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Abstract 

 Just as the quality of a one-dimensional approximate Riemann solver is improved by the 

inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also 

similarly improved. Such multidimensional Riemann problems arise when multiple states come 

together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann 

problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting 

state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] 

proves especially useful for this purpose. While that work is based on a Galerkin projection, in 

this paper we present an analogous self-similar formulation that is based on a different 

interpretation. In the present formulation, we interpret the shock jumps at the boundary of the 

strongly-interacting state quite literally. The enforcement of the shock jump conditions is done 

with a least squares projection (Vides, Nkonga & Audit [67]). With that interpretation, we again 

show that the multidimensional Riemann solver can be endowed with sub-structure. However, 

we find that the most efficient implementation arises when we use a flux vector splitting and a 

least squares projection. An alternative formulation that is based on the full characteristic 

matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use 

one-dimensional HLLC Riemann solvers as building blocks. 

 Several stringent test problems drawn from hydrodynamics and MHD are presented to 

show that the method works. Results from structured and unstructured meshes demonstrate the 
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versatility of our method. The reader is also invited to watch a video introduction to 

multidimensional Riemann solvers on http://www.nd.edu/~dbalsara/Numerical-PDE-Course. 

 

http://www.nd.edu/~dbalsara/Numerical-PDE-Course
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I) Introduction 

 Riemann solvers play an important role in the numerical solution of hyperbolic systems 

of conservation laws. The one-dimensional Riemann problem is a self-similar solution that 

results from a discontinuity between two constant states. Multidimensional Riemann solvers 

have also been designed and we focus on a certain class of multidimensional Riemann solvers 

here (Wendroff [68], Balsara [4], [5], [16], Balsara, Dumbser & Abgrall [15], Vides, Nkonga & 

Audit[68], Balsara & Dumbser [17]). Such Riemann solvers are applied at the vertices of a two-

dimensional mesh. Many states come together at a vertex from different directions, making it 

possible to communicate the multidimensionality of the flow to the multidimensional Riemann 

solver. At the vertex, the job of the multidimensional Riemann solver is to approximate the self-

similar multidimensional structure that emanates from the vertex. While self-similarity has not 

been used much in the design of one-dimensional Riemann solvers, it is crucially important in 

the development of multidimensional Riemann solvers (Balsara [16], Balsara & Dumbser [17]). 

This has prompted the name of MuSIC Riemann solvers, where MuSIC stands for 

“Multidimensional, Self-similar, strongly-Interacting, Consistent”. Such Riemann solvers are 

multidimensional; they draw on the self-similarity of the problem; they focus on the strongly-

interacting state that results when multiple one-dimensional Riemann solvers interact; and the 

design relies on establishing consistency with the conservation law. MuSIC Riemann solvers that 

rely on a Galerkin projection to obtain the self-similar variation in the strongly interacting state 

have been presented (Balsara [16], Balsara & Dumbser [17]). An alternative projection method 

consists of least squares and Vides, Nkonga & Audit[68] developed a multidimensional Riemann 

solver without sub-structure based on such a projection. The goal of this paper is to show that 

least squares projection can also be used to design a MuSIC Riemann that retains sub-structure. 

 Several excellent one-dimensional Riemann solvers have been designed. There are exact 

Riemann solvers from Godunov [41],[42] and van Leer [66] and two-shock approximations 

thereof (Colella [27], Colella & Woodward [29]). See also the work of Chorin [25]. The 

linearized Riemann solver by Roe [52] and the HLL/HLLE/HLLEM Riemann solvers (Harten, 

Lax & van Leer [44], Einfeldt [34], Einfeldt et al. [35]) and the local Lax-Friedrichs (LLF) 

Riemann solver (Rusanov [56]) have also seen frequent use. Toro, Spruce and Speares [62] [63], 

[64], Chakraborty & Toro [24] and Batten et al. [20] produced an HLLC class of Riemann 

solvers which have become very popular.  See also, Billett & Toro [21]. Osher and Solomon [51] 

and Dumbser & Toro [33] presented approximate Riemann solvers based on path integral 

methods in phase space. In Balsara [16] we showed that the principle of self-similarity can be 

used to advantage with the result that any of the above-mentioned one-dimensional Riemann 

solvers can be used as a building block in the design of multidimensional Riemann solvers by 

relying on a Galerkin projection. The present paper continues this line of inquiry by showing that 

a least squares projection can also be used. The results are instantiated for the very popular 

HLLC class of Riemann solvers. 
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 Magnetohydrodynamics (MHD) is an interesting example of a hyperbolic system with a 

more complex wave foliation. One-dimensional linearized Riemann solvers for numerical MHD 

have been designed (Roe & Balsara [54], Cargo and Gallice [23], Balsara [6]). HLLC Riemann 

solvers, capable of capturing mesh-aligned contact discontinuities, have been presented by 

Gurski [43] and Li [47]. Miyoshi and Kusano [49] drew on Gurski’s work to design an HLLD 

Riemann solver for MHD. It is, therefore, interesting to show that MHD can also be 

accommodated within our formulation. MHD is a system with an involution constraint, where 

the divergence of the magnetic field is always zero. Balsara & Spicer [7] showed that this is 

assured within the context of a higher order Godunov scheme by using the upwinded fluxes at 

the edges of the mesh to update the magnetic fields that are collocated at the faces of a mesh. 

Gardiner & Stone [38], [39] have claimed that the dissipation in those upwinded fluxes needs to 

be doubled all the time in order to stabilize the method. A substantial body of work now exists to 

show that the suggestion of Gardiner & Stone is completely unnecessary when multidimensional 

Riemann solvers are used to provide a properly upwinded electric field at the edges of the mesh 

(Balsara [5], Vides, Nkonga & Audit[67], Balsara & Dumbser [18]). Indiscriminate doubling of 

the dissipation, as per Gardiner & Stone’s suggestion, can indeed lead to excessive dissipation of 

the magnetic field in the direction that is transverse to the upwind direction. The present paper 

reinforces that finding. 

 For the sake of completeness, and also for the sake of putting this work in context, we 

mention that there have been prior effort at designing multidimensional Riemann solvers. One 

strain of research consists of trying to build some level of multidimensionality into one 

dimensional Riemann solvers (Colella [28], Saltzman [57], LeVeque [46]). Another line of early 

effort tried to incorporate genuine multidimensionality and did not meet with much initial 

success (Roe [53], Rumsey, van Leer & Roe [55]). Abgrall [1], [2] made a big breakthrough by 

formulating a genuinely multidimensional Riemann solver for CFD that worked. Further 

advances were also reported (Fey [36], [37], Gilquin, Laurens & Rosier [40], Brio, Zakharian & 

Webb [22], Lukacsova-Medvidova et al. [48]). Most of these above-mentioned genuinely 

multidimensional Riemann solvers did not see much use because they were difficult to 

implement. Wendroff [68] formulated a two-dimensional HLL Riemann solver, but his method 

was also not easy to implement. A video introduction to multidimensional Riemann solvers is 

available on the following website: http://www.nd.edu/~dbalsara/Numerical-PDE-Course . 

 Balsara [4] devised a two-dimensional HLL Riemann solver with simple closed form 

expressions for the fluxes that were easy to implement. In Balsara [5] it was shown that one can 

impart sub-structure to the HLL state, yielding a multidimensional HLLC Riemann solver. 

Balsara, Dumbser & Abgrall [15] extended this formulation to accommodate unstructured 

meshes. The previous three papers formulated the multidimensional Riemann problem by 

integrating the conservation law over the extent of the wave model in space-time. In their study 

of the multidimensional Riemann problem, Schulz-Rinne, Collins & Glaz [58] had shown that 

the one-dimensional Riemann problems interact amongst themselves to form a self-similarly 

http://www.nd.edu/~dbalsara/Numerical-PDE-Course
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evolving strongly-interacting state. This strongly-interacting state emerges by propagating into 

the one-dimensional Riemann problems via an evolving boundary. We refer to this boundary as 

the boundary of the multidimensional wave model because it contains the strongly-interacting 

state. The wave models in all the multidimensional Riemann solvers incorporate this self-

similarity. But there is a deeper way in which self-similarity can be used, as shown in the next 

paragraph. 

 The self-similarly evolving strongly-interacting state is an inevitable consequence of 

wavefronts propagating into the one-dimensional Riemann problems. Seizing on this insight, 

Balsara [16] presented a self-similar formulation of the multidimensional Riemann problem. 

Balsara & Dumbser [17] extended these ideas to unstructured meshes. In the first of those two 

papers, a Galerkin projection method was devised which had the pleasant consequence of 

deriving most of its information about the sub-structure in the strongly interacting state via 

boundary integrals applied to the self-similarly expanding multidimensional wave model. In that 

fashion, the Galerkin projection method picks up on the physical idea that Lagrangian fluxes 

carry mass, momentum and energy through the moving boundary of the multidimensional wave 

model. That is, the mathematical formulation reproduces the physics of the problem. The 

correspondence between the space-time formulation of the multidimensional Riemann problem 

and the analogous formulation in similarity variables has also been shown in Balsara [16].  

 An alternative viewpoint was presented by Vides, Nkonga & Audit [68] with a least 

squares projection method that also required the balancing of Lagrangian fluxes across the 

moving boundary of the multidimensional wave model. This can be viewed as a way to enforce 

shock jumps across the boundaries of the wave model. (Because of the least squares procedure, 

the enforcement of shock jumps is never quite exact. Instead it should be viewed as an 

approximate imposition of shock jumps. However, the integration that takes place in a Galerkin 

projection can also be viewed as an approximation process.) The resulting multidimensional 

Riemann solver by Vides, Nkonga & Audit [68] was an HLL-type Riemann solver and did not 

retain sub-structure. In this paper we show how the least squares projection can also be used to 

endow substructure to the multidimensional Riemann problem. Thus by having two 

complementary viewpoints for designing MuSIC Riemann solvers with sub-structure, via 

Galerkin projection and via least squares projection, we have a better perspective on the design 

of multidimensional Riemann solvers. 

 Section II sets up the problem and provides details associated with the construction of the 

multidimensional wave model. Section III provides details about the least squares projection and 

how it works within the context of a self-similar formulation where shock jumps are explicitly 

enforced at the boundaries of the wave model. Section IV presents accuracy analysis and Section 

V presents several stringent test problems. Section VI presents our conclusions. Proofs of the 

least squares projection have been catalogued in Appendices A and B. 

