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Abstract

An early detection and reeducation of dyslexic children is critical for their integration
in the classroom. Parents and instructors can help the psychologist to detect potential
cases of dyslexia before the children’s writing age. Artificial intelligence tools can also
assist in this task. Dyslexia symptoms are detected with tests whose results may be
vague or ambiguous, thus machine learning techniques for low quality data are advised.
In particular, in this paper it is suggested that a new extension to vague datasets of
the classification algorithm FURIA (Fuzzy Unordered Rule Induction Algorithm) has
advantages over other approaches in both the computational effort during the learning
stage and the linguistic quality of the induced classification rules. The new approach is
benchmarked with different test problems and compared to other artificial intelligence
tools for dyslexia diagnosis in the literature.
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1. Introduction

The term “dyslexia” was coined in 1887 by R. Berlin [2], who stated that the con-
dition belongs to the group of aphasias and is closely related to wordblindness. The
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Figure 1: Left: Bender’s test of one child assigned to the class “no dyslexia”. Right: The same test solved by
a child for whom the expert could not decide between the classes “no dyslexia” and “control and revision”.

term implies that the condition has as its characteristic a difficulty with reading, and
express that the cause is a physical disease of the brain, with suspected localizations in
the left hemisphere. S. Orton [20] also suggested a faulty patterning of the brain func-
tion, and believed that the phenomena he observed in children’s reading lay a basic
state of ambiguous hemispheric dominance, physiological in nature. Notwithstanding
this, the modern concept of dyslexia is not restricted to a neurological condition and
various theories exist that concern minimal cerebral dysfunction, hereditary involve-
ment, developmental lag or emotional causation [34]. According to [30], dyslexia is
a common learning disorder that manifests itself as a difficulty for the distinction and
memorization of letters, lack of order and rhythm in the placement and poor structur-
ing of sentences, affecting both reading and writing. Dyslexia may also be defined
as the learning difficulties of people whose IQ is normal and do not have physical or
psychological problems that may explain these difficulties.

An early prediction of reading problems is needed for a proper therapy [19]. Read-
ing difficulties and bad understanding lead to poor school performance, low self es-
teem, and attitudes and behaviors that may affect the classroom. There are, however,
different types of syndromes related to dyslexia, such as hyperactivity, attention deficit
disorder or dysgraphia. They all share a certain degree of similarity, but differ in the
acquisition of certain processes, such as identification, recognition or understanding.
Failures or deficit in each of these processes produce a variety of different problems.
Identifying the specific learning disorder is important, because each syndrome has dif-
ferent reeducation techniques and a different evolution in time. A predictive screening
model is customarily used that is based on a large pool of tests (see Table 1). As an
example, in Figure 1 two examples of the children’s answers to the visual-motor co-
ordination test “Bender” [1] are given. The psychologist scores these tests following
a list of “if-then” rules measuring how well the child draws what he sees. There is a
high degree of subjectivity in this evaluation, and it is possible that two experts assign
different scores to the same drawing.

It is not mandatory in Spain that children attend school before the age of six,
thus the role of the parents is crucial to detect cases before the children’s writing age.

2



Category Test Description
Verbal comprehension BAPAE[7] Vocabulary

BADIG[36] Verbal orders
BOEHM[3] Basic concepts

Logic reasoning RAVEN [29] Color
BADIG[36] Figures
ABC[10] Actions and details

Memory Digit WISC-R[35] Verbal-additive memory
BADIG[36] Visual memory
ABC[10] Auditive memory

Level of maturation ABC[10] Combination of different tests

Sensory-motor skills BENDER[1] Visual-motor coordination
ABD[11] Motor Coordination
BADIG[36] Perception of shapes
BAPAE[7] Spatial relations, shapes, orientation
STAMBACK[31] Auditive perception, rhythm
HARRIS/HPL[13] Laterality
ABC[10] Spelling
GOODENOUGHT[12] Spatial orientation, body scheme

Attention Toulose[32] Attention and fatigability
ABC[10] Attention and fatigability

Reading-writing TALE[33] Analysis of reading and writing

Table 1: Most often used tests in Spanish schools for predictive screening of dyslexia.

Preschool instructors can also help with the task. In both cases, artificial intelligence
(AI) techniques are valuable, as shown in [22, 24]. Parents and instructors can effi-
ciently use AI methods for helping the psychologist, and there exist software tools that
implement methods for detecting potentially affected infants [26, 27].

Machine learning techniques for low quality data are the most appropriate for this
activity, as dyslexia symptoms are detected with tests whose results may be vague or
ambiguous. Apart from this requirement, it is also desired that the AI method of choice
elicits a Knowledge Base (KB) with a high degree of linguistic understandability thus
a pshychologist can endorse it. Furthermore, the number of children used to learn the
KB is still small in this study but is expected to grow when the tool is publicited. A
fast learning algorithm is needed that can cope with large datasets in the future.

Past algorithms were Genetic Cooperative-Competitive Learning (GCCL) [22] and
Boosting of individual fuzzy rules [24] (see Appendix B). Both of them have advan-
tages and drawbacks. On the one hand, GCCL uses the standard fuzzy logic inference.
The evolved rules are understandable and the inference process is intuitive. Unfortu-
nately, GCCL routinely produces KBs comprising hundreds of rules and the learning
is very slow. On the other hand, Boosting is fast and the resulting KBs are accurate,
but weighed rules and additive inference are used. This setup is counterintuitive for the
expert, that cannot grasp the meaning of even the simplest KBs.

