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Abstract

Likelihood functions, as well as the more recent con-
cept of evidential likelihood, are essential statistical
tools to perform estimation. Beyond the maximal
likelihood value, the shape of the likelihood can also
give interesting information about the data used to
get the estimation. Indeed, it is generally acknowl-
edged that more uncertain and scarce data will lead
to flatter likelihoods. However, different aspects can
affect this shape, and it may be worthwhile to sep-
arate various influences. In this paper, we discuss
these influences and propose some practical ways to
separate them into different measures. We demon-
strate our approach on the particular case of the
multinomial likelihood, which plays an important
role in applications such as classification.

Keywords: data quality, evidential likelihood, con-
sonant mass function, non-specificity

1. Introduction

The effect of data quality in statistical estimations
and other tasks such as classification [1] has been
acknowledged for a long time, and is typically re-
flected through the width of confidence intervals. A
possible way to calculate such intervals is using the
relative likelihood [2, 3]. The use of this likelihood
can be justified in different ways, and we refer to
Denoeux [4] for a recent discussion.

Clearly, the wider the intervals are, the less qual-
ity there is in the data. This means that the rela-
tive likelihood resulting from the observations is less
peaked, or flatter. Hence, a measure of its flatness
is a direct measurement of the data quality. In this
paper, we propose a generic measure of flatness of
the evidential likelihood using non-specificity, and
focus on the particular case of multinomial distribu-
tions to propose practical ways to compute it. Such
a particular case will be interesting to discuss the
various aspects that can affect the likelihood flat-
ness. It is also used in many applications such as
classification or semi-supervised learning [5].

Indeed, it is not always clear what means data
quality: Ballow and Pazer [6] consider four aspects
of data quality: accuracy, timeliness, complete-
ness and consistency, and Wang and Wang [7] di-
vide data quality into completeness, unambiguous,

meaningfulness and correctness. We will mainly fo-
cus on three aspects of data quality: uncertainty,
variability and quantity, which play a major role
in classification tasks. By uncertainty, we mean
that the true fixed value of a given sample may be
ill-known. Such uncertainty comes from a lack of
knowledge and is intrinsically epistemic, hence we
consider that it will be modelled under the belief
function framework [8, 9] in general, or to be more
specific, modelled by mass functions. By variabil-
ity, we mean that the empirical distribution tends to
show different values, i.e., that the entropy is likely
to be high.

We first recall some basics about the relative
likelihood and the theory of belief functions before
proposing a general measure of flatness (Section 2).
We then study in detail the multinomial evidential
likelihood, showing through simple examples how
different aspects of data quality can affect the like-
lihood (Section 3). Finally, we propose a simple,
practical way to measure flatness in the case of
multinomial distribution, as well as a means to sep-
arate different aspects into different measures (Sec-
tion 4).

2. Data uncertainty, likelihood and

non-specificity

We will use mass functions, issued from the theory
of belief functions (also referred to as Dempster-
Shafer theory or evidence theory), as a common
tool to model data uncertainty and the relative like-
lihood. We will only introduce the tools we need,
and the reader is referred to [8] for a full introduc-
tion. A mass function on a space Ω is simply a
mapping m : ℘(Ω) → [0, 1] from the power set of Ω
to the unit interval, such that m(∅) = 0 and

∑

A⊆Ω

m(A) = 1.

A subset A that receives a positive mass m(A) > 0
is called a focal set. The following mass functions
are of particular interest:

• a vacuous mass is such that m(Ω) = 1, and
represents total ignorance;

• a categorical mass is such that m(A) = 1 for
some A. It is equivalent to the set A;

• a consonant mass is such that its focal sets form
a chain w.r.t. inclusion ordering, i.e., if A, B



are focal sets, then A ⊆ B or B ⊆ A. It is
equivalent to the fuzzy set that has its focal
elements as α-cuts;

• a Bayesian mass is such that m(A) > 0 iff |A| =
1. It is equivalent to a probability distribution;

• a certain mass is such that m(x) = 1 for some
singleton x ∈ Ω.

