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NONPARAMETRIC ESTIMATION OF THE DIVISION RATE OF AN AGE

DEPENDENT BRANCHING PROCESS

MARC HOFFMANN AND ADÉLAÏDE OLIVIER

Abstract. We study the nonparametric estimation of the branching rate B(x) of a supercritical

Bellman-Harris population: a particle with age x has a random lifetime governed by B(x); at

its death time, it gives rise to k ≥ 2 children with lifetimes governed by the same division
rate and so on. We observe in continuous time the process over [0, T ]. Asymptotics are taken as

T →∞; the data are stochastically dependent and one has to face simultaneously censoring, bias
selection and non-ancillarity of the number of observations. In this setting, under appropriate

ergodicity properties, we construct a kernel-based estimator of B(x) that achieves the rate of

convergence exp(−λB β
2β+1

T ), where λB is the Malthus parameter and β > 0 is the smoothness

of the function B(x) in a vicinity of x. We prove that this rate is optimal in a minimax sense and
we relate it explicitly to classical nonparametric models such as density estimation observed on

an appropriate (parameter dependent) scale. We also shed some light on the fact that estimation

with kernel estimators based on data alive at time T only is not sufficient to obtain optimal rates
of convergence, a phenomenon which is specific to nonparametric estimation and that has been

observed in other related growth-fragmentation models.

Mathematics Subject Classification (2010): 35A05, 35B40, 45C05, 45K05, 82D60, 92D25,
62G05, 62G20.

Keywords: Growth-fragmentation, cell division, nonparametric estimation, bias selection, min-
imax rates of convergence, Bellman-Harris processes.

1. Introduction

1.1. Motivation. Structured models have been paid particular attention over the last few years,
both from a probabilistic and an applied analysis angle, in particular with a view toward a better
understanding of population evolution in mathematical biology (see for instance the textbook by
Perthame [21] and the references therein). In this context, a more specific focus and need for
statistical methods has emerged recently (e.g. Doumic et al. [9, 8, 7] and the references therein)
and this is the topic of the present paper. If x denotes a so-called structuring variable – for instance
age, size, any measure of variability or DNA content of a cell or bacteria, and if n(t, x) denotes the
number or density of cells at time t of a population starting from a single ancestor at time t = 0,
a sound mathematical model can be obtained by specifying an evolution equation for n(t, x).

Consider for instance the paradigmatic problem of age-dependent cell division, where the evo-
lution of n(t, x) is given by the simplest transport-fragmentation equation

(1)


∂

∂t
n(t, x) +

∂

∂x
n(t, x) +B(x)n(t, x) = 0

n(t, 0) = m
∫∞

0
B(y)n(t, y)dy, t > 0, n(0, x) = δ0,

where δ0 denotes the Dirac mass at point 0. In this model, each cell dies according to a division
rate x ; B(x) that depends on its age x only (a living cell of age x has probability B(x)dx of
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dying in the interval [x, x + dx]) and, at its time of death, it gives rise to m ≥ 2 children at its
time of death. The parameters (m,B) specify the so-called age-dependent model.

In this seemingly simple context, we wish to draw statistical inference on the division rate
function x ; B(x) and on m in the most rigorous way, when we observe the evolution of the
population through time and when the shape of the function B can be arbitrary, to within a
prescribed smoothness class, i.e. in a nonparametric setting. In order to do so, we transfer the
deterministic description (1) into a probabilist model that consists of a system of (non-interacting)
particles specified by a probability distribution p on the integers (the offspring distribution) and a
probability density f on [0,∞). A particle has a random lifetime drawn according to f(x)dx; at
the time of its death, it gives rise to k children with probability pk (with p0 = p1 = 0), each child
having independent lifetimes distributed as f(x)dx, and so on. The resulting process is a classical
supercritical Bellman-Harris, see for instance the textbooks of Harris [12] or Athreya and Ney [2].
It is described by a piecewise deterministic Markov process

(2) X(t) =
(
X1(t), X2(t), . . .