Because of these reasons, in this paper it is suggested to use the state-of-the-art
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Procedure FURIA()

Select a class and learn crisp classification rules discriminating
this class from the others (call local procedure RuleSetForOneClass())

Remove redundant antecedents
Fuzzify rules maximizing the purity of the fuzzification of each attributte
Compute confidence degrees for all rules considering the certainty factor
Evaluate rules and apply rule stretching if there are uncovered examples
Local Procedure RuleSetForOneClass()

While StoppingConditions() == false do
Call method RuleGrowing()

If StoppingConditions() == true then
Delete the newly created rule

End If
End While
Perform rule pruning.

End of local procedure

End of Procedure

Figure 2: Outer loop of the FURIA algorithm

classification algorithm “Fuzzy Unordered Rule Induction Algorithm” (FURIA), de-
scribed in [16, 18] and extended to low quality data in [25]. This study is based on an
extended version of this last reference. FURIA is expected to keep the good numerical
properties of Boosting and at the same time to produce much smaller KBs than GCCL.
The inference procedure demanded by FURIA-based KBs is not standard either, but it
is much simpler than that of Boosting and deemed suitable for the task at hand.

This paper is organized as follows: Section 2 introduces the FURIA algorithm and
remarks the parts that are more relevant for this proposal. In the same section, the
changes effected to this algorithm are detailed, paying special attention to the new
definition of the ranking between fuzzy intervals. In Section 3, numerical results are
given. Concluding remarks and future work are discussed in Section 4.

2. An extension of the FURIA algorithm to low quality data

Fuzzy Unordered Rules Induction Algorithm (FURIA) [16, 18, 17] is a novel fuzzy
rule-based classification method extending the classical RIPPER [5]. For the conve-
nience of the reader, an algorithmic description of FURIA is included in Figures 2 and
3, where the parts that will be altered in the generalization are marked in boldface.

The algorithmic schema needs not to be altered in order to introduce vague data,
however all expressions that depend on a count of the number of instances have to be
rewritten, as generally speaking this count will become a fuzzy interval. A new fuzzy
ranking, defined in Section 2.2, will be used to perform the comparisons, in particular:

1. Ranking (sorting) the instances according to the value of a fuzzy attribute.

2. Ranking the fuzzy values of the information gain.
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Method RuleGrowing()

Grow rule using an information gain measure to choose the best conjunct
to be added into the rule antecedent.

Stop adding conjuncts when the rule starts covering negative instances.
End of method

Method StoppingConditions()

If there are not uncovered instances of the current class
then StoppingConditions=true

If rule error ≥ 0.5 then StoppingConditions=true
If the description length of the ruleset is 64 bits greater than

the smallest found then StoppingConditions=true
StoppingConditions=false

End of method

Figure 3: Subroutines called in the main loop of FURIA

Apart from these, the following operations take fuzzy values:

1. Computing the rule purity, that quantifies the quality of the fuzzification proce-
dure, depending on the number of partially covered examples.

2. Computing the certainty factor, that measures the confidence assigned to the
piece of information described by the rule.

3. The rule stretching procedure, that is used to simplify the antecedents for im-
proving generalization, depending on the number of examples covered by the
rule.

Since the algorithm is not being altered, this section is organized into two parts.
First, in Subsection 2.1, “Notation”, a listing is provided with the definitions of those
parts of the original FURIA algorithm that will involve computing with fuzzy intervals
in the extended version. Second, in Subsection 2.2 each of these parts is redefined.
In addition to this, in the same section 2.2 the logical operator “higher than” between
fuzzy intervals (that becomes a fuzzy ranking) is introduced. It is remarked that the
rankings found in the literature are not coherent with the statistical interpretation of a
fuzzy set used in this study and therefore a new ranking is being proposed.

2.1. Notation
• Training set: The training set is D ⊂ Rd whose instances are vectors

x = (x1, . . . ,xd) ∈ D. (1)

• Antecedent: Each antecedent of a FURIA fuzzy classification rule is a multi-
variate trapezoidal fuzzy set whose membership is

IF(x) =
�

i=1,...d
IF
i (xi) (2)

5



and its core is the interval I = I1 × ·· · × Id , where the indicator function of Ii,
i = 1, . . . ,d is

Ii(xi) =

�
1 if IF

i (xi) = 1
0 else.

(3)

• Information gain: This criterion measures the improvement of a rule with
respect to the default for the target class and is used as a stopping condition in
the rule growing procedure. Let I be the core of the antecedent of the rule at
hand, and let l be the target class. Then, the number of positive examples for the
fuzzy classification rule r is

pr = #{x ∈ I | class(x) = l} (4)

and the number of negative examples for that rule is

nr = #{x ∈ I | class(x) �= l}. (5)

The total number of positive and negative examples in the dataset are named p
and n, respectively. Then, the information gain is defined as follows [17]:

IGr = pr ×
�

log2(
pr +1

pr +nr +1
)− log2(

p+1
p+n+1

)

�
. (6)

• Pruning: Rules comprise q antecedents �a1, . . . ,aq� combined with the AND
operator. The order of the antecedents reflects their importance thus pruning
a rule consists of selecting a sublist �a1, . . . ,ai�, with i ≤ q. In order to find a
suitable value for i, the following rule-value metric is computed first [17]:

Vr =
pr +1

pr +nr +2
(7)

Let the number of positive covered and negative uncovered examples of the rule,
when pruned at the i-th antecedent, respectively be Pi and Ni:

Pi = #{x | x is covered by �a1, . . . ,ai�∧ class(x) = l} (8)

Ni = #{x | x is not covered by �a1, . . . ,ai�∧ class(x) �= l}. (9)

and let be defined the value [17]

worthi =
Pi +Ni

p+n
. (10)

This value measures how likely is each antecedent to be pruned. If

max
i=1,...,q

worthi >Vr, (11)

then the term where the value of “worthi” is maximum is selected for pruning.
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• Purity: This value measures the quality of the fuzzification procedure and it is
used for determining the support of the fuzzy sets defining the rule antecedents.
Let Di be the subset of the training data that follows:

