigenvalues are negative. Therefore,
the rest state is stable. If (Fω/4)2 > (ω−ω0)2 +σ2, the eigenvalue λ2 is real and positive.
Therefore, the rest state is unstable and

F↑ = 4
√

(1− ω0/ω)2 + (σ/ω)2 (7.2)

corresponds to the minimal forcing necessary to destabilise the rest state and to generate
surface waves.

7.2. Stability of stationary solutions

Second, we analyse the stability of the permanent solutions of finite amplitude a > 0
of the amplitude equation (5.3). We consider, for simplicity, small perturbations in the
form B = [a + b(t)] exp i(π/4 − δ), a, δ and ω0 being given in (6.1), and b being a
complex amplitude to be determined such that |b| � a. To the linear approximation, the
eigenvalues of the resulting equation are (with j = 1, 2)

λj = −σ + (−1)j
√
σ2 − K (2ωka)2

[
1− ω±0 /ω +K(ka)2

]
. (7.3)

The criterion for having both eigenvalues real and negative is obviously 1 − ω±0 /ω +
K(ka)2 > 0. This inequality is to be coupled with (6.2). Thus, it appears clearly that,
for the case K > 0, the two eigenvalues are both negative if ω0 = ω−0 . The corresponding
stationary solution is therefore stable. The other stationary solution ω0 = ω+

0 , existing
in the range F↓ < F < F↑, namely

ω+
0

ω
= 1 + K (ka)2 +

√
F 2

16
− σ2

ω2
, (7.4)
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corresponds to λ1 < 0 and λ2 > 0 and is therefore unstable.
It should be noted that the neutrally stable limiting case λ2 = 0 is obtained for F = F↓

or ka = 0 or K = 0. The two first cases correspond to the rest state (i.e., no waves), while
the third one requires a higher-order equation to conclude on the stability. It should also
be noted that the opposite conclusions hold for K < 0: the stable solution corresponds
then to ω0 = ω+

0 (i.e., ω0 > ω).

7.3. Wavenumber selection and nature of the transition from rest

We are now in a position to determine the wavenumbers selected at the instability onset.
The minimal forcing required to destabilise the free surface from rest is given by (7.2),
where ω0 is related to the wavenumber k by (2.2), the dissipation factor σ being given
by (2.4). The first wave to emerge from rest is the one requiring the smaller value of F↑,
i.e., this wave corresponds to the wavenumber such that ∂F↑/∂k = 0, i.e.,

∂ F↑
∂k

=
16

ω2 F↑

[
(ω0 − ω)

∂ ω0

∂k
+ σ

∂ σ

∂k

]
= 0, (7.5)

together with ω = Ω/2.
In the limiting case of deep water (i.e., d =∞, ω0 =

√
gk, σ = 2νk2), the most unstable

wavenumber k given by (7.5) is, after some elementary algebra, defined by the equation

2ω0 = ω +
√
ω2 − 16σ2. (7.6)

In the opposite limit of shallow water (i.e. kd � 1, ω0 =
√
gd k, σ = (gd)1/4

√
kν/8d2),

the most unstable wavenumber corresponds to

ω0 = ω − 16 ν / d2. (7.7)

In both cases, the first mode emerging from rest is such that ω0 < ω (since ν > 0). The
same conclusion arises for arbitrary depth and with surface tension under quite general
assumptions. Indeed, if ω0 and σ are both increasing functions of k (as is the case with
gravity-capillary surface waves), their derivatives with respect to k are both positive. As
the definition (7.2) of F↑ and the condition ∂F↑/∂k = 0 yield

ω0 = ω − σ
∂ σ

∂k

(
∂ ω0

∂k

)−1

, (7.8)

we conclude that the critical mode k selected at the destabilisation threshold F↑ of the
rest state fulfils the inequality ω0(k) < ω = Ω/2, in cases of both short and long waves.
Thence, the selected mode corresponds to the solution ω−0 , whatever the sign of K.

As mentioned above, the sign of the nonlinear term in equation (5.1) depends on the
depth, K being positive for short waves (so the solution ω−0 is stable) and negative for
long waves (so the solution ω−0 is unstable). Therefore, we conclude that the transition
from rest to the wavy state is supercritical (i.e. smooth) for short waves, while it is
subcritical (i.e., has hysteresis) for long waves (Figure 1).