)
, t ≥ 0,

with values in
⋃
k≥1[0,∞)k, where the Xi(t)’s denote the (ordered) ages of the living particles at

time t. The formal link between X(t) and n(t, x) is obtained via n(t, x) = E
[∑∞

i=1 δXi(t)=x
]

which
has to be understood in a weak (measure) sense, i.e. the empirical measure (in expectation) of the
particle system and solves Equation (1), we refer to [20].

The correspondence between (m,B) and (f, p) is given by

(3) B(x) =
f(x)

1−
∫ x

0
f(s)ds

, x ∈ [0,∞), and m =
∑
k≥2

kpk,

provided everything is well defined. Under fairly reasonable assumptions described below, it is
one-to-one between B and f , but not between m and p. We are interested in the nonparametric
estimation of x ; B(x), which is nothing but the hazard rate function of the lifetime density f
of each particle, and also in the mean offspring m, the whole distribution p being considered as a
nuisance parameter.

1.2. Objectives and results.

Observation schemes. We assume we observe the whole trajectory (X(t), t ∈ [0, T ]), where T > 0 is
a fixed (large) terminal time. Asymptotics are taken as T →∞. If we denote by TT the population
of individuals that are born before T and observed up to time T and if (ζTu , u ∈ TT ) denotes the
values of the ages of the different individuals of TT (at their time of death or at time T ), we wish
to draw inference on B(x) based on{

X(t), t ∈ [0, T ]
}

=
{
ζTu , u ∈ TT

}
.

Although the lifetimes of the individuals are independent (and identically distributed) with
common density f , this is no longer the case for the population (ζTu , u ∈ TT ) considered as a whole:
the tree structure plays a crucial role and we have to face several non-trivial difficulties:

1) Bias selection: particles with small lifetimes are more often observed than particles with
large lifetimes since the observation of the process is stopped along all the branches at the
fixed time T , as illustrated in Figure 1.

2) Censoring: if ∂TT ⊂ TT denotes the population of individuals alive at time T (in red in
Figure 1), they are censored in our observation scheme (we observe their lifetime only up to
time T ) but contribute to the whole estimation process at the same level as the population
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Figure 1. The effect of bias selection. Simulation of a binary (p2 = 1 so m = 2)
age-dependent tree with B given in Section 4, up to time T = 8 (|TT | = 145). Left:
the size of each segment represents the lifetime of an individual. Individuals alive
at time T are represented in red. Right: genealogical representation of the same
realisation of the tree.

T̊T ⊂ TT of individuals born and dead before T : due to the supercriticality of the process
(m > 1) we have |TT | ≈ |T̊T | ≈ |∂TT | as T grows to infinity, and this affects the statistical
analysis, see Section 2.2 below.

3) Non-ancillarity: the number of observations |TT | that governs the amount of statistical
information is random and its distribution depends on B: we essentially have less observa-
tions if B is small (particles split at a slow rate) than if B is large (particles split at a fast
rate). This means that |TT | is not ancillary in the terminology of Fisher: it is not possible
to ignore its randomness (by conditioning upon its value for instance) without losing some
statistical information. We refer to the Encyclopedia of Statistics [17] for more details.

Main results. We first study in Section 2 the behaviour of empirical measures of the form

ET (V, g) = |V|−1
∑
u∈V

g(ζTu ), with V = T̊T or ∂TT

for suitable test functions g. From the classical study of critical branching processes, it is known
that |T̊T | ≈ |∂TT | ≈ eλBT , where λB > 0 is the Malthus parameter associated to the model

(Harris [12] and (6) below). Both ET (T̊T , g) and ET (∂TT , g) converge to their respective limits
with rate exp(−λBT/2), with some uniformity in B and g as shown in Theorem 3 and 4 below.
For the proof, we heavily rely on the recent studies of Cloez [5] and Bansaye et al. [3], two key
references for this paper, adjusting the tools developed in [3] to the non-Markovian case: the
essential ingredient is the use of many-to-one formulae that reduce the problem to studying the
evolution of a particle picked at random along the genealogical tree (Propositions 10 and 11). The
rate of convergence to equilibrium of this tagged particle, which governs the rates of convergence
for statistical estimators, is obtained by a simple coupling argument (Proposition 12).