Di = {(x1, . . . ,xd) | x j ∈ supp(IF
j ) for all j �= i}. (12)

Di is partitioned into positive and negative instances, Di
+ and Di

−. Given the
values

pi = ∑
x∈Di

+

IF
i (xi) (13)

ni = ∑
x∈Di

−

IF
i (xi), (14)

the purity of the fuzzification of the i-th attribute is [17]:

puri =
pi

pi +ni
(15)

• Certainty factor: The certainty factor CF of a rule �IF , l�, for a training set DT ,
is [17]:

CF =

2 ·
∑

x∈DT ,class(x)=l
p(x)

∑
x∈DT

p(x)
+ ∑

x∈DT ,class(x)=l
IF(x)

2+ ∑
x∈DT

IF(x)

(16)

where p(x) is the weight of instance x.

• Rule stretching: Rule stretching (or generalization) deals with uncovered exam-
ples (those classified by the default rule in RIPPER). The generalization proce-
dure consists of making (preferably minimal) simplifications of the antecedents
of the rules until the query instance is covered. The instance is then classified by
the rule with the highest evaluation, according to the value [17]

STR = CF · d +1
m+2

· IF(x) (17)

where k is the size of the generalized antecedent and m is the size of the entire
antecedent before applying this procedure. Notice that, d+1

m+2 aims at discarding
heavily pruned rules. If no streched rule is able to cover the given example xi, it
is assigned a class based on the a priori distribution.
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2.2. Extended definitions
In this study, fuzzy memberships are used for two purposes. On the one hand,

fuzzy rule-based systems will be used for building a classifier that inputs the scores of
the tests and predicts the learning disorder of the child. The antecedents of the rules in
this classifier are fuzzy sets, whose membership functions are learned from data. These
can be given a linguistic meaning under the premises of the fuzzy logic theory. On the
other hand, the uncertainty in the scores of the tests will be represented by means of
fuzzy intervals, but these will be assigned an statistical meaning.

Following [6], the statistical view of a fuzzy set as a nested random set is adopted
for this second purpose. Fuzzy intervals X̃ and Ỹ on quantities X ,Y ∈R2 are expressed
by their equivalent possibility distributions πX and πY . Given a possibility distribution
π : R→ [0,1], the possibility measure over any set A ⊆ R is

Π(A) = sup
x∈A

π(x). (18)

Let P(Π) be the set of probabilities bounded by Π, such that

P(Π) = {P ∈ PR|P(A)≤ Π(A)} (19)

with PR the set of all probabilities on the real line. Within this view, a fuzzy set π can
also be described by an equivalent random set Γπ that maps the uniform distribution
U[0,1] to the alpha-cuts, i.e. Γπ : [0,1]→ R with Γπ(α) = πα . Therefore,

Π(A) = PU[0,1] ({α|Γπ(α)∩A �= /0})

Similarly, lower and upper expectation bounds Eπ(X) and Eπ(X) reached within
the set P(Π) can be associated to a fuzzy set πX . Such bounds are simply expressed
as

Eπ(X) =
�

R
xdFπ(x) =

� 1

0
πα dα (20)

and
Eπ(X) =

�

R
xdFπ(x) =

� 1

0
πα dα. (21)

Also note that, given a function f on R, the lower and upper expectations read Eπ( f ) =� 1
0 infx∈πα f (x)dα and Eπ(X) =

� 1
0 supx∈πα f (x)dα , and the upper/lower expectations

of the indicator function 1(A) of an event A (1(A) (x) = 1 if x ∈ A, zero otherwise)
correspond to the upper/lower probabilities of A.

Under this statistical view of a fuzzy set, the concepts introduced in the preceding
definitions are repurposed for vague data in the remaining of this section.

• Logical operator “Higher than’.’ There are multiple points in the extended
algorithm where two fuzzy intervals must be compared. The extension of the
logical operator “higher than” to vague data proposed in this section can be con-
sidered as a fuzzy version of the statistical preference criterion stating that X >Y
if P(X > Y )> 0.5, providing a total ordering between fuzzy sets.
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Given two random variables X and Y with probability distributions PX and PY , a
common way to assess whether X is higher or lower than Y is to use statistical
preferences, that is to compute PX ,Y (X > Y ) under independence and to declare
that X >Y if P(X >Y )> 0.5. Such preferences have the advantage to provide a
total ordering over random variables (as opposed to stochastic dominance), and
to not be too sensible to the numerical values of X and Y (as opposed to expected
values).
For any pair (x,y), let us consider the comparison function I>(x,y) such that

I>(x,y) =
�

1 if x > y
0 else. (22)

The probability PX ,Y (X > Y ) is then the expectation of I>(x,y) under PX ,Y . It is
straightforward, using Equations 20 and 21, to extend the value PX ,Y (X > Y ) to
the case of non-interactivity, namely we have

P(X > Y ) =
�

0,1
min

x∈πX ,α
y∈πY,α

f>(x,y)dα =
�

0,1
1(πX ,α>πY,α ) dα (23)

and
P(X > Y ) =

�

0,1
max

x∈πX ,α
y∈πY,α

f≥(x,y)dα =
�

0,1
1(πX ,α>πY,α ) dα (24)

where 1(A) is the indicator function of some event A. Note that, if possibilities
πX ,πY are equivalent to intervals [x,x] and [y,y] (πX ,πY ∈ {0,1}), then P(X >
Y ) = 1 if x > y, 0 else hence coming back to check interval dominance, while
P(X >Y ) = 1 if x > y, hence coming back to check for a weak ordering between
[x,x] and [y,y].
It is then natural to extend condition P(X >Y )> 0.5 to condition P(X >Y )> 0.5
to declare X̃ > Ỹ . Note that in our case this condition only provides a partial
ordering, as we may have P(X > Y ) ≤ 0.5 and P(Y > X) ≤ 0.5, since only the
duality P(X > Y ) = 1−P(Y ≤ X) holds. Additional properties of this ranking,
along with a refinement that provides a total order, are detailed in Appendix A.