It should be noted that, according to this theoretical model, the hysteresis (observed
experimentally by Rajchenbach et al. 2011, 2013) exists only because ω0 6= ω, i.e., because
the frequency of a Faraday wave is not that of a free wave. Indeed, if ω0 = ω then,
from (6.3), F↑ = 4σ/ω = F↓ so the hysteresis region vanishes. Therefore, consideration
of the correct dispersion relation not only leads to quantitative corrections but, more
importantly, also yields qualitatively different behaviours.

It should be also noted that, at the instability threshold F↑, the relative deviation
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F

K (ka)2

0

F↓ F↑

K > 0: short waves,

supercritical bifurcation

K < 0: long waves,

subcritical bifurcation

Hysteresis

Region

Figure 1. Bifurcation diagram from rest.
(Only the stables branches are displayed in thick blue lines.)

between ω0 and ω can be written from (6.3) as

|ω0 − ω |ω−1 = 1
4

(
F 2
↑ − F 2

↓
)1/2

, (7.9)

which is practically convenient because F↓ and F↑ are easily measured experimentally in
the subcritical regime. In the experiments by Rajchenbach et al. (2013) this deviation is
approximatively 10%. In the supercritical regime, the deviation seems to be up to the
order of 5% according to the experiments by Edwards and Fauve (1994, Fig. 7).

7.4. Summary

The results of this section are summarised in figure 1. This plot corresponds to (6.2).
According to Tadjbakhsh and Keller (1960), K is positive for short waves (or deep wa-
ter, i.e., kd & 1) and negative for long waves (i.e., kd . 1). This yields the following
conclusions.

For short waves, the positivity of K, ω, ω0 and F 2/16 − σ2/ω2 in (6.2) implies that
(i) the only stable solution is rest for F < F↑ = 4

√
(1− ω0/ω)2 + (σ/ω)2; (ii) the rest

becomes unstable for F > F↑ through a supercritical transition.
For long waves: (i) the rest state is the only possible state for F < F↓ = 4σ/ω; (ii)

there are two stable states (one being the rest state) and one unstable state in the interval
F↓ < F < F↑; (iii) for F > F↑, the rest state becomes unstable

through a discontinuous subcritical transition. In the interval F↓ < F < F↑, the system
displays hysteresis, i.e., the observed state depends on the path taken in the (F,Ω)-plane
to reach the desired F and Ω.

8. Discussion

Concerning Faraday waves, a widespread misconception, already present in the sem-
inal article of Benjamin and Ursell (1954), is that a necessary condition to observe a
parametric resonance of waves is that nΩ/2 coincides with one of the frequencies of a
free unforced wave mode in the tank (i.e., ω0 = nΩ/2). Of course, such solutions depend
on the the shape and size of the tank, and correspond to standing waves, with node
and antinode positions fixed in space and time. Therefore, according to this viewpoint,
the resonance wavenumbers are quantised and depend on the geometry of the container
(Benjamin & Ursell 1954, §4). More precisely, Benjamin and Ursell (1954, end of §3)
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wrote: the following

“When the frequency of a free vibration of the liquid coincides with a subharmonic of the

applied vibration, the parameter p takes the value n2, where n is an integer, and figure

2 shows that instability can then occur for small values of q (i.e. small values of f). In

particular, waves with half of the frequency of the vessel are excited for small values of f

when p is approximately 1, and (p, q) lies in the unstable region nearest the origin; and

synchronous waves are excited when p is approximately 4, and (p, q) lies in the second

unstable region.”

For instance, figure 3 of the cited paper is related to the parametric resonance (in a
cylindrical vessel) of the standing mode corresponding to two nodal circles and one nodal
diameter.