II) Problem Setup and Construction of the Multidimensional Wave Model 
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 Consider a hyperbolic conservation law in two dimensions, 0t x y   U F G , where 

U  is an N-component vector of conserved variables and F  and G  are the fluxes in the x- and y-

directions. At any one-dimensional boundary between zones, a one-dimensional Riemann 

problem is likely to arise. Fig. 1 shows such a one-dimensional boundary along with a one-

dimensional Riemann problem that develops between states 1U  and 2U . At any vertex of the 

mesh, where the multiple zones come together, the one-dimensional Riemann problems will 

interact strongly amongst themselves. Fig. 1 displays such a vertex where five states, 1U  to 5U , 

come together at the vertex O. We do not show the other one-dimensional Riemann problems in 

Fig. 1 just to keep it uncluttered. However, Fig. 1 does establish the fact that there is a unit vector 

1 1 1x yn n n x y  that runs parallel to the interface between states 1U  and 2U . The unit vector that 

runs perpendicular to 1n , and does so in the counter-clockwise direction, is denoted by 

1 1 1y xn n  t x y . The extremal speeds of the one-dimensional Riemann problem in the 

1t direction are then denoted by 1S 

t  and 1S 

t .  The thick dotted line in Fig. 1 is intended to show a 

contact discontinuity that develops in a one-dimensional HLLC Riemann solver. The contact 

discontinuity separates two post-shock states which we denote as *

1


U and *

1


U . Associated with 

the state *

1


U  we have the fluxes *

1


F and *

1


G . Similarly, associated with the state *

1


U  we also 

have the fluxes *

1


F and *

1


G . While Fig. 1 only shows five incoming states at the vertex of a 

mesh, the notation extends naturally to any number of states. Thus our method generally allows 

for a set of states  max : 1,...,i i IU coming together at a vertex. The natural ordering of the 

states is taken to be counterclockwise. These states are cyclically numbered so that 1iU  is 

identical to 1U  when maxi I . For the sake of simplicity, we substantiate the method by showing 

the schematic diagram of an HLLC Riemann solver in Fig. 1, but any one-dimensional Riemann 

solver can be used. 

 When the one-dimensional Riemann problems interact with each other at the vertex O in 

Fig. 1, the interaction produces a strongly-interacting state (Schulz-Rinne et al. [58]). By this 

point in time, several authors (Wendroff  [68], Balsara [4], [5], [16], Balsara, Dumbser & 

Abgrall [15], Vides, Nkonga & Audit[67], Balsara & Dumbser [17]) have understood that the 

region of strong interaction holds the key to the design of a multidimensional Riemann solver. 

Conceptually, it helps to identify the extent of the region of strong interaction as much as 

possible. Thus we say that the region of strong interaction is bounded by the multidimensional 

wave model, in quite the same way that a one-dimensional Riemann problem is bounded by a 

one-dimensional wave model. Identification of the multidimensional wave model is usually done 

on the basis of entropy enforcement. In other words, the strongly interacting state should at least 

be large enough to contain each of the contributing one-dimensional Riemann problems. There 

are multiple ways of achieving this goal even on an unstructured mesh (Balsara, Dumbser & 

Abgrall [15], Vides, Nkonga & Audit[67], Balsara & Dumbser [17]). In Fig. 2, which is drawn 
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from Balsara & Dumbser [17], we show one possible way of building the multidimensional wave 

model. Notice that the wave model does track the principal directions of the mesh. However, as 

the angular resolution of the mesh around a vertex becomes enriched, the wave model tends 

more closely to a Monge cone. This is how the wave model makes connection to the physics of 

the problem. 

 Focus on the pentagonal wave model shown in Fig. 2. Pictorially, it is easy to see how it 

has been formed from the contributing one-dimensional Riemann problems. The pentagon is 

defined by a specification of its vertices. Each vertex is formed by the intersection of the 

extremal waves emanating from adjacent zone boundaries. Focusing on the second vertex in Fig. 

2, it is formed by the interaction of the shock that emanates from the first zone boundary with 

speed 1S 

t
 in the 1t direction and the shock that emanates from the second zone boundary with 

speed 2S 

t
 in the 2t  direction. It is, therefore, easy to see that the second vertex  2 2 2P ,   in 

Fig. 2 is nothing but the intersection point of the two lines 
1 1 1y xn n S    

t
 and 

2 2 2y xn n S    
t

 . A similar exercise yields all the vertices, P1 to P5, of the pentagon shown in 

Fig. 2. Notice that the boundary of the multidimensional wave model is measured in units of 

speed because each of its vertices is formed by the intersection of two one-dimensional waves 

that are characterized by their speed. It is easy to see that when five states come together at a 

vertex the result will almost always be a convex pentagon. (Though we will discuss some 

exception cases shortly.) When “ maxI ” states come together at a vertex, the wave model will 

usually be a convex polygon with “ maxI ” sides. 

 Once the vertices of the pentagon are obtained, we can easily produce additional 

information about the wave model that is very useful for efficient computation. Fig. 2 does not 

only show the extremal waves of the one-dimensional Riemann problems. The dotted lines also 

show the contact discontinuities in the one-dimensional HLLC Riemann solvers. The intersection 

of each one-dimensional contact discontinuity with the associated face of the multidimensional 

wave model enables us to identify the points C1 to C5. Notice now that the segment P1C1 on the 

boundary of our multidimensional wave model in Fig. 2 corresponds to the constant state *

1


U  in 

Fig. 1. Likewise, the segment C1P2 in Fig. 2 corresponds to the constant state *

1


U  in Fig. 1. 

Since the strategy that is presented in this paper relies on a discrete imposition of shock jumps at 

the boundary of the multidimensional wave model, the midpoints of segments P1C1 and C1P2 also 

provide us with favorable locations where those shock jumps can be imposed. (It is also possible 

to envision a more elaborate quadrature, like Gauss-Lobatto, with more quadrature points along 

each of these segments; but for now we use the simplest midpoint rule.) If the one-dimensional 

Riemann problems have a more complicated wave foliation, those waves can also be identified 

by their intersection with the appropriate faces of the multidimensional wave model. In that case, 



 

8 
 

a larger number of segments would have to be identified in each face of the multidimensional 

wave model.  

 One of the better aspects of a multidimensional Riemann solver is that the solution that it 

produces has to be sensitive to the underlying geometry of the mesh. As a result, in each face of 

the multidimensional wave model it also helps to build and store a little bit of additional 

geometric information. Notice, therefore, from Fig. 2 that at each face we also build a unit 

outward pointing normal and a unit tangent that has a counterclockwise orientation. For the face 

P1P2 in Fig. 2, for instance, those unit vectors are shown as 1 1 1x y  η x y  and 1 1 1y x   τ x y  

respectively. These unit vectors will also be very useful in writing down the jump conditions. 

 When enforcing shock jump conditions at the outer boundaries of our multidimensional 

wave model, it is very important to know the speed with which the shock front is moving. 

Notice, therefore, that the construction in Figs. 1 and 2 provides the vertices of the 

multidimensional wave model. Recall that these vertices have units of speed. We refer to each of 

the flat polygonal faces in Fig. 2 as the wavefronts of the multidimensional wave model. Since 

we wish to enforce shock jumps later on, we identify the speeds with which these wavefronts are 

moving relative to the origin. Realize that this speed is measured with respect to the unit normal 

to the wavefront, as shown in Fig. 3. Now that we explicitly have the components of these unit 

normals, we can find the speeds in Fig. 3. For example, the speed 1S  in Fig. 3 is explicitly given 

by    1 1 1 2 1 1 20.5 x yS          
 

 . I.e. the vector    1 2 1 20.5       
 

x y  

corresponding to the mid-point of segment P1P2 is projected in the direction of the unit outward 

pointing normal 1η  at that face. 

 As shown in Balsara [16], the physical variables that lie within the multidimensional 

wave model are most easily endowed with substructure by expanding those variables around the 

centroid of the wave model. Once the vertices of the multidimensional wave model are found in 

Figs. 2 or 3, it is possible to find the centroid of the wave model. This is shown by   in Fig. 4. It 

also helps to shift all the coordinates of the vertices of the multidimensional wave model to a 

frame of reference that is centered around   . This is just a coordinate translation from O to   

in Fig. 4. For more details on finding the centroid via an automated procedure, please see Balsara 

& Dumbser [17]. This shifted coordinate system is also shown in Fig. 4, along with the shifted 

vertices of the wave model. In the shifted coordinate system we let  ,i i iP    be the starting 

coordinates of the i
th

 face of our wave model and let  1 1 1,i i iP      be the ending coordinate of 

the same side. If the subscript “i+1” exceeds the number of sides “ maxI ”, it is cyclically 

remapped to “1”. The points iC  are also shifted so that  ,i Ci CiC    gives us the intersection 

point of the 
thi  side of the multidimensional wave model with the contact discontinuity from the 

thi  one-dimensional Riemann problem. The lengths il  for each of the sides of the wave model 
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are also shown in Fig. 4. For Fig. 4, each of those lengths can also be split up into lengths that 

correspond to the sub-segments that constitute the wavefront. For example, for the segment 1 2PP  

, we can also keep track of the lengths of the sub-segments 1 1PC  and 1 2C P  , which we denote as 

1 1P Cl  and 1 2C Pl  . The mathematical motivation for using a shifted coordinate system will become 

clearer Section III. 

 The wave model construction described here is inspired by the original one from 

Wendroff [68]. However, we point out that under certain circumstances it can result in a non-

convex polygon for our wave model. This is likely to happen when the extremal speeds from the 

one-dimensional wave model vary greatly from one zone boundary to another. An example of 

such a situation is shown in Fig. 5 where the thick solid black lines correspond to the wave 

model that is constructed according to the previously-described construction. When such a 

situation arises, we revert to the wave model in Balsara [5] or Balsara, Dumbser & Abgrall [15], 

which is always guaranteed to produce a convex wave model. This is shown by the thick grey 

lines in Fig. 5. As we will see in the next section, a convex wave model is essential for ensuring 

that the rest of the formulation can be defined. It is important to realize that the solid black wave 

model in Fig. 5 arises in situations where the flow is very non-uniform and in such situations, the 

larger grey-colored wave model in Fig. 5 may even be desirable because it slightly increases 

dissipation. When the flow is even somewhat uniform, both wave models have comparable sizes 

and produce comparable amounts of dissipation. If the application developer plans to develop 

only one multidimensional wave model, we would suggest using the one that is persistently 

convex. 