• Low Quality Dataset: Let DT = {(X̃1,Z1), . . .(X̃n,Zn)} be a set of vague data,
where n is the number of instances, X̃i = (X̃i1, . . . , X̃id), X̃i j ∈F (R) and Zi ⊂C =
{c1, . . . ,cm} for i = 1, . . . ,n, j = 1, . . . ,d.

• Number of instances of a given class: The number of instances f c j
of class c j

and the relative frequencies of classes f rc j
are:

f c j
=

n

∑
i=1

δ c j ,Zi (25)

where

δ a,A = {δa,b : b ∈ A}=






1 {a}= A,
0 a /∈ A,
[0,1] else,

(26)
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and

f rc j
=

∑n
i=1 δ c j ,Zi pi

∑n
i=1 pi

=
∑n

i=1 Pi
c j

∑n
i=1 pi

(27)

where pi are the weights of the instances and

Pi
c j
=






pi c j = Zi,

0 c j /∈ Zi,

[0, pi] else.
(28)

• Class being processed: The class being processed c j is defined by the default
number of correct classifications:

defAcRTc j =
1+defAccuc j

1+∑n
i=1 pi

(29)

where

defAccuc j =
n

∑
i=1

δ c j ,Zi pi =
n

∑
i=1

Pi
c j
. (30)

The crisp stopping criterion when creating rules of class c j was 1−defAcRTc j >
Threshold, whose extension is

P(defAcRTc j > Threshold) > 0.5 =
P([ac j ,bc j ]> Threshold) > 0.5 =

= P([ac j −Threshold,bc j −Threshold]> 0) > 0.5
(31)

• Information gain: The numbers of positive and negative examples are impre-
cise. Let I be the core of the antecedent of the rule at hand, and let cl be the target
class. Then, the information gain is a fuzzy number whose α-cuts are defined as
follows:

[IGr]α = ∑[X̃i]α⊆I Pi
cl
·
�

log2(fstAccuRatecl )− log2(defAcRTcl )
�

(32)

where

fstAccuRatecl =
1+ fstAccucl

1+Coverfstcl

(33)

fstAccucl = ∑
[X̃i]α⊆I

Pi
cl

(34)

Coverfstcl = ∑
[X̃i]α⊆I

pi (35)

• Rule pruning: This consists in finding the position in the antecedent list of
the rule �a1, . . . ,aq� with i ≤ q where the rule must be split, according to the
following criteria:
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1. The value defined in Eq. 7 is extended as follows:

V (r) =
1+defAccuc j

2+∑n
i=1 pi

(36)

2. For each antecedent, the number of positive covered instances ˜Posam and
negative uncovered instances ˜Negam are:

[ ˜Posam ]α = ∑
[X̃i]α is covered by <a1,...,am>

Pi
c j

(37)

[ ˜Negam ]α = ∑
[X̃i]α is not covered by <a1,...,am>

Pni
c j

(38)

where

Pni
c j
=

�
pi ({c j} �= Zi and #Zi = 1) or (c j /∈ Zi),

[0, pi] c j ∈ Zi and c j �= Zi.
(39)

3. The net worth of each antecedent is

˜wortham =
˜Posam + ˜Negam

∑n
i=1 pi

, (40)

and this last value is used to decide the splitting position, as shown below.

4. If ˜wortham , with m = 1, . . . ,q, precedes V (r), the splitting point is the m-th
antecedent.

• Purity: Let Di
α be the following subset of the training data:

Di
α = {k | [X̃k j]α ⊆ supp(IF

j ) for all j �= i}. (41)

Each set Di
α is partitioned into positive and negative instances, Di

α+ and Di
α−.

Given the values
piα = ∑

k∈Di
α+

sup{IF
i (x)|x ∈ [X̃ki]α} (42)

niα = ∑
k∈Di

α−

sup{IF
i (x)|x ∈ [X̃ki]α} (43)

the purity of the fuzzification of the i-th attribute is:

puri =
� 1

0

piα
piα +niα

dα (44)
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Table 2: Summary descriptions of the LQD benchmarks.
Dataset Ex. Atts. Classes %Classes

B200mlI [23] 19 4 2 ([0.47,0.73],[0.26,0.52])
B200mlP [23] 19 5 2 ([0.47,0.73],[0.26,0.52])

Long [23] 25 4 2 ([36,64],[36,64])
BLong [23] 25 4 2 ([36,64],[36,64])
100mlI [23] 52 4 2 ([0.44,0.63],[0.36,0.55])
100mlP [23] 52 4 2 ([0.44,0.63],[0.36,0.55])
B100mlI [23] 52 4 2 ([0.44,0.63],[0.36,0.55])
B100mlP [23] 52 4 2 ([0.44,0.63],[0.36,0.55])

Ice7-6 [4] 42 7 3 ([0.47,0.54],[0.19,0.30],
Ice7-4 [4] [0.21,0.26])
Ice8-7 [4] 42 8 3 ([0.47,0.54],[0.19,0.30],
Ice8-5 [4] [0.21,0.26])

Ice-shedding [4] 42 7 2 ([0.47,0.54],[0.46,0.53])
Car [8] 33 8 4 (0.30,0.242,0.242,0.212)

Water 4 [14, 28] 316 4 2 (0.705,0.294)

• Certainty factor: The certainty factor of a rule �IF , l� is a fuzzy set, defined by
its level cuts

[C̃F ]α =

2 ·

n

∑
i=1...,n

class(X̃i)=l

Pi
c j

n

∑
i=1

pi

+ ∑
i=1...,n

class(X̃i)=l

Pi
c j
· sup{IF(x) | x ∈ [X̃i]α}

2+
n

∑
i=1

pi · sup{IF(x) | x ∈ [X̃i]α}
(45)

• Rule stretching: The extension of Eq. 17 is straightforward:

[ ˜ST R]α = [C̃F ]α · d +1
m+2

· sup{IF(x) | x ∈ [X̃i]α} (46)

3. Numerical results

In this section the extension of FURIA to LQD is assessed first with benchmark
problems. The second part of this section describes a case study of dyslexia diagnosis
in schools of Asturias (Spain).