This viewpoint is actually incorrect and contradicts experimental evidence, as can be
seen in the movie given as supplemental materials of the paper by Rajchenbach et al.
(2013). In this movie, it is clear that the parametrically forced mode oscillates at half of
the forcing frequency, but corresponds there to two contra-propagative waves and not to
an eigenmode of the tank. One can realise, therefore, that the possible wavenumbers of
resonating Faraday waves are not quantised by the container, but rather display a con-
tinuous spectrum. The excited mode is not necessarily the standing wave corresponding
to the container eigenmode with the frequency closest to nΩ/2, but oscillates exactly
at nΩ/2 with the wavenumber given by the dispersion relation including forcing and
dissipation (and not by the dispersion relation of free unforced waves).

In the present study, we have partly revisited the theoretical description of Faraday
waves. We have recognised that the dispersion relation of Faraday waves is modified
compared with that of free unforced waves: the forcing amplitude and the dissipation
play a key role in the dispersion relation. This result changes the conditions required
to obtain multi-wave couplings (equation 1.1) and hence modify the criterion aimed at
predicting the geometry of surface patterns.

We have also determined the value of the forcing at the instability onset, in cases
of both short and long waves, as well as the selected wavenumbers. Last, we have also
studied the nature of the bifurcation at the instability threshold, and we have shown
that the transition is supercritical for short waves and subcritical for long waves. Until
now, this transition was always considered to be supercritical, but recent experiments
(Rajchenbach et al. 2013) show that subcritical transitions can occur and the present
study provides a theoretical explanation for this phenomenon.

Our analysis is limited to linear and weakly nonlinear waves. It is also limited to waves
whose wavelength is not large compared with the water depth. This class of theoret-
ical models involves the Airy and Stokes waves (Wehausen & Laitone 1960), as well
as the nonlinear Schrödinger equation. These theories are valid for deep water and in-
termediate depths, i.e., not for shallow water. The experiments of Rajchenbach et al.
(2013) are highly nonlinear but, more importantly, are carried out in shallow water, i.e.,
the wavelength is much longer than the depth. Shallow water theoretical models involve
cnoidal and solitary waves, the Korteweg-deVries and Boussinesq equations, for example.
It is well-known that “intermediate depths” and “shallow water” theoretical models have
separated validity domains (Littman 1957). (In the present paper, we carefully used the
term “long wave” and not “shallow water” to refer to the case K < 0, in order to avoid
confusion in the validity range of the theoretical model.) Derivation of a satisfactory the-
ory for highly nonlinear waves in shallow water is a challenge left for future theoretical
investigations.
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Appendix A. Derivation of approximate dispersion relations

For n = 1, the wave angular frequency is ω = Ω/2. The magnitude of the forcing
and dissipation can be characterised by introducing a small parameter ε and writing
F = εF̄ and σ = εσ̄. Approximate solutions of the damped Mathieu equation (2.1) can
be obtained by expanding ζ and ω0 in power series of ε as

ζ = ζ0 + ε ζ1 + ε2 ζ2 + · · · , ω0 = ω + ε ω1 + ε2 ω2 + · · · . (A 1)

By substituting these series into (2.1) and solving the resulting equation for each power of
ε independently, one obtains a cascade of simpler equations providing the approximation.

At order ε0, we have ζ̈0 + ω2ζ0 = 0 thence ζ0 = A0 cos(ωt) + B0 sin(ωt). At order ε1,
we have after some algebra

ζ̈1 + ω2 ζ1 = 1
2 ω

2 F̄ A0 cos(3ωt) + 1
2 ω

2 F̄ B0 sin(3ωt)

+
[

( 1
2 ω F̄ − 2ω1)A0 − 2 σ̄ B0

]
ω cos(ωt)

−
[

( 1
2 ω F̄ + 2ω1)B0 − 2 σ̄ A0

]
ω sin(ωt). (A 2)

The most general solution of (A 2) is unbounded due to linear terms in t. Physically
acceptable solutions are obtained by cancelling these secular terms that are generated
by the square brackets in (A 2), as one can easily check. The non-secularity condition is
thus obtained setting to zero the square brackets, i.e.,

B0 = (ωF̄ − 4ω1)A0 / 4 σ̄, ω1 = ± 1
4

√
ω2 F̄ 2 − 16 σ̄2 . (A 3)