These preliminary results enable us to address the main issue of the paper: we construct

in Section 3 a nonparametric estimator B̂T (x) of B(x) that achieves the rate of convergence

exp(−λB β
2β+1T ) for pointwise error and uniformly over functions B with local smoothness of order

β > 0 (Theorem 7). We show that this rate is optimal in a minimax sense in Theorem 8, thanks
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to statistical tools developed in Löcherbach [18]. This result is obtained under the restriction that
convergence to equilibrium of a tagged particle is faster than the growth of the tree. Otherwise, we
still have a rate of convergence, but we do not have (nor believe in) its optimality. We bypass the
aforementioned bias selection difficulty 1) by weighting a kernel estimator by a de-biasing factor
that depends on preliminary estimators of λB and m. These estimators (essentially) converge with
rate exp(−λBT/2) as shown in Proposition 5. As for the censoring part 2), we base our nonpara-

metric kernel estimator on ET (T̊T , g) and not on ET (∂TT , g), since that latter quantity would lead
to a subobtimal rate of convergence as discussed in Section 3.3. Finally, the non-ancillarity issue
3) is solved by specifying a random bandwidth for the kernel that also depends on the preliminary
estimation of λB . This last point requires extra efforts in order to show a form of stability that is
detailed in Proposition 17.

The statistical study of branching processes goes back to Athreya and Keiding [1] for deriving
maximum likelihood theory in the case of a parametric (constant) division rate, relying on the fact
that the number of living cells is then a Markov process, a property we lose here for a non-constant
division rate x ; B(x). The textbook of Guttorp [11] gives an account of existing parametric
methods in the 1990’s. In the early 2000’s the regularity in the sense of the LAN and LAMN
property was established in the comprehensive study of Löcherbach [18, 19], see also Hyrien [15]
for statistical computational methods and Johnson et al. [16] for Bayesian analysis, and Delmas
and Marsalle [6] in discrete time. In nonparametric estimation, only few results exist; we mention
the case when dynamics between jumps is driven by a diffusion in Höpfner et al. [14]. To the best or
our knowledge, our study provides with the first fully nonparametric approach in continuous time
in supercritical branching processes which are piecewise deterministic. Admittedly, the Bellman-
Harris model is a toy model for the study of population dynamics, but we believe that the present
contribution sheds some light in the intrinsic difficulties that need to be solved in more elaborate
models like cell equation for which only simplified statistical models have been considered so far (in
discrete time or under additional deterministic or stochastic noise like in e.g. [9, 8, 7]). Concerning
bias selection, density estimation when observing a biased sample has been studied at length
framework by Efromovich [10].

Organisation of the paper. In Section 2, we define our rigorous statistical framework by means
of continuous time rooted trees (Section 2.1) and study the convergence properties of the biased

empirical measures ET (T̊T , g) and ET (∂TT , g) in Section 2.3. We start by deriving heuristically the
respective limits of the empirical measures in Section 2.2 (that can also be found in Cloez [5] and
Bansaye et al. [3]) in order to shed some light on the specific methods of proof in the subsequent
study of rate of convergence. We construct in Section 3 the estimators of m, λB and B(x) and state
our statistical results together with a discussion on the extensions and limitations of our findings.
Section 4 tackles the problem of numerical implementation on simulated data, advocating for a
reasonably use of our estimators in practice. Section 5 is devoted to the proofs. An appendix
(Section 6) contains auxiliary useful results.