 In this section we have described the construction of the multidimensional wave model in 

the subsonic case. This is the case that occurs most often and is shown in Figs. 2, 3, and 4. We 

say that the wave model is subsonic because it overlies the origin O in Fig. 2. It can even turn out 

that for certain types of moderately supersonic flow, the multidimensional wave model is, 

nevertheless, subsonic. However, for certain types of strongly supersonic flows, the 

multidimensional wave model can become supersonic. In that case, it will not overlie the origin 

O. In that case the situation becomes very simple because the numerical fluxes that correspond to 

the point O have to be obtained from the appropriate part of the one-dimensional Riemann 

problem that overlies the origin O. A constructive process for obtaining the numerical fluxes in 

the supersonic case is described in Balsara [16], Vides, Nkonga & Audit [67] and Balsara & 

Dumbser [17]. The last reference is especially relevant for unstructured meshes. This completes 

our description of the multidimensional wave model.  

III) Formulation of the Multidimensional Riemann Problem in Least-Squares Sense 

III.a) Formulation in Similarity Variables 
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 The strongly interacting state evolves self-similarly, leading to a self-similar formulation 

(Balsara [16], Balsara & Dumbser [17]). As shown in Fig. 2, in the subsonic case, it overlies the 

vertex of the mesh and will contribute to the numerical fluxes at that vertex. This is the situation 

that occurs most frequently in most applications and we refer to it as the subsonic case for the 

multidimensional Riemann solver. The majority of attention is lavished upon the subsonic case 

when designing multidimensional Riemann solvers. To bring the self-similarity to the forefront, 

let us pick similarity variables in two-dimensions. They are 

   ;   =
x y

t t
             (1) 

Notice that  ,   have units of speed; mnemonically, they correspond most closely to  ,x y . 

Specifying  ,   picks out a characteristic line in two space dimensions and one time 

dimension. In self-similar variables we have 

           , , ,     ;    , , ,     ;    , , ,x y t x y t x y t       U U F F G G     (2) 

The conservation law has N-components and is written in two dimensions as 

0
t x y

  
  

  

U F G
           (3) 

In similarity variables, the above equation becomes 

   
2 0

 



   
  



F U G U
U          (4) 

The above equation shows us that even in multiple dimensions, enforcing a shock jump is 

tantamount to enforcing the continuity of the Lagrangian fluxes across the surface of the 

discontinuity. In that sense, there is a fundamental connection between the formulation 

developed here and the formulation in Balsara [16] and Balsara & Dumbser [17]. 

 It is a simple problem in computational geometry to find the centroid of the wave model 

in Fig. 4; we denote it by  ,c c   . For the sake of convenience, we make the transformation 

of variables 

    ;    c c                   (5) 

We call  ,   the shifted variables because they have been shifted by a velocity  ,c c   

relative to the unshifted variables  ,  . The coordinates of the pentagon 1 2 3 4 5PP P P P  shown in 
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Fig. 4 are the shifted coordinates; please compare Fig. 4 to Fig. 2 to appreciate the difference. A 

convex wave model is essential to this formulation because it ensures that the centroid   lies 

within the wave model. Following Balsara [16] we find it very beneficial to expand the states 

and fluxes in the shifted, self-similar coordinates. We now expand the strongly-interacting state 

in the shifted similarity variables. (From here on, we will refer to the shifted similarity variables 

as just the similarity variables, unless further specification is needed.) 

 ,       U U U U           (6) 

The fluxes can be represented via similarity variables in three alternative ways. The x-flux can be 

written in similarity variables as 

 ,       F F F F           (7a) 

As an alternative, we can make a further linearization around U  and write the x-flux in self-

similarity variables as 

      
( )

,  ,      with         


   


F U
F F U A U U A

U
      (7b) 

We can also, alternatively, use a Zha-Bilgen [70] type flux vector splitting to write (here P  is the 

pressure obtained from the state U ) 

     

                
2 2 2

2 1 5 2 3 4 1

, v 0,P,0,0, v P    

1
       where    v    and    P 1

2

T

x x

x

    



   

 
      

 

F U U U

U U U U U U U
  (7c) 

The above flux vector splitting is specific to the Euler equations with   as the polytropic index. 

Here  
1

U  is the density;  
2

U ,  
3

U  and  
4

U  are the x-, y- and z-momentum densities; and 

 
5

U  is the energy density. For Euler flow such flux vector splittings are known to work well. 

For MHD, we use this paper as an opportunity to explore whether such a flux vector splitting 

might work successfully. Analogously to the x-flux, the y-flux can be written in similarity 

variables as 

 ,       G G G G           (8a) 

Alternatively, we can make a further linearization and write the y-flux in self-similarity variables 

as 

      
( )

,  ,      with     =   


  


G U
G G U B U U B

U
      (8b) 
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We can also, alternatively, use a Zha-Bilgen [70] type flux vector splitting to write (here P  is 

again the pressure obtained from the state U ) 

         
3 1

, v 0,0,P,0, v P    where    v
T

y y y        G U U U U U    (8c) 

Eqns. (7c) and (8c) are specific to the Euler equations, but they could perhaps be generalized to 

other systems. Notice that eqns. (7b) and (8b) have different import from eqns. (7a) and (8a). The 

same is true for eqns. (7c) and (8c). We will see in the next sub-section that eqns. (7a) and (7a) 

result in a certain kind of formulation for the multidimensional Riemann problem. Eqns. (7b) and 

(8b) result in a slightly different kind of formulation. Eqns. (7c) and (8c), however, yield the 

simplest formulation. 

 The state U  in eqn. (6) can be obtained by integrating the fluxes over the boundaries of 

the wave model, as shown in Wendroff [68], Balsara [4,5,16] and Vides, Nkonga & Audit [67]. 

The other terms in eqns. (6) to (8) can be obtained in several different ways. One very prominent 

way is via Galerkin projection as shown in Balsara [16] and Balsara & Dumbser [17]. Another 

approach from Vides, Nkonga & Audit [67] is to directly impose the shock jump condition at the 

boundary of the wave model. So far, the latter approach has only been made to yield a constant 

strongly interacting state. In this paper we draw on the self-similar formulation of Balsara [16] to 

show that shock jumps can be imposed while retaining additional sub-structure in the strongly-

interacting state.  

 The philosophy that is specific to this paper is that we should take the boundary of the 

strongly-interacting state quite literally. In that case, one-dimensional shock-jumps are to be 

enforced normal to each planar wavefront that bounds the multidimensional wave model. Since 

each flat boundary of the wave model in Fig. 4 has two states associated with it when a one-

dimensional HLLC Riemann solver is used, we will usually have two such shock jumps at each 

wavefront. If a larger wave model is used as shown in Fig. 5 then, of course, one will have more 

shock jumps within each wavefront. Let the area of the wave model in Fig. 4 be denoted by   

and let its boundary be denoted by  . Realize that this boundary is made up of maxI  individual 

flat panels which we refer to as wavefronts. The shock jump at any point  ,   on the 
thi  panel 

of the wave model can be written as 

           * * *, , , , , ,ix iy i ix iy iS S                              F G U F G U   (9) 

The fluxes  ,  F  and  ,  G  and state  ,  U  pertain to a location that is just inside 

the wave model while the fluxes  * ,  F  and  * ,  G  and the state  * ,  U  pertain to 

a corresponding location that is just outside the wave model. The fluxes and states that are just 

outside the wave model are known to us from our solution of the one-dimensional Riemann 

problems, please see Fig. 1. Since eqns. (6), (7a) and (8a) constitute the most general expression 
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of our formulation, we may take our vector of unknowns to be 

 , , , , , , ,
T

     V U U F F F G G G . In general, the amount of information in V  is insufficient to 

satisfy the shock jump condition at all points on the boundary of the self-similarly expanding 

wave model. Realize too that the polygonal boundary of the expanding wave model is indeed an 

idealized construction and that the strongly-interacting state does not need to conform to the 

shape of the wave model. Consequently, the jump conditions in eqn. (9) are also an expression of 

the continuity of Lagrangian fluxes across a moving boundary.  We can aspire to satisfy the 

continuity of the Lagrangian fluxes across the multidimensional wave model as best as possible 

by minimizing 

           
max 2

* * *

1

, , , , , ,

i

I

ix iy i ix iy i i

i

S S dl                          

 

        F G U F G U

             (10) 

Here idl  is a line element in the 
thi  panel/wavefront i  of the wave model  . The above 

equation expresses the least squares minimization that is built into our approach.  

 Minimizing eqn. (10) is tantamount to minimizing it within each of the panels/wavefronts 

of the multidimensional wave model. Depending on the one-dimensional Riemann solver being 

used, and also depending also on the form of the multidimensional wave model being used, we 

could have multiple constant states immediately outside each of the panels of the wave model. 