The dispersion relation (4.1) is obtained from the approximation ω0 ≈ ω + εω1 and
returning to the original parameters F and σ. Similarly, the dispersion relation (4.2) can
be obtained with the same perturbation scheme with ω = Ω and σ = ε2σ̄. It should be
noted that this procedure is independent of the way in which the parameters ω0, F and
σ depend (or not) on the wavenumber k.
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(Ed. by C. Godrèche & P. Manneville) 387–491. Cambridge University Press.
Francois, N., Xia, H., Punzmann, H. & Shats, M. 2013. Inverse energy cascade and emer-

gence of large coherent vortices in turbulence driven by Faraday waves. Phys. Rev. Lett.
110, 194501.



Faraday waves 11

Hammack, J. L. & Henderson, D. M. 1993. Resonant interactions among surfacee water
waves. Ann. Rev. Fluid. Mech. 25, 55–97.

Hough, S. S. 1896. On the influence of viscosity on waves and currents. Proc. Lond. Math. Soc.
28, 264–288.

Hunt, J. N. 1964. The damping of gravity waves in shallow water. La Houille Blanche 6,
685–691.

Kudrolli, A. & Gollub, J. P. 1996. Patterns and spatiotemporal chaos in parametrically
forced surface waves: a systematic survey at large aspect ratio. Physica D. 97, 133–154.

Kumar, K. & Tuckerman, L. S. 1994. Parametric instability of the interface between two
fluids. J. Fluid. Mech. 279, 49–68.

Kumar, K. 1996. Linear theory of Faraday instability in viscous fluids. Proc. R. Soc. Lond. A
452, 1113–1126.

Landau, L. D. & Lifschitz, E. M. 1976. Course of Theoretical Physics, Vol. 1 Mechanics.
3rd Ed., Butterworth–Heinemann.

Littman, W. 1957. On the existence of periodic waves near critical speed. Comm. Pure App.
Math. 10, 2, 241–269.

Mancebo, F. J. & Vega, J. M. 2004. Standing wave description of nearly conservative, para-
metrically driven waves in extended systems. Physica D 197, 346–363.

Meron, E. 1987. Parametric excitation of a multimode dissipative systems. Phys. Rev. A 35,
4892–4895.

Milner, S. T. 1992. Square patterns and secondary instabilities in driven capillary waves. J.
Fluid Mech. 225, 81–100.

Miles, J. W. 1999. On Faraday resonance of a viscous liquid. J. Fluid Mech. 395, 321–325.
Miles, J. W. & Henderson, D. 1990. Parametrically forced surface waves. Ann. Rev. Fluid

Mech. 22, 143–165.
Müller, H. W., Wittmer, H., Wagner, C., Albers, J. & Knorr, K. 1997. Analytic stabil-

ity theory for Faraday waves and the observation of the harmonic surface response. Phys.
Rev. Lett. 78, 2357-2360.

Périnet, N., Juric, D. & Tuckerman, L. S. 2009. Numerical simulation of Faraday waves.
J. Fluid Mech. 635, 1–26.

Phillips, O. M. 1981. Wave interactions – the evolution of an idea. J. Fluid Mech. 106, 215–227.
Rajchenbach, J., Leroux, A. & Clamond, D. 2011. New standing solitary waves in water.

Phys. Rev. Lett. 107, 024502.
Rajchenbach, J., Clamond, D. & Leroux, A. 2013.Observation of star-

shaped surface gravity waves. Phys. Rev. Lett. 110, 094502. Movies at:
http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.110.094502/movie1.mpg

Skeldon, A. C. & Rucklidge, A. M. 2015. Can weakly nonlinear theory explain Faraday
wave patterns near onset? Preprint arXiv:1504.01553.

Tadjbakhsh, I. & Keller, J. B. 1960. Standing surface waves of finite amplitude. J. Fluid
Mech. 3, 442–451.

Wehausen, J. V. & Laitone, E. V. 1960. Surface waves. Encyclopaedia of Physics, Vol. IX,
446–778, Springer-Verlag.

Wu, J., Keolian, R. & Rudnick, I. 1984. Observation of a non propagating hydrodynamic
soliton. Phys. Rev. Lett. 52, 1421–1424.
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