2. Rate of convergence for biased empirical measures

2.1. Continuous time rooted trees. It will prove more convenient to work with a representation
of (X(t))t≥0 in terms of a continuous time rooted tree. We need some notation and closely follow
Bansaye et al. [3]. Let

U =
⋃
k≥0

(N?)k
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with N? = {1, 2, . . .} and (N?)0 = {∅} denote the infinite genealogical tree. We use throughout
the following standard notation: for u = (u1, u2, . . . , um) and v = (v1, . . . , vn) in U , we write
uv = (u1, . . . , um, v1, . . . , vn) for the concatenation, we identify ∅u, u∅ and u, we write u � v if
there exists w such that uw = v and u ≺ v if u � v and w 6= ∅. For u = (u1, u2, . . . , um), we also
write |u| = m.

Given a family (νu, u ∈ U) of integers representing the number of children of the individuals
u ∈ U , we construct an ordered rooted tree T ⊂ U as follows:

i) ∅ ∈ T ,
ii) If v ∈ T , u � v implies u ∈ T ,
iii) For every u ∈ T , we have uj ∈ T if and only if 1 ≤ j ≤ νu.

For a family (ζu, u ∈ U) of nonnegative numbers representing the lifetimes of the individuals u ∈ U ,
we set

(4) bu =
∑
v≺u

ζv and du = bu + ζu

for the times of birth and death of the individual u ∈ U . Let U = U × [0,∞). A continuous time
rooted tree is then a subset T of U such that

(i) (∅, 0) ∈ T,
(ii) The projection T of T on U is an ordered rooted tree,
(iii) There exists a family (ζu, u ∈ U) of nonnegative numbers such that (u, s) ∈ T if and only

if bu ≤ s < du, where (bu, du) are defined by (4).

We now work on some probability space (Ω,F ,P). In this setting, we have the following

Definition 1 (The Bellman-Harris model). A random continuous time rooted tree is a Bellman-
Harris model with offspring distribution p = (pk)k≥1 and division rate B : [0,∞)→ [0,∞) if

(i) The family of the number of children (νu, u ∈ U) are independent random variables with
common distribution p.

(ii) The family of lifetimes (ζu, u ∈ U) are independent random variables such that

(5) P
(
ζu ≥ x

)
= exp

(
−
∫ x

0

B(y)dy
)
, x ≥ 0,

with ∫ ∞
B(x)dx =∞,

(iii) The families of random variables (νu, u ∈ U) and (ζu, u ∈ U) are independent.

Going back to the process (X(t))t≥0 defined in (2),we have an identity between point measures
on (0,∞) that reads ∑

i≥1

1{Xi(t)>0}δXi(t) =
∑
u∈T

1{t∈[bu,du)}δt−bu .

The following assumption will be in force in the paper:

Assumption 2. The offspring distribution p = (pk)k≥0 satisfies

p0 = p1 = 0, 2 ≤ m =
∑
k≥2

kpk <∞,
∑
k≥2

k2pk <∞ and m̄ =
∑
i 6=j

∑
k≥i∨j

pk <∞.

The technical condition m̄ <∞ is needed for the so-called many-to-one formulae, see Proposi-
tion 11 below.
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2.2. The limiting objects. In order to extract information about x ; B(x), we consider the
empirical distribution function over the lifetimes indexed by some VT ⊂ TT for a test function g,
that is

ET (VT , g) = |VT |−1
∑
u∈VT

g(ζTu ),

and expect a law of large number as T → ∞. Without much of a surprise, it turns out that
depending whether ζTu = ζu or not, i.e. if the data are still alive at time T , therefore censored or
not, we have a different limit. More precisely, define

T̊T = {u ∈ T , bu < T and du ≤ T} and ∂TT = {u ∈ T , bu ≤ T < du},

i.e. the set of particles that are born and that die before T , and the set of particles alive at time T ,
so that TT = T̊T ∪ ∂TT . We need some notation. Introduce the Malthus parameter λB > 0 defined
as the (necessarily unique) solution to

(6)

∫ ∞
0

B(x)e−λBx−
∫ x
0
B(y)dydx =

1

m
.