2.1. Data uncertainty

Consider a quantity x that can take its values on a
finite space Ω. If the true value of this quantity is
ill-known, it can be modelled by a mass function.
For instance, the mass mx(A) = 1 models a quan-
tity that is imprecisely observed and for which we
only know that its true value lies in A. Similarly,
a Bayesian mass function can model probabilistic
uncertainty, and a consonant one a variable whose
uncertain value is modelled by a fuzzy set.

We can associate the mass mx with its plausibility
function, such that

P lx(A) =
∑

B∩A 6=∅
m(B),

for all A ⊆ Ω. The function plx : Ω → [0, 1] such
that plx(w) = P lx({w}) is called the contour func-

tion associated to mx. When mx is consonant, the
contour function contains all the information about
mx (which is not the case in general).

2.2. Evidential likelihood

Consider now a random variable X taking its val-
ues on a space Ω and following a parametric model
pX(·; θ) with θ ∈ Θ its parameter vector. The like-
lihood of θ for a perfect observation x is defined as
L(θ; x) = pX(x; θ). If x is imprecisely observed as
set-valued (x ∈ A), the imprecise likelihood of θ can
be defined as

L(θ; A) = pX(A; θ) =
∑

x∈A

pX(x; θ). ∀θ ∈ Θ

Furthermore, when the observation is both impre-
cise and uncertain, being represented by a mass
function mx, the evidential likelihood of θ is defined
as [9]

L(θ; mx) =
∑

A⊆Ω

L(θ; A)mx(A)

=
∑

ω∈Ω

pX(ω; θ)
∑

A∋ω

mx(A)

=
∑

ω∈Ω

pX(ω; θ)pl(ω). (1)

As L(θ; mx) only depends on the contour function
pl induced by mx, it can be written as L(θ; pl) in-
stead. From (1), we have L(θ; pl) = Eθ[plx(X)].
Now, if we consider a set x = (x1, . . . , xn) of cogni-
tively independent (see Denoeux [9] for a definition

of cognitive independence) and i.i.d. uncertain ob-
servations, the evidential likelihood becomes

L(θ; pl) =

n
∏

i=1

Eθ[plxi
(X)] (2)

2.3. Flatness of relative likelihood

Once we have computed the evidential likelihood by
Eq. (2), the contour function (an extension of the
so-called relative likelihood) plΘ is given by

plΘ(θ; mx) =
L(θ; mx)

supθ∈Θ L(θ; mx)
, (3)

which can be associated with an equivalent conso-
nant mass function mΘ. The flatness of plΘ(θ; mx),
which we will denote plΘ(θ) when no ambiguity
can arise, can then be quantified by measuring how
imprecise, or non-specific [10], is mΘ (note that
plΘ = 1 is constant when all observations are vacu-
ous).

This can be done by considering as a non-
specificity measure of the mass function m the fol-
lowing extension of Hartley function [10]

NS(m) =
∑

A⊆Ω

m(A) log2 |A|

where Ω is the space in which is defined m. In the
case of mΘ, which is continuous, this measure would
be given by

NS(mΘ) =

∫ 1

0

log2(|{θ|plΘ(θ) > α}|)dα (4)

where |{θ|plΘ(θ) > α}| is an hyper-volume. In prac-
tice, computing this integral, and in particular es-
timating |{θ|plΘ(θ) > α}|, will be complex. This
could be done through classical Monte-Carlo sam-
pling techniques, yet it will be quickly impractical
as Θ dimension grows. Also, it must be noticed that
a high value of NS(mΘ) may result from different
effects: few data, numerous but uncertain data, uni-
formity of data, etc.

This is why, in the next sections, we study in
detail the specific case of multinomial data, which
are useful in practice and can give us an idea about
the evidential likelihood’s behaviour.

3. Non-specificity of multinomial evidential

likelihood

We consider from now on that X is a multino-
mial variable taking its values on the space Ω =
{ω1, . . . , ωℓ} of ℓ outcomes, a typical situations in
supervised and semi-supervised problems where X

is the class variable. The parameter vector is then
θ = (θ1, ..., θℓ) with Θ = {θ|θi ∈ [0, 1],

∑ℓ

i=1 θi = 1}
the (ℓ-1)-unit simplex.