For example, in Fig. 4, each side panel has two constant states because we are using a one-

dimensional HLLC Riemann solver. Let j

il  be the segment that corresponds to the 
thj  constant 

state in the 
thi  panel/wavefront. The least squares minimization then gives us 

           * * *, , , , , ,j j j j j j j j j j j j j j

i ix i i iy i i i i i i ix i i iy i i i i il S l S                      
   

F G U F G U

             (11) 

Here  ,j j

i i   is the center point of the segment j

il  ; corresponding to a mid-point quadrature 

formula. In eqn. (11),  ,j j

i i F  ,  ,j j

i i G  and  ,j j

i i U  are to be evaluated from within 

the wave model using the unknowns from the vector V . By contrast,  * ,j j

i i F  ,  * ,j j

i i G  

and  * ,j j

i i U  are available from the one-dimensional Riemann problems from outside the 

wave model. In the above equation we have chosen a very simplified quadrature, namely the 

midpoint rule, because a more intricate quadrature would only increase the computational cost 

without increasing the order of the method. The above equation can be viewed either as a 

weighted version of the weak form of the shock jump conditions or as a way of matching 

Lagrangian fluxes across a moving boundary. 
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 Let us substantiate our thinking by focusing on the first face, formed by segment 1 2PP  , in 

Fig. 4. It is made up of two sub-segments 1 1PC  and 1 2C P , so let us identify the midpoints of each 

of those sub-segments as  1 1 1 1,P C P C   and  1 2 1 2,C P C P  . Let be the lengths 1 1P Cl  and 1 2C Pl of 

these two sub-segments. The coordinates of these midpoints, as well as their lengths, are very 

easy to obtain using the notation that we have set up in Fig. 4. The shock jumps (normal to the 

boundary of the wave model) at each of those midpoints can now be written explicitly as 

      * * *

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1, , ,P C x P C P C y P C P C P C P C P C x yl S l S                    F G U F G U  

            (12) 

and 

      * * *

1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 1 1 1 1, , ,C P x C P C P y C P C P C P C P C P x yl S l S                    F G U F G U  

            (13) 

The lengths of the sub-segments, 1 1P Cl  and 1 2C Pl , within the first panel/wavefront serve as 

weights when constructing the least squares matrix. Analogous jump conditions can be written 

for the other four faces of the multidimensional wave model in Fig. 4. When “ maxI ” states come 

together at a vertex, and if we use an HLLC Riemann solver as a building block, we will have 

“ max2I ” such jump conditions. When the above two jump conditions, as well as their analogues 

in all the other faces of the multidimensional wave model, are enforced we have an 

overdetermined system. We show that the least squares procedure is always capable of giving us 

a solution in that circumstance. Another way to understand the above two equations is that in the 

Galerkin formulation of Balsara [16], the lengths of the sides of the wave model play a role in 

the integration over the faces of the wave model. Weighting the equations with the lengths of the 

sub-segments also reflects the insights we have derived from the Galerkin formulation.  

 There are various ways in which the shock jump conditions can be imposed with a view 

to retaining sub-structure and we present some of the choices in the next three sub-sections. 

III.b) Imposing Jump Conditions; The Easiest Option 

 We begin by describing the easiest option. Using eqns. (7c) and (8c) allows us to write 

the jumps at the midpoints of the relevant segments in the easiest way. The simplest option, 

therefore, consists of using eqns. (7c) and (8c) along with eqn. (6). In that case, the linear terms 

in eqn. (6) are the only unknowns, but notice that the flux vector splitting has linearized the 

problem. When eqns. (6), (7c) and (8c) are substituted in eqns. (12) and (13), we get 
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   

       

1 1 1 1 1 1 1 1 1 1 1 1

* * *

1 1 1 1 1 1 1 1

v v v v

v 0,P,0,0, v P v 0,0,P,0, v P

P C x x y y P C x x y y P C

TT

P C x x x y y y

l S S

l S

      

   

      
 

       
  

U U

F U G U U U
  (14) 

and 

   

       

1 2 1 1 1 1 2 1 1 1 1 2

* * *

1 2 1 1 1 1 1 1

v v v v

v 0,P,0,0, v P v 0,0,P,0, v P

C P x x y y C P x x y y C P

TT

C P x x x y y y

l S S

l S

      

   

      
 

       
  

U U

F U G U U U
 (15) 

Please notice that eqns. (14) and (15) are identical to eqns. (12) and (13).  

 Analogous equations can be written for the other four faces of the multidimensional wave 

model in Fig. 4. Notice that eqns. (14) and (15) and their other analogues only have two 

unknowns, i.e. U  and U  . Thus we again have an overdetermined set of eight equations in two 

unknowns, which can be treated via a least squares algorithm. Quite favorably, the size of the 

least squares problem does not depend on N, the number of components of the hyperbolic 

system. Thus we favor this solution methodology for Euler flow. In this paper we present 

preliminary evidence that it might also extend to MHD flow. 

 Eqns. (14) and (15) require that the fluxes *

1


F  , *

1


G  , *

1


F  and *

1


G  are defined in a 

global frame. In practice, they may be obtained in a rotated frame so that we might obtain the 

HLLC/HLLD fluxes in a frame that is aligned with the direction of the one-dimensional 

Riemann problem. (For the HLLC Riemann solver, this task is explicitly done in Appendix A of 

Balsara, Dumbser & Abgrall [15]. For the HLLD Riemann solver, this is explicitly presented in 

Appendix B of Balsara & Dumbser [17].) For the first face in Fig. 1, this would be a frame with 

the Riemann problem solved in the 1t  direction, with the interface between the zones being in 

the 1n  direction. We would then have * * *

1 1 1 1 1y xn n    tF F G  and 
* * *

1 1 1 1 1x yn n   
n

G F G  , with 

analogous expressions for *

1



tF  and *

1



nG  . The expressions that are equivalent to eqns. (14) and 

(15) would then be 

 

      
    

* *

1 1 1 1 1 1 1
1 1

1 1 1 1 1 1
*

1 1 1
1 1 1

v 0,P,0,0, v P

v v v 0,0,P,0, v P

T

x x x
P C

P C P C P C T
x x y y

y y y

l
l

S S
 



 
  

 



   
 

     
      

 

t nη t F η n G U

U U

U U U

             (16) 

and 
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 

      
    

* *

1 1 1 1 1 1 1
1 2

1 2 1 2 1 2
*

1 1 1
1 1 1

v 0,P,0,0, v P

v v v 0,0,P,0, v P

T

x x x
C P

C P C P C P T
x x y y

y y y

l
l

S S
 



 
  

 



   
 

     
      

 

t nη t F η n G U

U U

U U U

             (17) 

In eqns. (16) and (17) we notice that the coefficients for all the components of U  and U  are 

constant. As a result, the least squares problem reduces to the inversion of a 2 2  matrix, 

making the problem for obtaining U  and U very simple. We have simplified eqns. (16) and 

(17) for computer implementation, by dividing them out with  1 1 1v vx x y y S   . Please note 

that the right hand sides of eqns. (16) and (17) are not matrix expressions. Appendix A describes 

the matrix-based formulation of the least squares minimization process. Explicit construction of 

the 2 2  matrix is also presented in Appendix A. 

 The 2 2  matrix that is presented in Appendix A can always be inverted. An analogous 

simplification was shown to exist in the Galerkin formulation, see Section VI of Balsara [16] or 

Section III.b of Balsara & Dumbser [17] where it was proved that the Galerkin formulation 

always guarantees the existence of a solution for the linear variation in eqn. (6). In Appendix B 

of this paper we prove that the least squares procedure described in this Sub-section provides a 

similar guarantee that a solution for U  and U can always be found. The proof requires that 

 1 1 1v vx x y y S    is non-zero, which is very likely if the wave model represents the boundary 

of the largest one-dimensional speeds. It is, however, not guaranteed for the wave model 

described in Section II. Use of the wave model from Section II.2 and Appendix B of Balsara, 

Dumbser & Abgrall [15] would indeed guarantee that  1 1 1v vx x y y S    is non-zero. 

III.c) Imposing Jump Conditions; Retaining More Degrees of Freedom 

 The next option consists of using eqns. (7a) and (8a). Recall that the state U  in eqn. (6) is 

known. Thus eqns. (6), (7a) and (8a) constitute three equations with eight unknowns. The eight 

unknowns are the fluxes F  and G  along with the linear variations of the state, i.e. U  and U , 

and the linear variation of the two fluxes, i.e. F , F , G  and G . When eqns. (6), (7a) and 

(8a) are substituted in eqns. (12) and (13) we find 

           

 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* * *

1 1 1 1 1 1 1 1

P C x x P C x P C y y P C y P C P C P C

P C x y

l S S

l S

                 

   

       
 

    
 

F F F G G G U U

F G U U

             (18) 

and 
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           

 

1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2

* * *

1 2 1 1 1 1 1 1

C P x x C P x C P y y C P y C P C P C P

C P x y

l S S

l S

                 

   

       
 

    
 

F F F G G G U U

F G U U

             (19) 

Similar equations can be asserted in all the wavefronts that constitute the multidimensional wave 

model. As long as the wave model has four or more faces, it leads to a viable least squares 

problem. (If only three zones come together at a vertex, the least squares problem cannot be 

solved per se. In that case, one either can resort to making an angular bisection of the zones or 

increasing the number of quadrature points within each wavefront.) 

 If we choose to simplify the problem by asserting  F F U  and  G G U  then eqns. 

(18) and (19) reduce to 

           

       

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* * *

1 1 1 1 1 1 1 1

P C x P C x P C y P C y P C P C P C

P C x y

l S S

l S

              

   

      
 

     
 

F F G G U U

F F U G G U U U
  

            (20) 

and 

           

       

1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

* * *

1 2 1 1 1 1 1 1

C P x C P x C P y C P y C P C P C P

C P x y

l S S

l S

              

   

      
 

     
 

F F G G U U

F F U G G U U U

             (21) 

Because of the reduction in the number of unknowns, this system is solvable by a least squares 

procedure in all circumstances; i.e., even when only three zones come together at a vertex. In this 

case, we are only solving for the linear variations. I.e. our unknowns are the linear variations of 

the state, i.e. U  and U , and the linear variation of the two fluxes, i.e. F , F , G  and G . 

The least square procedure results in a 6 6  matrix. 

 In Section III.d of Balsara [16] we proved that the problem described in this Sub-section 

always results in a solvable system when Galerkin projection is used. In Appendix C of this 

paper we show that eqns. (20) and (21) also result in a solvable 6 6  matrix system when least 

squares projection is used. As in this Sub-section, the coefficients of the linear system in Balsara 

[16] also depended on the geometry of the wave model and the geometry of the mesh. 

III.d) Imposing Jump Conditions; Coupling Fluxes and States via the Characteristic 

Matrices 
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 While the previous Sub-section tried to allow for independent variation in the fluxes and 

states, we realize that they are indeed coupled. The third option consists of using eqns. (7b) and 

(8b) along with eqn. (6). A solution can be sought in two possible flavors. The first flavor of 

solution treats the fluxes F  and G  as unknowns and it also treats the linear variation of the 

solution vector, U  and U , as unknowns. We still retain  A A U  and  B B U . In that 

case, the least squares problem becomes 

   

 

1 1 1 1 1 1 1 1 1 1 1 1 1 1

* * *

1 1 1 1 1 1 1 1

P C x y P C x y P C x y

P C x y

l S S

l S

        

   

        
 

   
 

F G A B I U A B I U

F G U U
   (22) 

and 

   

 

1 2 1 1 1 2 1 1 1 1 2 1 1 1

* * *

1 2 1 1 1 1 1 1

C P x y C P x y C P x y

C P x y

l S S

l S

        

   

        
 

   
 

F G A B I U A B I U

F G U U
   (23) 

In this form, the equations have 4N  unknowns, making the least squares problem at least a little 

challenging, especially for larger hyperbolic systems. It would, eventually, require the inversion 

of a 4 4N N matrix, which can be computationally expensive. Next, we seek a simplification. 