To a division rate function x ; B(x) satisfying the properties of Definition 1, we associate its
density lifetime

fB(x) = B(x) exp
(
−
∫ x

0

B(y)dy
)
, x ≥ 0

and its biased density lifetime

fHB (x) = me−λBxfB(x), x ≥ 0,

which in turns uniquely defines a biased division rate

(7) HB(x) =
me−λBxfB(x)

1−m
∫ x

0
e−λByfB(y)ds

.

Finally, we define the limiting measures

(8) ∂EB(g) = λB
m

m− 1

∫ ∞
0

g(x)e−λBxe−
∫ x
0
B(y)dydx

and

(9) E̊B
(
g
)

= m

∫ ∞
0

g(x)e−λBxfB(x)dx =

∫ ∞
0

g(x)fHB (x)dx.

It is known that ET (∂TT , g) → ∂EB(g) and ET (T̊T , g) → E̊B
(
g
)

in probability as T → ∞, see
Appendix 6.1 for heuristics and references. We establish in Theorems 3 and 4 in the next Section
2.3 a rate of convergence with some uniformity in B. The rate is linked to λB and the geometric
ergodicity of an auxiliary one-dimensional Markov process with infinitesimal generator

(10) AHBg(x) = g′(x) +HB(x)
(
g(0)− g(x)

)
densely defined on continuous functions vanishing at infinity and that represents the value of a
branch along the tree picked uniformly at random at each branching event.

2.3. Convergence results for biased empirical measures.
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Notation. For constants b, C > 0, introduce the sets

LC =
{
g : [0,∞)→ R, sup

x
|g(x)| ≤ C

}
and

Bb,C =
{
B : [0,∞)→ [0,∞),∀x ≥ 0 : b ≤ B(x) ≤ bmax{C, 1}

}
.

For a family ΓT =
(
ΓT (γ)

)
T≥0

of real-valued random variables, with distribution depending on

some parameter γ ∈ G we say that ΓT is G-tight for the parameter γ if

sup
T>0,γ∈G

P
(
|ΓT (γ)| ≥ K

)
→ 0 as K →∞.

Results. We have a trade-off between the growth rate λB of the tree E[|TT |] ≈ eλBT and the
convergence to equilibrium of the Markov process with infinitesimal generator AHB defined in (10)
above. More, precisely, we show in Proposition 12 below the estimate∣∣∣P tHBg(x)−

∫ ∞
0

g(y)µB(y)dy
∣∣∣ ≤ 2 sup

y
|g(y)|e−ρBt for every x ∈ (0,∞).

Here, (P tHB )t≥0 denotes the semigroup associated to AHB and µB its unique invariant probability,
and

ρB = inf
x
HB(x)

where HB(x) is the biased division rate defined in (7) above. The rate of convergence of the biased

empirical measures ET (T̊T , g) and ET (∂TT , g) to their limits ∂EB(g) and E̊B(g) respectively defined
by (8) and (9) are goverened by λB and ρB : define

(11) vT (B) =

 e−min{ρB ,λB/2}T if λB 6= 2ρB ,

T 1/2e−λBT/2 if λB = 2ρB .

We have:

Theorem 3 (Rate of convergence for particles living at time T ). Work under Assumption 2. For
every b, C,C ′ > 0,

vT (B)−1
(
ET
(
∂TT , g

)
− ∂EB(g)

)
is Bb,C × LC′-tight for the parameter (B, g).

Theorem 4 (Rate of convergence for particles dying before T ). In the same setting as Theorem 3,

vT (B)−1
(
ET
(
T̊T , g

)
− E̊B(g)

)
is Bb,C × LC′-tight for the parameter (B, g).