3.1. Assessment of FURIA-LQD with benchmark problems
The datasets “Athleticism at Oviedo University” [23], “Ice adhesion strength” [4],

“Car” [8], and “Barcelona’s water distribution” [14, 28] are used to compare the pro-
posed method to other approaches. The main characteristics of these datasets are
summarized in Table 2, where “Ex”. represents the number of examples, “Att.” is
the number of attributes, “Classes” is the number of classes, and “%Classes” is the
fraction of patterns of each class. All these datasets are available in the repository
https://ccia35.edv.uniovi.es/datasets. All experiments were repeated 100
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Table 3: Behaviour of GCCL-LQD [22], Boost-LQD [24] and the new proposal (FURIA-LQD) in several
datasets.

GCCL-LQD Boost-LQD FURIA-LQD
AccT st AccT st AccT st

Atheleticism at Oviedo University
100mlP [0.640,0.824] [0.642,0.820] [0.601,0.780]
100mlI [0.622,0.824] [0.624,0.830] [0.592,0.793]
B100mlP [0.651,0.840] [0.650,0.839] [0.609,0.798]
B100mlI [0.631,0.828] [0.644,0.842] [0.568,0.766]
B200mlP [0.520,0.738] [0.594,0.812] [0.590,0.808]
B200mlI [0.527,0.768] [0.585,0.829] [0.564,0.809]
Long [0.410,0.679] [0.492,0.760] [0.528,0.746]
BLong [0.375,0.674] [0.470,0.770] [0.464,0.764]
Ice adhesion strength
Ice7-6 [0.512,0.596] [0.548,0.631] [0.526,0.606]
Ice7-4 [0.522,0.597] [0.572,0.651] [0.528,0.602]
Ice8-7 [0.525,0.597] [0.554,0.628] [0.545,0.621]
Ice8-5 [0.507,0.566] [0.550,0.618] [0.534,0.608]
Ice-shedding [0.550,0.619] [0.639,0.708] [0.713,0.782]
Car
Car [0.389,0.389] [0.436,0.436] [0.608,0.608]
Barcelona’s water distribution
Water 4 [0.713,0.713] [0.602,0.602] [0.651,0.651]
Mean [0.527,0.670] [0.559,0.702] [0.566,0.709]

times from bootstrap resamples of the training set. The test set comprises “out of the
bag” elements. Each test partition is repeated 1000 times for different random crisp
selections. GCCL-LQD [22] and Boosting-LQD [24] were configured with a popula-
tion of size 100, crossover probability 0.9, mutation probability 0.1, 200 generations, 5
labels/variable, uniform fuzzy partitions.

In Table 3, the expected test errors of each combination of algorithm and dataset
are provided. Each of these values is an interval, computed by means of Eqs. (20)
and (21), i.e. the expectation of the fuzzy test error whose corresponding possibility
distribution is π , is the interval

[Eπ ,Eπ ] = [
� 1

0
πα dα,

� 1

0
πα dα]. (47)

It is shown that the improvement over previous approaches for the most complex
problem (Car) is remarkable. The performance of the new classifier improves that of
Boosting in most of the problems with a high ratio between the number of features and
instances (Ice-shedding, Car, Water), however FURIA does not seem to improve the
accuracy of Boosting for Ice-7, Ice-8 and the low-dimensional problem “Athleticism”.
These differences are not statistically relevant, thus it can assumed that the accuracies
of FURIA and Adaboost are roughly the same. However,

• FURIA is much faster than Boosting. The combined learning + validation time
of FURIA was about 12 times faster than Adaboost or GCCL for the datasets
mentioned in this section (5 minutes vs. 1 hour in some cases, see Figure 4).
FURIA is the alternative of choice when computational resources are limited.

• The number of rules of the classifiers produced by FURIA are also much lower.
The highest number of rules produced by this algorithm for the studied datasets
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Figure 4: Left: Number of rules produced by GCCL, Boosting and FURIA for the datasets in Table 3. Right:
Learning time (minutes) of the three algorithms.

Table 4: Null hyphothesis: The expected error is the same than the average.
Conditions GCCL-LQD BOOST-LQD FURIA-LQD
[q−a,q+a] [0.527,0.670] [0.559,0.702] [0.566,0.709]
F∗
(q−a)

∈ [0,0.025] [0,0.83] [0,0.93]
F∗
(q+a)

∈ [0.025,1] [0.85,1] [0.94,1]
INCONCLUSIVE INCONCLUSIVE INCONCLUSIVE

was of 15, while boosting and GCCL obtain knowledge bases comprising hun-
dreds of rules for the largest problems (see Figure 4). That is to say, the linguistic
quality of the results of FURIA is much better. It is also remarked that he number
of labels for each variable must be determined by trial and error in Boosting and
GCCL, but FURIA determines this parameter automatically.