 The second flavor of solution linearizes even further around the mean state, so that we 

have  F F U  and  G G U . In that case, the linear terms in eqn. (6) are the only unknowns. 

The corresponding jump conditions can now be obtained as 

   

       

1 1 1 1 1 1 1 1 1 1 1 1

* * *

1 1 1 1 1 1 1 1

P C P C x y P C x y

P C x y

l S S

l S

      

   

      
 

     
 

A B I U A B I U

F F U G G U U U
     (24) 

and 

   

       

1 2 1 2 1 1 1 1 2 1 1 1

* * *

1 2 1 1 1 1 1 1

C P C P x y C P x y

C P x y

l S S

l S

      

   

      
 

     
 

A B I U A B I U

F F U G G U U U
     (25) 

Thus eqns. (24) and (25) and their analogues constitute an overdetermined system of 2N 

unknowns; though we soon show that a substantial simplification is possible. This method is 

beneficial because the individual components of U  and U are allowed to vary in response to 

the characteristic matrices. In practice, eqns. (24) and (25) should be implemented into a 

computer code as follows: 
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         

1 1 1 1 1 1

1
* * *

1 1 1 1 1 1 1 1 1 1 1

P C P C P C

P C x y x y

l

l S S

  

   


  

   

       
 

U U

A B I F F U G G U U U
  (26) 

and 

         

1 2 1 2 1 2

1
* * *

1 2 1 1 1 1 1 1 1 1 1

C P C P C P

C P x y x y

l

l S S

  

   


  

   

       
 

U U

A B I F F U G G U U U
   (27) 

The above format is more economical because it saves on the cost of inverting larger matrices. 

Within the 
thi  flat face of the multidimensional Riemann problem we have only to invert the 

N N  matrix given by  ix iy iS  A B I ; which is not so computationally costly. In that case, 

the least squares problem can be reduced to the inversion of a 2 2  matrix that is not unlike the 

one obtained from eqns. (16) and (17) (or in fact eqns. (14) and (15)). 

 A little inspection shows that it is also not safe to use eqns. (24) and (25), as given, with 

the wave model from Section II. The reason is that the wave model is the smallest one that we 

can construct. As a result, speed 1S  in eqns. (24) and (25) can indeed coincide with the extremal 

eigenvalues of 1 1x y A B , making an inversion of the matrix impossible. There is, however, a 

multidimensional wave model construction that is described in Section II.2 and Appendix B of 

Balsara, Dumbser & Abgrall [15] which can indeed produce a larger wave model. Such a wave 

model can be made to ensure that the speed 1S  is always larger than the largest eigenvalue of 

1 1x y A B  . This can be ensured for all the wavefronts that make up the multidimensional wave 

model. Such a choice is also consistent with entropy enforcement. This opens the door to making 

eqns. (24) and (25) usable. For the scalar case, we can indeed assume that 1 1x y A B  is always 

a number that is somewhat smaller than 1S  so that  1 1 1x y S  A B  is always a negative 

number. With this choice of iS , the least squares solution to eqns. (24) and (25) always yields 

invertible 2 2  matrices for the scalar case. In fact, in the scalar limit, the left hand sides of eqns. 

(14) and (15) become similar to the left hand sides of eqns. (24) and (25). As a result, for the 

scalar case, the least squares projection can still be viewed as provably invertible for the scheme 

presented in this sub-section. 

III.e) Additional Detail 

 Notice that the solution methodology relies on asserting  F F U  and  G G U . That 

is, the state U  should be a good physical state around which we can linearize in the subsonic 

case. Practical experience has shown that this is almost certainly guaranteed. (The positivity of 

density can indeed be satisfied if the multidimensional wave model satisfies an entropy 



 

20 
 

condition, as shown in Balsara [4]. The positivity of the pressure is harder to guarantee.) If the 

state U  is not a good physical state, then one can resort to the numerical fluxes from a 

multidimensional Riemann solver without sub-structure (Balsara [5] [16], Balsara, Dumbser & 

Abgrall [16], Vides, Nkonga & Audit [67], Balsara & Dumbser [17]). In practice, we have never 

found that to be necessary, but in the absence of a mathematical proof, it helps to make this 

statement for the sake of completeness. 

 Also notice that Balsara [16] has shown that sometimes the state in eqn. (6) can have very 

sharp linear variation. In some cases, the linear variation can exceed the values of the incoming 

states. In such situations, Balsara [16] recommends the use of a variant of the multidimensional 

limiter of Barth & Frederickson [19]. Please see Appendix C of Balsara [16].  

 We also point out that it is only the inner, linearly degenerate, waves in the strongly 

interacting state that we would like to capture. For that reason, it helps to make the projection 

described in eqns. (26) and (27) of Balsara [16] in order to obtain the numerical fluxes. 

 In this section we have focused on the subsonic strongly-interacting state. The 

formulation in similarity variables also gives us useful perspective for the supersonic cases, 

please see (Balsara [16], Vides, Nkonga & Audit [67], Balsara & Dumbser [17]). 

 The formulation from Sub-section III.b is the easiest to implement and yields good 

results. The formulation from Sub-section III.c is not very suitable for numerical work because it 

does not couple variations in the fluxes to the variations in the state. We present it, nevertheless, 

for the sake of logical completeness. The formulation from Sub-section III.d is computationally 

quite costly because of the matrix inversions, though it may be useful to those who are interested 

in an analytical study of the multidimensional Riemann problem. 

 Eqns. (7c) and (8c) of this paper use a Zha-Bilgen flux vector splitting. Such flux-vector 

splittings have recently been analyzed by Toro and Vázquez-Cendón [65] within the context of 

one-dimensional Riemann solvers. Toro and Vázquez-Cendón find the original Zha-Bilgen 

splitting to be somewhat deficient. They, however, improve on the original Zha-Bilgen flux 

splitting by showing that if the pressure flux is built using the resolved state from the one 

dimensional Riemann solver then the Zha-Bilgen flux vector splitting works well. Our use of the 

resolved state in eqns. (7c) and (8c) of this paper is very much in the spirit of Toro and Vázquez-

Cendón which explains why the flux vector splitting works so well in this paper. 

IV) Accuracy Analysis 

 In the next section we demonstrate the versatility of the MuSIC Riemann solver with 

least squares projection that we have presented in this paper. This section is devoted to accuracy 

analysis for Euler and MHD flow. The next section is devoted to several stringent tests drawn 

from hydrodynamics and MHD. Our results show our codes running with several different orders 

of accuracy. The MuSIC Riemann solver presented here can also accommodate structured and 
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unstructured meshes. This is demonstrated by the fact that the Euler flow problems have been 

run with an unstructured mesh code while the MHD problems have been run with a divergence-

free structured mesh code. Higher order spatial reconstruction is achieved by using the Weighted 

Essentially Non-Oscillatory (WENO) method (Jiang & Shu [45], Balsara & Shu [8], Abgrall [3], 

Dumbser & Käser [31], Balsara et al. [12], Balsara et al. [14]). Higher order temporal accuracy 

is obtained by using ADER (Arbitrary DERivatives in space and time) time-evolution (Titarev & 

Toro [59], [60] and Toro & Titarev [61], Dumbser et al. [32], Balsara et al. [12], Balsara et al. 

[14]). Our treatment of MHD is divergence-free (Balsara & Spicer [7], Balsara [9], [10], [11], 

Balsara & Dumbser [18]). The GLM formulation of Dedner et al. [30] was not used in any of our 

simulations. Pressure positivity is enforced (Balsara [13]) to ensure that all states that are 

provided to the MuSIC Riemann solver have good positivity properties.  

 For all the problems described here, the multidimensional Riemann solver used the one-

dimensional HLLC Riemann solver as a building block. The Simpson rule was used within each 

face to evaluate a higher order numerical flux. In all cases, the problems were run twice, once 

with the corner fluxes based on the formulation described in Sub-section III.b and the second 

time with the formulation described in Sub-section III.d. Both formulations were found to work 

very well. The central point in the Simpson rule requires the use of a one-dimensional flux from 

a one-dimensional Riemann solver. For hydrodynamics, we used the flux vector splitting of Toro 

and Vázquez-Cendón [65]. For MHD, we used the one-dimensional HLLC Riemann solver from 

Li [47]. 

 There is a slight difference in the temporal formulation in the structured and unstructured 

mesh codes. The structured mesh code makes only one call to the multidimensional Riemann 

solver per edge and per timestep. The unstructured mesh code uses higher order quadrature in 

time, with the result that the number of calls to the multidimensional Riemann problem per edge 

and per timestep is equal to the order of the code. Consequently, the unstructured mesh code has 

an, understandably, better timestep stability, permitting the use of a CFL (in two-dimensions) 

that is close to unity. The structured mesh code, despite fewer calls to the Riemann solver, 

achieves a CFL (in two-dimensions) of 0.8 at second and third order and 0.4 at fourth order. If a 

multidimensional Riemann solver is not used, both codes suffer a lower timestep stability; thus 

showing the beneficial role of the MuSIC Riemann solver in enabling larger timesteps. 

 In the next two sub-sections we show the accuracy of our codes with the MuSIC 

Riemann solver designed in this paper for Euler and MHD flows. 

IV.a) Accuracy Analysis for Hydrodynamical Vortex Problem 

 In this hydrodynamical vortex problem, presented for example in Balsara & Shu [8], an 

isentropic vortex propagates in form-preserving fashion at 45° to the mesh. The computational 

domain has periodic boundaries and is  given by  [-5,5]×[-5,5]. The vortex returns to its original 

location. An unstructured mesh was used for this problem. We do not describe it in detail here 
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because it is well-known through the original citation. The exponential function in the velocity 

and temperature fluctuations for the vortex ensures that the fluctuations are quite close to zero at 

the domain boundaries. The stopping time was set to 10 time units in all cases. We report on the 

accuracy of the density after the vortex has completed one orbit in the computational domain in 

Table I. All the schemes meet their design accuracy. 