Several comments are in order:

About the rate of convergence and the class Bb,C : the restriction B ∈ Bb,C enables us to obtain
uniform convergence results. This is important for the subsequent statistical analysis. However,
this can be relaxed if only LC′ -tightness is sought, provided B complies to the conditions of
Definition 1 and Assumption 2 and ρB > 0. In the same direction, the rate vT (B) can be improved
replacing ρB = infxHB(x) in (11) by

(12) ρ?B = sup
{
ρ, ∀x, t > 0 : |P tHBg(x)−

∫ ∞
0

g(y)µB(y)dy| ≤ 2 sup
y
|g(y)|e−ρt

}
,

and we have in particular ρ?B ≥ ρB .
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About the tightness: what we need in order to handle the random normalisation in ET
(
T̊T , g

)
is actually the convergence of eλBT |T̊T |−1. This convergence still holds in probability but not
necessarily in L2(P), so we only have tightness in Theorems 3 (and 4 for the same reason). However,

if we replace ET (T̊T , g) by

1

E[|T̊T |]

∑
u∈T̊T

g(ζTu ),

then we have a bound in L2(P) together with a control on g, see Proposition 15 below. Such a
finer control is mandatory for the subsequent statistical analysis, since we need to pick a function
g that depends on T and that mimics the behaviour of the Dirac mass δx, see Section 3 below.

3. Statistical estimation

3.1. Construction of an estimation procedure.

Estimation of m and λB. To a particle sitting at node u ∈ T̊T , we associate its number of children
νu (see Definition 1). Note that the knowledge of TT enables us to reconstruct νu for every u ∈ T̊T .
This enables us to define an estimator for m by setting

(13) m̂T = |T̊T |−1
∑
u∈T̊T

νu

on the set |T̊T | 6= 0 and 2 otherwise. In order to estimate λB , we first observe that for Id(x) = x,
we can write

E̊B(Id) = m

∫ ∞
0

x
(
B(x) + λB

)
e−

∫ x
0

(B(y)+λB)dydx−mλB
∫ ∞

0

xe−λBxe−
∫ x
0
B(y)dydx

= m

∫ ∞
0

e−
∫ x
0

(B(y)+λB)dydx−mλB m−1
mλB

∂EB(Id) = mm−1
mλB

− (m− 1)∂EB(Id),

the last equality being obtained integrating by parts. So we obtain the following representation

λB =
(

1
m−1 E̊B(Id) + ∂EB(Id)

)−1

and this yields the estimator

(14) λ̂T =
(

1
m̂T−1 |T̊T |

−1
∑
u∈T̊T

ζu + |∂TT |−1
∑
u∈∂TT

ζTu

)−1

.

The following convergence result for λ̂T is then a consequence of Theorems 3 and 4.

Proposition 5. In the same setting as Theorem 3 with vT (B) given in (11) above, we have that

eλBT/2
(
m̂T −m

)
and T−1vT (B)−1

(
λ̂T − λB

)
are Bb,C-tight for the parameter B.
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Reconstruction formula for B(x). An estimator B̂T : [0,∞)→ R of B is a random function

B̂T (x) = B̂T
(
x, (X(t))t∈[0,T ]), x ∈ [0,∞)

that is measurable as a function of (X(t))t∈[0,T ] but also as a function of x. By (3), we have

B(x) =
fB(x)

1−
∫ x

0
fB(y)dy

and from the definition E̊B
(
g
)

= m
∫∞

0
g(x)e−λBxfB(x)dx we obtain the formal reconstruction

formula

(15) B(x) =
E̊B
(
m−1eλB ·δx(·)

)
1− E̊B

(
m−1eλB ·1{·≤x}

)
where δx(·) denotes the Dirac function at x. Therefore, substituting m and λB by the estimators
defined in (13) and (14) and taking g as a weak approximation of δx, we obtain a strategy for

estimating B(x) replacing furthermore E̊B(·) by its empirical version ET (T̊T , ·).

Construction of a kernel estimator and function spaces. Let K : R→ R be a kernel function. For
h > 0, set Kh(x) = h−1K(h−1x). In view of (15), we define the estimator

B̂T (x) =
ET
(
T̊T , m̂−1

T eλ̂T ·Kh(x− ·)
)

1− ET
(
T̊T , m̂−1

T eλ̂T ·1{·≤x}
)

on the set ET
(
T̊T , m̂−1

T eλ̂T ·1{·≤x}
)
6= 1 and 0 otherwise. Thus B̂T (x) is specified by the choice of

the kernel K and the bandwidth h > 0. Note that the observations (ζu, u ∈ ∂TT ) only occur in

the estimator λ̂T of λB .