The differences in linguistic quality need not to be studied with statistical tests
because FURIA-generated knowledge bases were uniformly smaller for all executions
of the algorithm. The statistical relevance of the differences in accuracy is assessed with
bootstrap tests for LQD, following the experimental design proposed in [21]. The null
hypothesis of this test is that the average number of misclassifications for each dataset
does not depend on the algorithm. In Table 4 is shown that the mentioned advantages
of FURIA over Boosting for datasets with high ratio between the number of features
and instances are compensated by the results for datasets with a lower dimensionality
thus the differences are not significant for a 95% confidence level.

3.2. Case study: diagnostic of dyslexia
The answers to the tests in Figure 1 for 65 schoolchildren between 5 and 8 were col-

lected in this two-year long experiment. Each child has been individually diagnosed by
an expert psychologist and labelled with one or more of the terms “no dyslexia”, “con-
trol and revision”, “dyslexic” and “other disorders” (inattention, hyperactivity, etc.). In
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addition to this, parents or instructors evaluated on their own the results of the tests,
without further instructions from the phsychologist (“non-expert” datasets). These two
control sets are compared with the purpose of determining whether there are significant
differences between the outputs of two classifiers trained with expert and non-expert
data. The results are shown in Table 5. FURIA-LQD is significantly better (see Figure
5) specially for “expert” datasets (dislexic-11-01 and dyslexic-11-12). The statistical
analysis of these results are shown in Tables 6 and 7, that follow the experimental de-
sign suggested in [15] and [21]. Observe that FURIA-LQD is the best algorithm for all
datasets.

Table 5: Success rate of GCCL-LQD [22], Boost-LQD [24] and FURIA-LQD in the dyslexia case study.
GCCL-LQD Boost-LQD FURIA-LQD

AccT st AccT st AccT st

Datasets non-expert
Dyslexic-12-12 [0.356,0.522] [0.351,0.497] [0.472,0.644]
Dyslexic-12-01 [0.469,0.599] [0.414,0.508] [0.530,0.679]
Dataset expert
Dyslexic-11-01 [0.427,0.555] [0.433,0.553] [0.576,0.729]
Dyslexic-11-12 [0.310,0.472] [0.401,0.536] [0.546,0.738]
Dyslexic mean [0.390,0.537] [0.4,0.524] [0.531,0.698]

Table 6: Left: Rankings of the three considered algorithms. Right: Mean rankings for Friedman’s test
Dataset GCCL-LQD.R Boost-LQD.R FURIA-LQD.R

Dyslexic-12-12 2 3 1
Dyslexic-12-01 2 3 1
Dyslexic-11-01 3 2 1
Dyslexic-11-12 3 2 1

Algorithm Ranking
FURIA-LQD 1

GCCL-BOOST 2.5
BOOST-LQD 2.5

The differences between the success rate of the classifiers trained with “expert”
and “non expert” datasets were not statistically relevant. This is a good result, because
implies that an automated screening procedure is possible that does not require of the
presence of the expert, but the success rate is nevertheless too low. Neither GCCL-LQD
[22] nor Boost-LQD [24] are able to surpass a 60% success rate. FURIA-LQD is un-
der 68%. Notwithstanding this, the purpose of the screening system is not to diagnose
dyslexia but to anticipate possible disorders; positive classifications will be subjected
to further tests. Indeed, this problem could have been regarded as an imbalanced clas-
sification problem, where misclassifying a dyslexic child is assigned a higher cost than
the opposite error, but this would require a separate extension of the FURIA algorithm
to cost-based LQD classification. A simpler approach is possible that takes advantage

Table 7: Wilcoxon’s test for comparing FURIA-LQD with GCCL-LQD and Boost-LQD
Comparison p-value Hypothesis

FURIA-LQD vs GCCL-LQD 1.5e-05 Reject
FURIA-LQD vs. Boost-LQD 1.5e-05 Reject

15



GCCL−LQD Boost−LQD FURIA−LQD

0.2

0.4

0.6

0.8

Behaviour of several algorithms able to support LQD. Dyslexic−1201

GCCL−LQD Boost−LQD FURIA−LQD

0.2

0.4

0.6

0.8

Behaviour of several algorithms able to support LQD. Dyslexic−1212

GCCL−LQD Boost−LQD FURIA−LQD

0.2

0.4

0.6

0.8

Behaviour of several algorithms able to support LQD. Dyslexic−11−01

GCCL−LQD Boost−LQD FURIA−LQD

0.2

0.4

0.6

0.8

Behaviour of several algorithms able to support LQD. Dyslexic−11−12

Figure 5: Boxplots showing the statistical differences between the algorithms.

of the capability of FURIA-LQD of learning from multi-labelled datasets.
This simpler approach consists in defining a new class of type “unknown”, that

is added to the set of labels of all the instances of the training set where the clas-
sifier committed an error. For instance, if a child in the training set was labelled
“dyslexia” and “other disorders” and the classification system outputs “no dyslexia”
for this training instance, it is relabeled with the three terms “dyslexia”, “other disor-
ders” and “unknown”. The learning is repeated over the extended training set, and this
learning/relabeling process is iterated until none of the instances of the training set is
incorrectly classified, i.e. the output of the classifier is a subset of the extended set of
labels for all elements of the training data. With this simple change the accuracy of
the “inexpert” classifier is improved until [0.765,0.903] and the failure rate drops to
[0.082,0.214], with a 48% of not classified instances (i.e. children that are assigned the
class “unknown” in the test stage). In future works, a second battery of tests will be
prepared for children classified as “unknown” thus a second classifier can be connected
in cascade to the system proposed in this paper.