TABLE I shows the accuracy analysis for the hydrodynamical vortex problem as measured 

in the density variable. 

Method # of zones 
1L  Error 1L  Order L  Error L  Order 

ADER-WENO 

2
nd

 Order 

     

 h=1/64 1.7972E-01  2.1170E-02  

 h=1/128 4.6603E-02 1.95 5.2465E-03 2.01 

 h=1/256 1.1981E-02 1.96 1.7058E-03 1.62 

 h=1/512 3.0886E-03 1.96 9.9955E-04 0.77 

ADER-WENO 

3
rd

 Order 

     

 h=1/64 4.4939E-02  7.4496E-03  

 h=1/128 5.7426E-03 2.97 9.9640E-04 2.90 

 h=1/256 7.0246E-04 3.03 1.2577E-04 2.99 

 h=1/512 8.8956E-05 2.98 1.5956E-05 2.98 

ADER-WENO 

4
th

 Order 

     

 h=1/64 6.3998E-03  1.0326E-03  

 h=1/128 3.9278E-04 4.03 6.8027E-05 3.92 

 h=1/256 2.0689E-05 4.25 4.4649E-06 3.93 

 h=1/512 1.3332E-06 3.96 2.6873E-07 4.05 

 

IV.b) Accuracy Analysis for MHD Vortex Problem 

 The magnetized isodensity vortex problem described in Balsara [10] consists of a 

magnetized vortex moving in form-preserving fashion across a domain given by [-5,5]×[-5,5] . 

Periodic boundaries are used for the domain. The magnetized vortex propagates at an angle of 

45° for a time of 10 units. A structured mesh was used for this problem. Since the problem is 

well-known in the literature, we do not describe it in detail here. We report on the accuracy of 

the x-magnetic field of the vortex after it has completed one orbit in the computational domain. 

All the schemes meet their design accuracy. 

TABLE II shows the accuracy analysis for the MHD vortex problem as measured in the x-

magnetic field. 

Method # of zones 
1L   Error 1L   Order L   Error L   Order 
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ADER-WENO 

2
nd

 Order 

     

 64×64 3.2765E-03  2.6060E-02  

 128×128 8.0508E-04 2.02 6.9540E-03 1.90 

 256×256 2.0092E-04 2.00 1.7523E-03 1.98 

 512×512 5.1021E-05 1.98 4.3802E-04 2.00 

ADER-WENO 

3
rd

 Order 

     

 64×64 5.3263E-04  7.9545E-03  

 128×128 6.8519E-05 2.95 1.2964E-02 2.61 

 256×256 8.8319E-06 2.95 2.2338E-04 2.53 

 512×512 1.1460E-06 2.95 5.0752E-05 2.14 

ADER-WENO 

4
th

 Order 

     

 64×64 4.7886E-04  3.0588E-02  

 128×128 2.4074E-05 4.31 1.4309E-03 4.41 

 256×256 1.3433E-06 4.16 6.2403E-05 4.51 

 512×512 8.0985E-08 4.05 3.7979E-06 4.03 

 

V) Test Problems 

V.a) Hydrodynamical Test: Sod and Lax Problems on a Two-Dimensional Mesh 

 The Sod and Lax problems are very well-known. We set the problems up on a two 

dimensional mesh and ran them using a third order ADER-WENO scheme with a CFL of 0.95. 

Fig. 6a shows the density from the Sod shock test problem along with the mesh structure, while 

Fig. 6b plots the density in one dimension along with the exact solution of the Riemann problem. 

Fig. 6c shows the density from the Lax shock test problem along with the mesh structure, while 

Fig. 6d plots the density in one dimension along with the exact solution. All simulations in Fig. 6 

show crisp shocks along with a well-resolved contact discontinuity that has a sharp profile. This 

demonstrates that retaining sub-structure in our MuSIC Riemann solver is very useful in 

resolving sub-structure in the flow. 

V.b) Hydrodynamical Test: Long Term Preservation of the Contact Discontinuity 

 This problem was described in detail in Balsara & Dumbser [17] so we do not repeat the 

description here. The problem consists of setting up a two-dimensional top hat density profile 

with no further variation in the pressure or velocities.  The problem was run with a CFL of 0.95 

to a final time of 10.0, which constitutes ~3600 time steps. A third order ADER-WENO scheme 

was used. Fig. 7a shows the density profile at the final time when the multidimensional Riemann 

solver with self-similar sub-structure from this paper is used. Fig. 7b shows the corresponding 

density profile as a one-dimensional plot. We see that the density profile has been crisply 

preserved. As with the previous test problem, this test problem underscores the value of retaining 
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sub-structure in our MuSIC Riemann solver. It shows that the least squares projection described 

in this paper is a capable strategy for projecting the sub-structure in the flow. 

V.c) Hydrodynamical Test: Two-Dimensional Riemann Problems 

 Since the advent of multidimensional Riemann solvers, the two-dimensional Riemann 

problems by Shuulz-Rinne et al. [58] have become very popular test problems. Both the 

multidimensional Riemann problems that we show here have been described in Balsara [4]. They 

have been run using the present multidimensional Riemann solver along with a third-order 

ADER-WENO scheme running with a CFL of 0.95. An h=1/1000 unstructured mesh with ~2.3 

million elements was used. The stopping times for the first and second Riemann problems were 

0.5 and 1.05, respectively. 

 Figs. 8a and 8b show the densities from the first and second multidimensional Riemann 

problems. Only the lower left portion of the computational domain is shown in Fig. 8b. We see 

that the roll-up of the Kelvin-Helmholtz instability is very crisply captured in both figures. It 

shows that the MuSIC Riemann solver can rapidly adjust to the changing strength and direction 

of the contact discontinuities on an unstructured mesh. The Riemann solver automatically adjusts 

to the changing flow conditions by introducing a time-evolving density gradient in the strongly-

interacting state that tracks the contact discontinuities and their time-evolution. 

V.d) Hydrodynamical Test: Double Mach Reflection Problem 

 This test problem was first presented by Woodward and Colella [69] and, since the 

problem is very well-known, we do not repeat it here. Cockburn and Shu [26] carried out a 

resolution study using schemes of increasing order of accuracy. They found that they had to use 

at least a fourth order RKDG scheme at 1920x480 zone resolution to see the roll up of the vortex 

sheet.  

 In Fig. 9 we show the density variable from a simulation of the double Mach reflection 

problem which was run using a third order accurate ADER-WENO scheme. The MuSIC 

Riemann solver with least squares projection was used. An unstructured mesh with h=1/400 and 

~1.4 million elements was used. This resolution is roughly equivalent to that of Cockburn and 

Shu [26]. Fig. 9a shows entire density variable while Fig. 9b shows a zoom-in of the vortex 

sheet. We see that the vortex sheet roll-up is properly captured in our simulation despite our use 

of a third order scheme with vastly larger timesteps. 

V.e) MHD Test: Rotor Problem 

 This well-known MHD problem was first documented in Balsara & Spicer [7] and also 

Balsara [10], so we do not repeat the description here. The problem consists of a central, dense 

rotor in a uniformly magnetized static ambient medium. A uniform mesh of 1000×1000 zones 

was used. A third order ADER-WENO scheme was used. The MuSIC Riemann solver with least 
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squares projection was used with an underlying one-dimensional HLLC Riemann solver. Fig. 10 

shows the final result for the rotor problem, at a time of 0.25. Figs. 10a, 10b, 10c and 10d show 

the density, pressure, Mach number and magnetic pressure at the final time. All the requisite 

MHD flow features are captured accurately in our simulations. 

V.f) MHD Test: Orszag Tang Problem 

 This test problem suggested by Orszag & Tang [50] is well-known and it is not described 

again here. It was initialized on a periodic domain spanning [0;2]×[0,2] using a uniform mesh 

of 1000×1000 zones. It was run to a stopping time of t=3.0 with a third order accurate ADER-

WENO scheme. The MuSIC Riemann solver with least squares projection was used with an 

underlying one-dimensional HLLC Riemann solver. Figs. 11a, 11b, 11c and 11d show the 

density, pressure, Mach number and magnetic pressure at the final time. The simulation forms a 

current sheet with oppositely oriented x-components of magnetic field in the center of the 

computational domain, as can be surmised from Fig. 11d. The velocity field also shows fluid 

squirting out in the positive and negative x-directions at the location of the current sheet. 

V.g) MHD Test: Field Loop Advection in Three-Dimensions 

 This three-dimensional test problem was first presented in Gardiner & Stone [39] and is 

based on an analogous two-dimensional problem in Gardiner & Stone [38]. We do not repeat the 

details of the problem set up here. It consists of a weakly magnetized loop of magnetic field. In 

three-dimensions, the field loop is rotated so that the long axis of the loop points in the 

 ˆ ˆ2 5 x z  direction. The magnetic fields form loops around this axis and, in principle, the 

component of magnetic field along the axis of the loop should be zero. The problem is run with 

varying resolutions – i.e. with 32×32×64, 64×64×128 and 128×128×256 zone meshes – on a 

periodic domain that spans      0.5,0.5 0.5,0.5 1,1     using a CFL of 0.45. The loop is made 

to move along one of the diagonals of the mesh until it completes one orbit in one time unit. The 

problem was run on a structured mesh with a divergence-free third order accurate ADER-WENO 

scheme.  

 As the loop moves over the mesh, some of the magnetic energy decays as a function of 

time. Minimizing this magnetic energy decay is a measure of the quality of the solver. Likewise, 

errors in advection cause a small amount of magnetic field to develop along the axis of the loop. 

This results in the emergence of a small amount of magnetic energy in the component of 

magnetic field that is aligned with the axis. Minimizing the growth of energy in the on-axis 

magnetic field is again a measure of the quality of the numerical scheme. Both these magnetic 

energies are normalized with respect to the initial magnetic energy on the mesh. Fig. 12 shows 

the evolution of normalized magnetic energy for the field loop problem. Fig. 12a shows the 

magnetic energy as a function of time, where the magnetic energy is normalized by the initial 

magnetic energy. Fig. 12b shows the magnetic energy in the axial component of the magnetic 
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field, which is also normalized by the initial magnetic energy. Results from simulations at three 

different resolutions are shown. We see that there is only a very small amount of decay in the 

normalized magnetic energy in Fig. 12a. Likewise, the build-up of magnetic energy in the axial 

direction is shown to be well-bounded in Fig. 12b. The results show the value of a higher order 

scheme operating with a multidimensional Riemann solver. 