We need the following property on K:

Assumption 6. The kernel K : R→ R is differentiable with compact support and for some integer
n0 ≥ 1, we have

∫∞
−∞ xkK(x)dx = 1{k=0} for k = 1, . . . , n0.

Assumption 6 will enable us to have nice approximation results over smooth functions B, de-
scribed in the following way: for a compact interval D ⊂ (0,∞) and β > 0, with β = bβc + {β},
0 < {β} ≤ 1 and bβc an integer, let HβD denote the Hölder space of functions g : D → R possessing
a derivative of order bβc that satisfies

(16) |gbβc(y)− gbβc(x)| ≤ c(g)|x− y|{β}.
The minimal constant c(g) such that (16) holds defines a semi-norm |g|HβD . We equip the space

HβD with the norm ‖g‖HβD = supx |g(x)|+ |g|HβD and the balls

HβD(L) = {g : D → R, ‖g‖HβD ≤ L}, L > 0.

3.2. Convergence results for B̂T (x). We are ready to give our main result, namely a rate of

convergence of B̂T (x) for x restricted to a compact interval D, uniformly over Hölder balls HβD(L)
of (known) smoothness β intersected with Bb,C . Define

(17) wT (B) = T 1{λB=2ρB} exp
(
−min{λB , 2ρB}

β − (λB/ρB − 1)+/2

2β + 1
T
)

and note that when ρB ≥ λB , we have wT (B) = e−λB
β

2β+1T ≈ E[|TT |]−β/(2β+1).
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Theorem 7 (Upper rate of convergence). Specify B̂T with a kernel satisfying Assumption 6 for
some n0 > 1 and

(18) h = ĥT = exp
(
− λ̂T 1

2β+1T
)

for some β ∈ [1/2, n0). For every b, C > 0, L > 0, every compact interval D in (0,∞) (with
non-empty interior) and every x ∈ D,

wT (B)−1
(
B̂T (x)−B(x)

)
is Bb,C ∩HβD(L)-tight for the parameter B.

We have a partial optimality result in a minimax sense. Define

B+
b,C =

{
B ∈ Bb,C , λB ≤ ρB

}
and B−b,C =

{
B ∈ Bb,C , ρB ≤ λB

}
so that Bb,c = B+

b,C ∪ B
−
b,C We then have the following

Theorem 8 (Lower rate of convergence over B+
b,C). Let D be a compact interval in (0,∞). For

every x ∈ D and every positive b, C, β, L, there exists C ′ > 0 such that

lim inf
T→∞

inf
B̂T

sup
B

P
(
eλB

β
2β+1T

∣∣B̂T (x)−B(x)
∣∣ ≥ C ′) > 0,

where the supremum is taken among all B ∈ B+
b,C ∩ H

β
D(L) and the infimum is taken among all

estimators.

We observe a conflict between the rate growth of the tree λB and its convergence rate to equilib-
rium ρB . On B+

b,C we retrieve the expected usual optimal rate of convergence exp(−λB β
2β+1T ) ≈

E[|TT |]−β/(2β+1) whereas if ρB ≤ λB , we obtain the deteriorated rate exp
(
− min{λB , 2ρB}(β −

1
2 (λBρB − 1))/(2β + 1)T

)
and this rate is presumably not optimal, as discussed at length in Section

3.3 below.

3.3. Discussion of the results.

Rates of convergence. The “parametric case” for a constant division rate B(x) = b with b > 0 has
a statistical simpler structure, but also a nice probabilistic feature since the process t; |∂Tt|, i.e.
the number of cells alive at time t is Markov. In that setting, explicit (asymptotic) information
bounds are available (Athreya and Keiding [1]). In particular, the model is regular with asymp-
totic Fisher information of order eλBT , thus the best-achievable (normalised) rate of convergence

is e−λBT/2. This is consistent with the minimax rate exp(−λB β
2β+1T ) that we obtain for the class

HβD(L) ∩ B+
b,C , and we retrieve the parametric rate by formally setting β = ∞ in the previous

formula.