3.1. Likelihood formulation

Given samples x = (x1, . . . , xn) whose uncertainty
is modelled by mass functions, we will use the
simplified notation pli(j) := plxi

(ωj). Supposing
stochastic and cognitive independence, the corre-
sponding evidential likelihood is

L(θ; pl) =
n

∏

i=1

Eθ[pli(X)] =
n

∏

i=1

ℓ
∑

j=1

θjpli(j). (5)

The following result, whose proof can be found in
Appendix A, will be useful.

Proposition 1. The contour function plΘ(θ) cor-

responding to the evidential multinomial likelihood

is a concave function.

The non-specificity of L(θ; mx) can then be es-
timated by Eq. (4), yet this can be tricky. In the
next subsections we show that this flatness can be
affected by various factors, and we then propose a
technique to estimate the associated non-specificity.

3.2. Flatness behaviour

Before proposing various solutions to estimate or
approximate NS(mΘ), we can first wonder about
what can affect the flatness, or imprecision of plΘ.
For this reason, let us consider two examples with
Ω = {ω1, ω2, ω3}.

Example 1. Given data x = (x1, . . . , xn), assume
that every observation xi has the same plausibility
function pl(ω1) = 1, pl(ω2) = 0.2, pl(ω3) = 0.2.
Calculating the evidential multinomial likelihood
via formula (5), the likelihoods for n=5 and n=24
are shown in Figure 1.
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Figure 1: Effect of data quantity on likelihood

Example 2. Suppose there are 21 certain samples
(i.e., modelled by certain masses). For comparison,
for one case all 21 samples have the same plausibility
function pl(ω1) = 1, pl(ω2) = 0, pl(ω3) = 0. For
the other case, two of them are changed to pl(ω1) =
0, pl(ω2) = 1, pl(ω3) = 0. Figure 2 compares the
likelihoods in these two cases.
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Figure 2: Effect of data variability on likelihood

Example 1 shows that data quantity clearly af-
fects plΘ flatness in an important way. However,
when data can be uncertain (in the case of n = 5,
we could imagine that we have 19 vacuous ones)
and modelled by mass functions, both the quantity
and the uncertainty have an effect, and it would be
desirable to isolate this effect. Perhaps more sur-
prisingly, Example 2 shows that data variability or
empirical distribution can also have an effect on plΘ
flatness, albeit of lesser importance. Indeed, in both
cases of this example, the informational content or
the uncertainty of the sample is the same (21 certain
examples). It would be desirable to know when the
likelihood imprecision mainly comes from this vari-
ability.

3.3. Estimation technique

Let us denote by θ̂ the maximal likelihood estimator
(MLE), that is

θ̂ = arg sup
θ∈Θ

L(θ; mx).

Thanks to Proposition 1, we know that the EM
algorithm [9], or any efficient convex optimization
technique, will provide the global maximum value.

To approximate mΘ, let us consider a distance d

between vectors of Θ and its maximal value dmax.
For example, if we select the L2 norm distance mea-
surement we have



d(θ, θ̂) = ‖θ − θ̂‖2 =

√

√

√

√

ℓ
∑

i=1

(θi − θ̂i)2

and dmax =
√

2. Let us now define a vector of values
v1, . . . , vD such that vi ∈ [0, dmax] and vD = dmax.
Define the region

Γx(i) = {θ ∈ Θ | vi−1 ≤ d(θ, θ̂) ≤ vi}

with v0 = 0. Clearly, the sets Γx(i) form a parti-
tion of Θ. Now, consider the approximated contour
function plap such that for any θ ∈ Γx(i), we have

plap(θ) = max
θ′∈Γx(i)

plΘ(θ′)

and we denote by map the associated consonant
mass function. As plap is constant on Γx(i), we
will denote by plap(i) this value. Now, it is easy to
see that map value is

map({θ ∈ Θ | d(θ, θ̂) ≤ vi}) = plap(i) − plap(i + 1)

for any i ∈ 1, . . . , D, with the convention plap(D +
1) = 0. Since plap ≥ plΘ (with equality for some
elements of Γx(i)) by definition, map is a conso-
nant and conservative approximation of mΘ, thus
ensuring that the non-specificity of mΘ will not be
underestimated. Also note that as D grows, map

tends to mΘ.