In Figure 8 some of the linguistic rules learned for the non-expert classifier are
shown. Observe that the structure of the rules is simple and in many cases only one
or two linguistic terms are needed. Each rule compares the vague result assigned by
parents or instructors to the result of a test (“Actions and Details”, “Figures”, “Auditive
memory”, etc.) and concludes that the learning problem is “Dyslexic”, “Control” or
“Unknown”. Each knowledge base combines a small number of these rules (between 5
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Table 8: Example of rules in the knowledge base
If Actions and Details is [3,15] and Figures is [1,17] and Auditive memory is [1,13]
then DYSLEXIC
If Figures is [1,11] then CONTROL
If Figures is [17,28] then NON DYSLEXIC
If Vocabulary is 1 then DYSLEXIC
If Actions and Details is [3.7,5] then UNKNOWN
If Auditive Perception is [5.5,7.6] and Order Comprehension is ND or [6,8]
and Spatial Orientation is ND or [6.9,8] then UNKNOWN

and 10), thus the resulting classifier can be easily understood by the psychologist, that
can endorse it or, on the contrary, point out defects in its structure that could cause an
incorrect assessment.

4. Concluding remarks and future work

In this work a screening method for the early detection of dyslexia is proposed.
The method is based on a classifier that inputs the subjective evaluation of different
tests made by parents or teachers and produces a diagnostic or rejects the data. Success
rates over 90% are possible with less than 50% rejection. In future works, specific test
and classifiers will be designed that are connected in cascade with the proposed system
and diagnose the rejected cases.

From a methodological point of view, the definition of the algorithm “FURIA” has
been extended to LQD in this contribution. First results seem to show that this algo-
rithm is preferred over boosting or GCCL when computing resources are limited. The
linguistic quality of the outcome is also better. However, the accuracy of Boosting can
still be higher for some datasets. In future works, further comparisons should be made
that also involve the learning time. It is expected that FURIA improves over the alter-
natives in scenarios with a limited time for evolving a knowledge base, and the results
obtained so far seem to confirm this. Lastly, the linguistic quality has been studied on
the basis that a small number of rules is better, however the scattered fuzzy partitions
produced by FURIA might not always be regarded as “human understandable” by most
metrics of linguistic quality, that could be included in the analysis.

Acknowledgements

This work was supported by the Spanish Ministerio de Economı́a y Competitividad
under Project TIN2011-24302, including funding from the European Regional Devel-
opment Fund.

Appendix A. Theoretical properties of the proposed ranking operator

The partial ordering proposed in Section 2.2 generalises interval dominance crite-
rion, thus it will be denoted it >ID.
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Proposition 1. The ordering >ID is transitive, that is given three fuzzy sets X̃ ,Ỹ , Z̃,

X̃ >ID Ỹ ∧ Ỹ >ID Z̃ ⇒ X̃ >ID Z̃

Proof. First note that, as α-cuts are nested, 1(πX ,α>πY,α ) is non-decreasing in α . That
is

• if 1(πX ,α>πY,α ) = 1, then for any β > α , 1(πX ,β>πY,β ) = 1;

• if 1(πX ,α>πY,α ) = 0, then for any β < α , 1(πX ,β>πY,β ) = 0.

This means that P(X > Y ) > 0.5 implies that there exists a value α1 < 0.5 such that
1(πX ,α1

>πY,α1 )
= 1. Similarly, P(Y > Z)> 0.5 implies that there exists a value α2 < 0.5

such that 1(πY,α1
>πZ,α1 )

= 1. Let us now consider the value α3 = max(α1,α2) < 0.5.
For this value, we have 1(πX ,α3

>πZ,α3 )
= 1, since

πX ,α3
> πY,α3 > πY,α3

> πZ,α3

Also note that the values P(X > Y ) and P(X > Y ) coincide respectively with the
Equations

NSD(X ,Y ) = 1− sup{α|πX ,α ≤ πY,α}= 1−PD(Y,X) (A.1)

PD(X ,Y ) = sup{α|πX ,α ≥ πY,α} (A.2)

proposed by Dubois and Prade [9] in another context, and where NSD (Necessary
strict dominance) is the strongest requirement, while PD (possibilistic dominance) is
the loosest.

In many applications, it is desirable to obtain not a partial ordering (as is >ID) but
a complete ranking over the possible alternatives, forbidding incomparabilities (note
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that this is the choice of most known proposals of fuzzy ranking). In practice, such
a complete ranking should refine the partial ranking obtained by using the cautious
approach obtained by first principles.

In practice, this means that the we should derive a score S(X ,Y )∈ [P(X >Y ),P(X >
Y )] with an associated ordering >S such that X̃ >S Ỹ if S(X ,Y )> 0.5, so that

• X >ID Y ⇒ X >S Y ;

• X �>ID Y ⇒ X �>S Y ;

The solution we propose is to compute an α-cut wise statistical preference and then
to integrate it over all α-cuts. That is, we propose to associate to each α-cut πX ,α and
πY,α two uniform probabilities PX ,α and PY,α , and then to compute S(X ,Y )α := Pα(X >
Y ) by considering that PX ,α and PY,α are independent. Figure A.6 illustrates the value
S(X ,Y )α when πX ,α = [2,5] and πY,α = [1,3]. We can then compute

S(X ,Y ) =
1�

0

S(X ,Y )α dα, (A.3)

and we can check that it is consistent with >ID.

Proposition 2. Given two fuzzy sets X ,Y , then S(X ,Y ) ∈ [P(X > Y ),P(X > Y )]

Proof. First, note that

• if πX ,α > πY,α , then S(X ,Y )α = 1 and

• if πX ,α > πY,α , then S(X ,Y )α = 0 and

• S(X ,Y )α ∈ (0,1) otherwise

This means that, for an α-cut,

S(X ,Y )α ∈ [ min
x∈πX ,α
y∈πY,α

f>(x,y), max
x∈πX ,α
y∈πY,α

f>(x,y)]

Hence,
1�

0
S(X ,Y )α dα ∈ [P(X > Y ),P(X > Y )]

To our knowledge, the score S(X ,Y ) given by Eq. A.3 has never been proposed as
a way to rank fuzzy sets, however we have shown here that it can be considered as a
specific extension of classical statistical ranking.