V.h) MHD Test: Three Dimensional MHD Blast Wave Problem 

 This problem was described in Section 5.2.3 of Balsara [5]. Here we simulate the same 

problem on a computational mesh of 128
3
 zones spanning [-0.5, 0.5]

3
. A very high pressure pulse 

is initially set up in the center of the domain. The resulting MHD blast wave travels through the 

plasma with a plasma-  of 0.000513. The simulation was run to a final time of 0.014 with a CFL 

of 0.45 and the multidimensional Riemann solver described here. A third order ADER-WENO 

scheme was used. 

 Figs. 13a through 13d show the density, pressure, magnitude of the velocity and 

magnitude of the magnetic field respectively in the midplane of the three-dimensional MHD 

blast wave simulation. Despite the very low plasma-, the pressure remains robustly positive and 

the flow variables have no spurious oscillations despite the use of a higher order WENO scheme. 

As the blast propagates, large velocities develop and the magnetic field is compressed so as to 

become even stronger than its initial value. The pressure is obtained by subtracting the kinetic 

and magnetic energies from the total energy density. The large values of the kinetic and magnetic 

energies can sometimes trigger a loss of pressure positivity in such simulations. This is not the 

case in Fig. 8b. We see, therefore, that along with the large time steps, the multidimensional 

Riemann solver-based method also does much better at maintaining pressure positivity. This 

stems from the ability to propagate magnetic fields very accurately in any needed direction on 

the computational mesh. Pressure-positivity preserving techniques from Balsara [13] also show 

their worth in this problem. 

VI) Conclusions 

 This paper follows in the footsteps of the self-similar formulation of the multidimensional 

Riemann problem (Balsara [4], [5], [16], Balsara, Dumbser & Abgrall [15], Balsara & Dumbser 

[17]). The methods are predicated on the continuity of Lagrangian fluxes across the self-similarly 

moving boundary of the multidimensional wave model. Just as the quality of a one-dimensional 

approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of 

a multidimensional Riemann solver is also similarly improved and the first steps in that direction 

were taken in Balsara [5]. In Balsara [16], we developed, for the first time, a Galerkin projection 

to retrieve the sub-structure in the multidimensional Riemann problem. Explicitly enforcing 

shock jump conditions across a moving boundary is an alternative perspective on dealing with 

the moving, multidimensional wave model as developed in Vides, Nkonga and Audit [67]. At 

some level, a shock jump is indeed an expression of the continuity of a Lagrangian flux across a 
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moving boundary and that perspective lends a conceptual unity to those two formulations of the 

multidimensional Riemann solver. In this paper we show that the least squares projection 

strategy from Vides, Nkonga and Audit [67] can also be used advantageously to retrieve the sub-

structure in the multidimensional Riemann problem. Both projection strategies, Galerkin 

projection and least squares projection, yield comparable results on a large range of test 

problems. Development of multiple viewpoints gives us the benefit of having multiple 

perspectives on the multidimensional Riemann problem.  

 A large number of test problems from Euler and divergence-free MHD are presented. 

Sub-sections III.b and III.d catalogue two alternative formulations for the MuSIC Riemann 

solver with least squares projection. We have tested both those formulations for Euler and MHD 

flow and found both of them to work very well. We show that schemes that are based on the 

multidimensional Riemann solver enable the use of a larger CFL number while retaining the 

desired order of accuracy. Several stringent divergence-free MHD problems that we present do 

not require any doubling of the dissipation when evaluating the electric field. The greater 

accuracy in advecting the magnetic field translates into an ability to treat MHD problems with 

lower values of plasma-.  

 For more information on multidimensional Riemann solvers, please visit the following 

website: http://www.nd.edu/~dbalsara/Numerical-PDE-Course . 
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Appendix A 

 Consider that a 1D HLLC Riemann solver is invoked on each face of our 

multidimensional wave model. We then have two segments within each flat wavefront where the 

shock jump conditions are imposed.  By construction, the resulting model is a convex polygon 

with “ maxI ” faces (see Section II). In such a situation, equations (16) and (17), along with their 

analogues in each of the faces of the polygon, have the structure 

max2 2 ,I  M V b  with  , .
T

 V U U       (A.1) 

Note that the matrix M then has dimension max2 2I   and its explicit structure can be written as 

max

max max max max max max max max

max max max max

1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2 1 1

2 2 2 2 2 2 2 2

2 3 2 3 2 3 2 32 2

P C P C P C P C

C P C P C P C P

P C P C P C P C

C P C P C P C PI

PI CI PI CI PI CI PI CI

CI P1 CI P1 CI P1 CI P1

l l

l l

l l

l l

l l

l l

   

   

 

 

 

 



 
 
 
 
 
  
 
 
 
 
 
 

M

max max

max max

2 2

2 2 ,

I I

I I

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

  

having defined the variables i PiCi PiCil  , i PiCi PiCil  , 1 1i CiPi CiPil    and 1 1i CiPi CiPil   .  

The structure of vector b  can be obtained directly from the right-hand side of equations (16), 

(17), and their corresponding analogues. 

It is clear that we have an overdetermined set of linear equations. The linear least squares 

approach relies on approximately solving (A.1) by finding the least squares solution V  that 

minimizes || ||r , where 
max2 2Ir  M V b  is the residual or error. To find V , we then minimize 

the squared norm  

2|| || , 2 ,T T T Tr      MV b MV b V M MV b MV b b  

where the transpose of  an element ( )  is denoted ( )T .  The minimum is then obtained by setting 

the gradient equal to zero, i.e., 

2|| || 2 2 0,T Tr   V M MV M b  

which yields the normal equations in matrix notation 
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.T TM MV M b  

The above system gives an approximate solution for U  and U  provided the symmetric matrix 

TL M M  is invertible. Here, the matrix L  can be written as follows 

max max

max max

2 2

1 1

2 2

1 1

( ) ( )

.

( ) ( )

I I

i i i i i i

i i

I I

i i i i i i

i i

     

     

 

 

 
  

 
 

  
 

 

 

L        (A.2) 

The purpose of Appendix B is to prove that this matrix is indeed invertible so that 

1 .TV L M b  

 

Appendix B 

A direct approach to prove that L (A.2) is invertible relies on showing that its 

determinant det( )L  is non-zero.  Although this proof is longer than the alternative one we will 

provide afterwards, it yields important information for later interpretation. As the determinant of 

a 2 2  matrix is straightforward, we simply write 

det( ) ( )( ) ( )( ),i i i i j j j j i i i i j j j j                   L  

having used the Einstein summation convention where repeated indices are summed over. This is 

equivalent to writing 

1
det( ) ( )( ) ( )( ) 2( )( ) .

2
i i i i j j j j j j j j i i i i i i i i j j j j                                L  

Thus, by regrouping, we obtain 

2 2 2 21
det( ) ( ) ( ) ( ) ( ) .

2
i j j i i j i j i j i j i j i j                        L  

Notice that the determinant has been expressed as a sum of squares. It, therefore, suffices to 

prove that any one of them is non-zero so that det( ) 0L . For this, focus on the second term and 

take 1i   and 1j  , i.e., focus on the square binomial 2

1 1 1 1( )    .  Employing the cross 

product notation x y y xr s r s  r s  and recalling that 1 1 1 1 1P C P Cl  , 1 1 1 1 1P C P Cl  , 

1 1 2 1 2C P C Pl   and 1 1 2 1 2C P C Pl  , we write 

2 2 2

1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 2( ) ( ) [( , ) ( , )] .P C C P P C P C C P C Pl l            
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Due to the convexity of the multidimensional wave model, it is clear that this term is non-zero 

because: 1) the points 1 1 1 1( , )P C P C   and 1 2 1 2( , )C P C P   are measured relative to the centroid   so 

they are non-zero vectors; 2) those same points are mutually disjoint and lie on the same finite-

sized wavefront; 3) the lengths of the sub-segments 1 1PC  and 1 2C P  are positive quantities. 

Consequently, each cross product of the type 
2

1 1 1 1( ) ( , ) ( , )PiCi CiPi PiCi PiCi CiPi CiPil l         is surely 

non-zero. Thus, det( ) 0.L  

 

General Case: 

In general, if the 1D Riemann solver invoked at each face of our wave model has 2W   

waves, the matrix M  associated with equations (16) and (17) will take the form  

max

max max

1 1

2 2

2 ,WI

I I



 
 
 
 


 
 
 
 
 

ξ ψ

ξ ψ
M

ξ ψ

    

having defined, for each 
max{1, , },i I  

1 1 2 2 1 1( , , , )W W T

i i i i i ii l l l   ξ   and   1 1 2 2 1 1( , , , ) .W W T

i i i i i ii l l l   ψ  

Let j

il  and ( , )j j

i i   be respectively the length and midpoint of the segment that corresponds to 

the 
thj constant state in the 

thi  wavefront. One jump relation is imposed at each of the midpoints. 

The symmetric matrix 
max max2 2( )T

W I W I L M M  then takes the form 

max max

max max

1 1
2 2 2

1 1 1 1

1 1
2 2 2

1 1 1 1

( ) ( ) ( )

.

( ) ( ) ( )

I IW W
j j j j j

i i i i i

i j i j

I IW W
j j j j j

i i i i i

i j i j

l l

l l
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  

 

   

 

   

 
 
 
 
  
 

 

 

L        (B.1) 

 

Theorem I 

Let ( , )j j

i i   and j

il  be the midpoint and length of the 
thj  segment formed at the wavefront i  of 

a multidimensional wave model constructed by employing W-waved 1D Riemann problems; 

max{1, , }i I , {1, , 1}j W  . If the model’s polygon satisfies convexity and all points are 

measured relative to its centroid   , then the least squares matrix (B.1) is invertible. 
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Proof 

To prove that L  can be inverted, we first will show that it is positive definite, i.e., show that 

0T z Lz  for every non-zero column vector 1 2( , )z zz . We then have 

            

   

max max max

max

1 1 1
2 2 2 2 2

1 1 2 2

1 1 1 1 1 1

1
2 2

1 2

1 1

2
I I IW W W

T j j j j j j j

i i i i i i i

i j i j i j

I W
j j j

i i i

i j

l z l z z l z

l z z

   

 

  

     



 

  

 

  



z Lz

 

The points are ( , )j j

i i   are non-zero vectors since they are measured relative to  ; in total, we 

have max ( 1)I W   non-zero points. Given that the wave model is convex, we are certain that each 

side of the polygon contains at least one segment with a positive length j

il  and unique midpoint 

( , )j j

i i  . Therefore, at least maxI  of the points are distinct and 0T z Lz  only if z 0 . Hence, 

0T z Lz  and since every positive definite matrix is invertible, L  is invertible.  