Remark 1. Note that plap(i) ≥ plap(i + 1) thanks
to Proposition 1. This may not be true for non-
concave functions.

Example 3. Consider v1 = 0.2, v2 = 0.5, v3 =
√

2.
They result in the sets

Γx(1) = {{θ ∈ Θ | d(θ, θ̂) ∈ [0, 0.2]}
Γx(2) = {{θ ∈ Θ | d(θ, θ̂) ∈ (0.2, 0.5]}
Γx(3) = {{θ ∈ Θ | d(θ, θ̂) ∈ (0.5,

√
2]}

and in the contour function

plap(1) = max{θ∈Θ|d(θ,θ̂)∈[0,0.2]}plΘ(θ) = 1,

plap(2) = max{θ∈Θ|d(θ,θ̂)∈(0.2,0.5]}plΘ(θ) = a,

plap(3) = max{θ∈Θ|d(θ,θ̂)∈(0.5,
√

2]}plΘ(θ) = b.

Then the consonant mass function is induced from
the following formula:

map({θ ∈ Θ | d(θ, θ̂) ≤ 0.2}) = 1 − a,

map({θ ∈ Θ | d(θ, θ̂) ≤ 0.5}) = a − b,

map({θ ∈ Θ | d(θ, θ̂) ≤
√

2}) = b.

There is still one step missing to estimate NS,
the cardinality of focal sets. Clearly, the hyper-
volumes of Γx(i) will depend on the value of θ̂ and
can be tricky to estimate, as they will correspond to
hyper-spheres (in the case of L2 norm) cut by hyper-
planes. Since we are mainly interested in compar-
ing and analyzing qualitatively non-specificities in

different situations, and not in their exact values,
we propose to simply consider |Γx(i)| = 1 for any
i ∈ 1, . . . , D. Unless values of NS are close to each
other, this should not change too much their orders,
provided we keep the same values v1, . . . , vD. The
resulting value of non-specificity is then

NSap(map) =

D
∑

i=1

(plap(i) − plap(i + 1)) log2 i

which is very easy to compute. For Example 3, we
get

NSap(map) = (a − b)log2(2) + blog2(3) = a + 0.58b

(6)
Note that this approach comes down to fix the

sizes of the focal sets. Conversely, we could try to
fix the values 1 > a1 ≥ . . . ≥ aD > 0 and try to
estimate the sets Ψ(i) such that

Ψ(i) = {θ ∈ Θ|plΘ(Θ) ≥ ai},

that is, fixing the values of the discrete contour func-
tion approximating plΘ. Of course, this would not
be easy in the general case, as Ψ(i) will not be con-
vex in general. However, in the case of multinomial
distributions, Proposition 1 tells us that these sets
will be convex, hence that clever sampling or esti-
mation strategies can be used. We will not explore
further this approach in this paper.

4. Measuring data quality via partitioning

non-specificity

In this section, we propose to separate our
NSap(map) into three different aspects, correspond-
ing to the three effects we have identified in Sec-
tion 3.2:

• Data uncertainty;
• Data variability;
• Data quantity.

We will then provide some illustrative experiments
and their associated results. Note that separating
these aspects may be important in some applica-
tions, such as for example decision tree learning.

4.1. Proposed measures

Considering a sample x = (x1, . . . , xn) with uncer-
tainty of each observation modelled by plausibilities
pli on Ω, we define the following equivalences.

Definition 1 (Certain equivalent data). The cer-
tain equivalent data x

ce of data x are defined as
data having plausibilities

plce
i (j) =

{

1 if ωj = argωk∈Ω maxk pli(ωk)
0 otherwise

,

∀i = 1, ..., n.



Definition 2 (Certain consistent equivalent data).
The certain consistent equivalent data x

ceco of data
x are defined as data having plausibilities

plceco
i (j) =

{

1 if ωj = argωk∈Ω maxk θ̂k

0 otherwise
,

where θ̂k denotes the k-th component of optimal
estimator θ̂ obtained from data x.