Appendix B. Pseudocode of GCCL and Boosting algorithms

The pseudocode of the GCCL [22] and Boosting algorithms [24] for LQD is repro-
duced in this appendix for the convenience of the reader.

1. GCCL: Outline
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function GFS
1 Initialize population
2 for iter in {1, . . . , Iterations}
3 for sub in {1, . . . ,subPop}
4 Select parents
5 Crossover and mutation
6 assignConsequent(offspring)
7 end for sub
8 Replace the worst subPop individuals
9 assignFitness(population,dataset)
10 end for iter
11 Purge unused rules
return population

2. GCCL: Assignment of consequents

function assignConsequent(rule)
1 for c in {1, . . . ,Nc}
2 grade = 0
3 compExample = 0
4 for example in {1, . . . ,N}
5 �m = fuzMembership(Antecedent,example,c)
6 grade = grade ⊕ �m
7 if (sup {x : �m(x)> 0} > 0) then
8 compExample = compExample + 1
9 end if
10 end for example
11 weight[c] = grade � compExample
12 end for c
13 mostFrequent = {1, . . . ,Nc}
14 for c in {1, . . . ,Nc}
15 for c1 in {c+1, . . . ,Nc}
16 if (weight[c] dominates weight[c1]) then
17 mostFrequent = mostFrequent - { c1}
18 end if
19 end for c1
20 end for c
21 Consequent = select(mostFrequent)
22 CF[rule] = computeConfidenceOfConsequent
return rule

3. GCCL: Assignment of fitness to the rules in the KB

function assignFitness(population,dataset)
1 for example in {1, . . . ,N}
2 setWinnerRule = /0
3 for r in {1, . . . ,M}
4 dominated = FALSE
5 r.�m = fuzMembership(Antecedent[r],example)*CF[r]
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6 for sRule in setWinnerRule
7 if (sRule dominates r) then
8 dominated = TRUE
9 end if
10 end for sRule
11 if (not dominated and r.�m > 0) then
12 for sRule in setWinnerRule
13 if (r.�m dominates sRule) then
14 setWinnerRule = setWinnerRule −{ sRule }
15 end if
16 end for sRule
17 setWinnerRule = setWinnerRule ∪{ r }
18 end if
19 end for r
20 if (setWinnerRule == /0) then
21 setWinnerRule = setWinnerRule ∪{ rule freq class }
22 setOfCons= /0
23 for sRule in setWinnerRule
24 setOfCons= setOfCons ∪{ consequent(sRule) }
25 end for sRule
26 deltaFit= 0
27 if ({class(example)} == setOfCons and

size(setOfCons)==1) then
28 deltaFit = {1}
29 else
30 if ({class(example)}∩ setOfCons �= /0) then
31 deltaFit = {0,1}
32 end if
33 end if
34 Select winnerRule ∈ setWinnerRule
35 fitness[winnerRule] = fitness[winnerRule] ⊕ deltaFit
36 end for example
return fitness

4. Boosting of fuzzy rules for LQD and multi-class problems.

Input data:
1 Low quality training set ( �X1,y1), . . . ,( �Xm,ym),

�Xi ∈ F (Rn) and yi ∈ F ({1, . . . ,C})
2 Number of fuzzy rules H ⊂ {1, . . . ,N}
3 Number of partitions E

Local Variables:
1 �w ∈ F (Rm): weights of the instances
2 α ∈ RH∗C: votes of the weak hypotheses
3 y ⊆ {−1,1}m: consequents of the weak hypotheses
4 s ∈ [0,1]H∗C: confidence of the consequents of rules
5 �A ∈ F ([0,1]m∗n∗E): fuzzy membership
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begin
1 for k=1 until C
2 for i=1 until m
3 Initialize �wi: �wi = 1/m
4 end-for
5 repeat H/C times
6 Evolutionary Generation of a new fuzzy rule(k):

“R j: if x is A j then ck” → �fitnessRj

7 Calculate the number of votes of the rule:
“R j: if x is A j then ck = α j

k ”
8 Update the weights of the instances: �wi
9 end-repeat
10 end-for
11 Convert votes into confidences: s j

k
12 Emit rules: for all j, if any s j

k �= 0
13 Errortrain: Evaluate the training set ← Inference from LQD
14 Errortest: Evaluate the test files
end

5. Boosting: Evolutionary Generation of a new fuzzy rule:

Evolutionary Generation of a new fuzzy rule(k):
1 begin
2 Initialize population
3 �fitness ← ImpreciseFitness(population,k)
4 for iter=1 until Iterations
5 Select parents ← Tournament (precedence operators)
6 Crossover and mutation
7 Replace the worst individuals ← Precedence operators
8 �fitness ← ImpreciseFitness(population,k)
9 end-for
10 R j minimizes �fitness ← Precedence operators
11 return R j
12 end

6. Boosting: Fitness function for the evolutionary generation of a new fuzzy rule.
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ImpreciseFitness (population,k):
1 begin
2 for j=1 until population
3 �f itR j

= 0
4 for i=1 to m, α ∈ [0,1]
5 if ([yi]α = k) yi = 1
6 if ([yi]α ∩ k = /0) yi =−1
7 if ([yi]α �= k and [yi]α ∩ k �= /0) yi = {1,−1}
8 [�f itR j

]α =[�f itR j
]α ⊕ [�w j]α

⊗{exp({−(yi)⊗A j(x)}|x ∈ [Xi]α )}
9 end-for
10 end-for
11 end
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