  

 

Appendix C 

 Using an approach similar to the one employed in Appendix A, we consider equations 

(20) and (21), with their analogues in each of the polygon faces, and write 

max2 6 ,I  M V b    

with  , , , , ,
T

     V = U U F F G G  and the vector b  denoting the right-hand side of the 

equations. We have assumed once more that the 1D Riemann solver invoked at each face of the 

wave model is of HLLC type and this is why the matrix M has dimension max2 6I  . Specifically, 

we have 



 

38 
 

max max max max max max max max max max max max

max

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

x x y y

x x y y

x x y y

x x y y

I x I I x I I y I I y I I I I I
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 

 
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 

M
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 
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 
 
 
 
 
 
 

  

 

after having set i PiCi PiCil  , i PiCi PiCil  , 1 1i CiPi CiPil    and 1 1i CiPi CiPil   . Now, we want 

to show that the least squares matrix 
TL M M  is always invertible. Let us first define  

2 2 2 2; ;i i i i i i i i i i ia b c              

Using these variables, we are able to write the symmetric matrix L  as 

2 2

2 2

2 2

2
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  
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To prove that L  is invertible, we choose to show that it is positive definite, i.e., 0T z Lz  for all 

non-zero column vectors z  in 
6
. After some algebraic manipulations, we find 

   

   

2

1 3 5 2 4 6

2

1 3 5 2 4 6

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) .

T

i ix iy i i ix iy ii

i ix iy i i ix iy ii

z z S z z z S z

z z S z z z S z

     

     

      
 

      
 





z Lz
   (C.1) 

Given that ( , )i i   and ( , )i i   are scaled points measured relative to   so they are non-zero 

distinct vectors (recall that 0PiCil   and 1 0CiPil   ), the sum of squares (C.1) becomes zero when 

1 3 5( , ) ( , )ix iy iz z S z      and   2 4 6( , ) ( , ) .ix iy iz z S z     

Note that we can define the speeds as 1 1
1 12 2

( , ) ( ( ), ( ))i ix iy i i i iS           . The above 

equalities are then satisfied if either ( , )ix iy   0  (which is not the case) or   

1
1 3 1 1 52

( , ) ( , )i i i iz z z        and  1
2 4 1 1 62

( , ) ( , ) .i i i iz z z         
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Since the polygon has at least three distinct points, the only way that 
1

1 3 1 1 52
( , ) ( , )i i i iz z z       and 1

2 4 1 1 62
( , ) ( , )i i i iz z z        for all max{1,..., }i I , 

max 3I  , is if z 0 . Therefore, L  is positive definite, hence, invertible.  

 

Figure Captions 

Fig. 1 shows the states that come together at the vertex “O”. Any number of states are permitted 

to come together at the vertex. The dashed lines show the zone boundaries. Note the labeling of 

the zone boundaries and the states. The unit vectors ni separate states Ui and Ui+1 . The unit 

vectors ti are orthogonal to ni and have a counterclockwise orientation. The 1D Riemann 

problem emanating from the boundary n1 is also shown. 

Fig. 2 shows a minimalist wave model in the subsonic case, as originally proposed by Wendroff. 

The thick solid lines show shocks, the thick dotted lines show the contacts in the 1D Riemann 

problems. The vertices of the wave model are formed by the interaction of shocks from 

contiguous zone boundaries. The i
th

 vertex is formed by the intersection of extremal shocks 

coming from the i
th

 and (i-1)
th

 zone boundaries. 

Fig. 3 shows the speeds S1 to S5 associated with the five faces of the multidimensional wave 

model.  

Fig. 4 shows the centroid of the multidimensional wave model. The big dot shows the centroid k. 

The coordinates (x,y) are measured relative to the centroid k. The lengths of the sides of the 

multidimensional wave model are also shown and are used in our method to weight the shock 

jump conditions. 

Fig. 5 shows a situation where the wave model construction described in Section II produces a 

non-convex wave model (thick black lines). It is important to ensure that the polygon that bounds 

the wave model is convex. This is achieved by picking a slightly larger wave model (thick grey 

lines). 

Fig. 6a shows the density from the Sod shock test problem along with the mesh structure, while 

fig. 6b plots out the density in one dimension along with the reference solution. Fig. 6c shows the 

density from the Lax shock test problem along with the mesh structure, while fig. 6d plots out the 

density in one dimension along with the reference solution.  

Fig. 7a shows the density profile at the final time when the multidimensional Riemann solver 

with self-similar sub-structure from this paper is used. Fig. 7b shows the corresponding density 

profile as a one-dimensional plot. 

Figs. 8a and 8b show the densities from the first and second multidimensional Riemann 

problems. Only the lower left portion of the computational domain is shown in Fig. 8b.  
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In Fig. 9 we show the density variable from a simulation of the double Mach reflection problem 

Fig. 9a shows entire density variable while Fig. 9b shows a zoom-in of the vortex sheet.  

Figs. 10a, 10b, 10c and 10d show the density, gas pressure, Mach number and magnetic 

pressure for the MHD Rotor problem. The MuSIC Riemann solver with least square projection 

that was based on the one-dimensional HLLC Riemann solver was used. 

Figs. 11a, 11b, 11c and 11d show the density, gas pressure, Mach number and magnetic 

pressure for the MHD Orszag-Tang problem. The MuSIC Riemann solver with least square 

projection that was based on the one-dimensional HLLC Riemann solver was used. 

Fig. 12 shows the evolution of normalized magnetic energy for the field loop problem. Fig. 12a 

shows the magnetic energy as a function of time, where the magnetic energy is normalized by the 

initial magnetic energy. Fig. 12b shows the magnetic energy in the axial component of the 

magnetic field, which is also normalized by the initial magnetic energy. A third order ADER-

WENO scheme with multidimensional Riemann solver was used. 

Figs. 13a through 13d show the density, pressure, magnitude of the velocity and magnitude of 

the magnetic field respectively in the midplane of the three-dimensional MHD blast wave 

simulation. 
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Fig. 1 shows the states that come together at the vertex “O”. Any number of states are 
permitted to come together at the vertex. The dashed lines show the zone boundaries. 
Note the labeling of the zone boundaries and the states. The unit vectors ni separate 
states Ui and Ui+1 . The unit vectors ti are orthogonal to ni and have a counterclockwise 
orientation. The 1D Riemann problem emanating from the boundary n1 is also shown. 
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Fig. 2 shows a minimalist wave model in the subsonic case, as originally proposed by 
Wendroff. The thick solid lines show shocks, the thick dotted lines show the contacts in 
the 1D Riemann problems. The vertices of the wave model are formed by the interaction 
of shocks from contiguous zone boundaries. The ith vertex is formed by the intersection 
of extremal shocks coming from the ith and (i-1)th zone boundaries. 
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Fig. 3 shows the speeds S1 to S5 associated with the five faces of the multidimensional 
wave model.  

O 

U1 

U2 

U3 

U4 

U5 

C5 C4 

C3 

C2 

( )1 1 1P ,ξ ψ 

( )2 2 2P ,ξ ψ 

( )4 4 4P ,ξ ψ 

C1 

( )5 5 5P ,ξ ψ 

S5 
S4 

S3 S1 

S2 ( )3 3 3P ,ξ ψ 

η1 
τ1 



Fig. 4 shows the centroid of the multidimensional wave model. The big dot shows the 
centroid κ. The coordinates (ξ,ψ) are measured relative to the centroid κ. The lengths of 
the sides of the multidimensional wave model are also shown and are used in our 
method to weight the shock jump conditions. 
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Fig. 5 shows a situation where the wave model construction described in Section II 
produces a non-convex wave model (thick black lines). It is important to ensure that the 
polygon that bounds the wave model is convex. This is achieved by picking a slightly 
larger wave model (thick grey lines). 
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a) b) 

c) d) 

Fig. 6a shows the density from the Sod shock test problem along with the mesh structure, 
while fig. 6b plots out the density in one dimension along with the reference solution. Fig. 
6c shows the density from the Lax shock test problem along with the mesh structure, 
while fig. 6d plots out the density in one dimension along with the reference solution.  



a) b) 

Fig. 7a shows the density profile at the final time when the multidimensional Riemann 
solver with self-similar sub-structure from this paper is used. Fig. 7b shows the 
corresponding density profile as a one-dimensional plot. 



a) b) 

Figs. 8a and 8b show the densities from the first and second multidimensional Riemann 
problems. Only the lower left portion of the computational domain is shown in Fig. 8b.  



a) b) 

In Fig. 9 we show the density variable from a simulation of the double Mach reflection problem 
Fig. 9a shows entire density variable while Fig. 9b shows a zoom-in of the vortex sheet.  



Figs. 10a, 10b, 10c and 10d show the density, gas pressure, Mach number and magnetic 
pressure for the MHD Rotor problem. The MuSIC Riemann solver with least square 
projection that was based on the one-dimensional HLLC Riemann solver was used. 

a) b) 

c) d) 



Figs. 11a, 11b, 11c and 11d show the density, gas pressure, Mach number and magnetic 
pressure for the MHD Orszag-Tang problem. The MuSIC Riemann solver with least 
square projection that was based on the one-dimensional HLLC Riemann solver was 
used. 

a) 

c) 

b) 

d) 



Fig. 12 shows the evolution of normalized magnetic energy for the field loop problem. 
Fig. 12a shows the magnetic energy as a function of time, where the magnetic energy is 
normalized by the initial magnetic energy. Fig. 12b shows the magnetic energy in the 
axial component of the magnetic field, which is also normalized by the initial magnetic 
energy. A third order ADER-WENO scheme with multidimensional Riemann solver was 
used. 

a) b) 



Figs. 13a through 13d show the density, pressure, magnitude of the velocity and 
magnitude of the magnetic field respectively in the midplane of the three-dimensional 
MHD blast wave simulation. 

a) 

c) 

b) 

d) 
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