With the definitions above, the flatness of the
likelihood quantitied by non-specificity can be ana-
lyzed in more detail. We propose to split the value
of non-specificity into three parts NSunc, NSinc,
and NSmin, which correspond to uncertainty, vari-
ability and quantity respectively:

NSap(map,x) = NSunc + NSinc + NSmin

where

NSunc = NSap(map,x) − NSap(map,xce),

NSinc = NSap(map,xce ) − NSap(map,xceco ),

NSmin = NSap(map,xceco),

are the difference between non-specificities calcu-
lated from x and x

ce, the difference between non-
specificities calculated from x

ce and x
ceco, and the

non-specificity of data x
ceco.

It should be noted that NSinc could be consid-
ered as non-reducible, while NSunc and NSmin can
be reduced by specifying uncertain data and by ob-
taining more samples, respectively.

4.2. Graphical and numerical illustrations

In this section, we consider the case where Θ is bi-
nary, making the multinomial distribution become
a binomial distribution. This allows us to give more
illustrative examples.

We assume that X is a binomial sample, each
sample following a Bernoulli distribution. Origi-
nal data are such that pli(1) = 1, pli(0) = 0.2
for i = 1, ..., 15 and pli(1) = 0.2, pli(0) = 1 for
i = 15, ..., 20. Figure 3 shows the different con-
tour functions obtained for data sets xce and x

ceco.
Obviously, the contour function obtained for x is
flatter than the one obtained for x

ce, which in turn
is flatter than x

ceco. The grey lines demonstrate
how to achieve values a and b in formula (6) given
v1 = 0.2, v2 = 0.5, v3 =

√
2 as in Example 3.

We also varied the initial data set to show that
our proposed splitting approach makes sense, as well
as to show the influence of the three factors (uncer-
tainty, variability and quantity). Figure 4 illustrates
the contour functions of data with plausibility func-
tions pli(1) = 1, pli(0) = r, i = 1, ..., 20, with r in-
creasing from 0 to 1. Clearly, the higher is r, the
more uncertainty there is in the data, and the flatter
is the resulting contour function.
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Figure 3: Comparison of contour functions obtained
from original data and equivalences

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

pl
Θ

(θ
;m

x)

 

 
r=0
r=0.2
r=0.5

Figure 4: Contour functions for the Bernoulli dis-
tribution with consistent uncertain data

To test variability, we assumed that data x =
(x1, ..., xn) are totally certain with plausibility func-
tions pli(1) = 1, pli(0) = 0 for i = 1, ..., 20 − INC

and pli(1) = 0, pli(0) = 1 for i = 21 − INC, ..., 20.
Figure 5 shows the evolution of the contour func-
tion as data become more inconsistent (variable),
and the evolution of NSinc numerical values can be
seen in Table 1. As previously mentioned, we see
that the effect of inconsistency on NS is minor, if
not negligible.

Suppose now that every xi is certain and has the
same plausibility function pli(1) = 1, pli(0) = 0 for
i = 1, ..., n. As the quantity of data n increases, the
contour function becomes less flat, resulting in a
smaller non-specificity. Figure 6 demonstrates this
trend. Table 1 shows that our proposed splitting
do identify where the flatness or imprecision of the
contour function comes from.

We also performed some first experiments on
data sets inspired from Examples 1 and 2. Ta-
ble 2 lists the obtained results. The last two cases
(lines) are certain data and the rest are uncertain.
For those remaining cases, the first number is the
number of uncertain samples with plausibility func-
tion pl(ω1) = 1, pl(ω2) = 0.2, pl(ω3) = 0.2, and



NS NSmin NSunc NSinc

r=0 0.2044 0.2044 0 0
r=0.2 0.2056 0.2044 0.0012 0
r=0.5 0.2088 0.2044 0.0044 0
INC=0 0.2044 0.2044 0 0
INC=5 0.2230 0.2044 0 0.0186
INC=10 0.2265 0.2044 0 0.0221
SCALE=5 0.2476 0.2476 0 0
SCALE=10 0.2144 0.2144 0 0
SCALE=20 0.2044 0.2044 0 0
x 0.2311 0.2044 0.0081 0.0186
x

ce 0.2230 0.2044 0 0.0186
x

ceco 0.2044 0.2044 0 0

Table 1: Numerical results corresponding to data used in figures
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Figure 5: Contour functions for the Bernoulli dis-
tribution with increasingly inconsistent data
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Figure 6: Contour functions for the Bernoulli dis-
tribution with data of different scales

the second number (when specified) is the num-
ber of uncertain samples with plausibility function
pl(ω1) = 0.2, pl(ω2) = 1, pl(ω3) = 0.2.

The fact that no uncertainty exists in the last two
cases is shown by NSunc = 0. NSinc can reflect to
what extent pieces of evidence of data support the
same outcome, and only inconsistent data (19-2, 4-
1) will have non-zero NSinc value. The value of
NSmin shows that likelihood becomes more peaked

as number of sample increases.

5. Conclusion

When using the relative likelihood to perform statis-
tical estimation, it is commonly agreed that the flat-
ness of the likelihood reflects the quantity of data,
and when data uncertainty is modelled under the
framework of belief functions, the amount of un-
certainty. How to estimate this flatness in a single
number, however, is still unclear. Here we have pro-
posed to use non-specificity measures of mass func-
tions to do so, seeing the relative likelihood as the
contour function of a consonant mass function. For
the particular case of multinomial likelihood, tak-
ing advantage of the function concavity, we have
also proposed efficient estimation procedures.

However, the main message to recall from this pa-
per is that there are other aspects than uncertainty
or quantity, such as the distribution of the data,
that can affect the flatness of the likelihood. How to
isolate these various effects, as well as what really af-
fects the evidential likelihood shape, clearly remains
an open issue. Although we have proposed some
preliminary answers for the case of the multinomial
likelihood, this paper should mainly end with some
questions: does the relative likelihood flatness really
measure what we want it to measure? how can we in
general separate the different factors that influence
this flatness?

These are important questions, even for the
multinomial case, as such distributions can be used
to learn classifiers such as decision trees [11]. While
the relative likelihood possesses some quite interest-
ing properties, we should nevertheless remain cau-
tious when using it in estimation or learning tasks.
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A. Proof of Proposition 1

Proof. (i) The domain of function plΘ

Θ = {θ|θi ∈ [0, 1],
∑

i

θi = 1, i = 1, ..., l}

is a unit simplex, hence a convex set.
(ii) Given observations x, take two vectors θ and

θ′ from Θ, define

g(θ) = log(L(θ; mx)) =

n
∑

i=1

log

ℓ
∑

j=1

θjpli(j).

For any λ ∈ [0, 1], we have

g(λθ+(1−λ)θ′) =

n
∑

i=1

log

ℓ
∑

j=1

(λθj + (1 − λ)θ′
j)pli(j)

and

λg(θ) + (1 − λ)g(θ′)

=

n
∑

i=1

[λ log

ℓ
∑

j=1

θjpli(j) + (1 − λ) log

ℓ
∑

j=1

θ′
jpli(j)]

=

n
∑

i=1

log[(

ℓ
∑

j=1

θjpli(j))λ · (

ℓ
∑

j=1

θ′
jpli(j))1−λ].

Then,

g(λθ + (1 − λ)θ′) − [λg(θ) + (1 − λ)g(θ′)]

=

n
∑

i=1

log

∑ℓ

j=1 [λθj + (1 − λ)θ′
j ]pli(j)

[
∑ℓ

j=1 θjpli(j)]λ · [
∑ℓ

j=1 θ′
jpli(j)]1−λ

=

n
∑

i=1

log
λ

∑l

j=1 θjpli(j) + (1 − λ)[
∑ℓ

j=1 θ′
jpli(j)]

[
∑ℓ

j=1 θjpli(j)]λ · [
∑ℓ

j=1 θ′
jpli(j)]1−λ

According to the weighted arithmetic mean and
weighted geometric mean inequality, for any
x1, x2, λ ≥ 0, λx1 + (1 − λ)x2 ≥ xλ

1 · x1−λ
2 , there-

fore

g(λθ + (1 − λ)θ′) − [λg(θ) + (1 − λ)g(θ′)] ≥ 0,

and g(θ) is a concave function. Since the exponen-
tial function is convex and increasing, the composi-
tion eg(θ) remains concave. Normalization will not
change concavity as well, hence plΘ is a concave
function.