However, this rate is strongly parameter dependent in the sense that it also depends on B via
λB . This dependence is severe, since it appears at the same level as the smoothness exponent
β/(2β + 1) in the rate exponent β

2β+1λB . For instance, in the simplest case of a constant function

B(x) = b for every x ≥ 0, we have λB = (m−1)b, and we see that B (b here) plays at the same level
as β/(2β+ 1). This also has a non-trivial technical cost in establishing rates of convergence for the

estimator B̂T (x): in order to minimise the bias-variance tradeoff, the (log)-bandwidth has to be

chosen as −λB 1
2β+1T

(
1 + o(1)

)
exactly, and this is achieved by the plug-in rule −λ̂T 1

2β+1T thanks

to Proposition 17. We then have to carefully check that our estimator is not too sensitive to this
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further approximation, and this requires the analysis of the smoothness of the process h; B̂T,h(x)

where h is the bandwidth of B̂T (x), as shown in Proposition 17.

Fast convergence to equilibrium in B+
b,C versus slow convergence in B−b,C . While we have an optimal

rate of convergence over B+
b,B , the situation is unclear over B−b,C . First, the convergence rate to

equilibrium ρB should be replaced by an estimator and that would lead to extraneous difficulties.
Even if we knew ρB , optimising the bias-variance trade-off in the proof of Theorem 7 would not
lead to the expected rate exp(−min{λB , 2ρB} β

2β+1T ) but to an intermediate rate that reads

(19) exp
(
−min{λB , 2ρB}

min{max{ρB/λB , 1/2}, 1}β
2 min{max{ρB/λB , 1/2}, 1}β + 1

T
)
,

and that continuously deteriorates as ρB separates λB from below. Let us also mention that the
classes B+

b,C and B−b,C are never trivial. To that end, define

(20) Bb,m =
{
B ∈ Bb,m/(m−1), ∀x ≥ 0 : B′(x)−B(x)2 ≤ 0

}
where m =

∑
k≥2 kpk is the mean number of children at each branching event.

Proposition 9. For any b > 0, we have Bb,m ⊂ B+
b,m/(m−1). For every C > 2m(m + 2)b/(m −

1), β > 0 and any compact interval D ⊂ (0,∞), there exists B ∈ HβD such that B ∈ B−b,C and

B /∈ B+
b,C .

In the proof of Proposition 9 below we show a versatility in the choice of functions B that yield
either fast or slow rate of convergence to equilibrium. Finally, one could (at least formally) replace
ρB by ρ?B , the optimal geometric rate of convergence to equilibrium defined in(12) above, but that
would only improve on the rate of convergence (19) replacing ρB by ρ?B which we do not know how
to estimate, neither analytically nor statistically and the obtained result would still presumably
not be optimal. This suggests a totally different estimation strategy – that we do not have at the
moment – whenever convergence to equilibrium is slow.

Other loss functions. If K ⊂ D̊ is a closed interval (D̊ denotes the interior of D), then Theorem 7
also holds uniformly in x ∈ K. So we also have that

wT (B)−2

∫
K

(B̂T (x)−B(x)
)2
dx

is Bb,C ∩HβD(L)-tight for the parameter B. For integrated squared error-loss, we could weaken the

smoothness constraint B ∈ HβD(L) to Sobolev smoothness (see e.g. [24]) when the smoothness is
measured in L2-norm. An extension of Theorem 8 can be obtained likewise.

Smoothness adaptation. Our estimator B̂T (x) is not β-adaptive, in the sense that the choice of the

B+
b,C-optimal (log) bandwidth −λ̂T 1

2β+1T still depends on β, which is unknown in principle. In the

numerical implementation Section 4 below, we address this issue from a practical point of view.
However, a theoretical result is still needed. The classical analysis of adaptive (or other) kernel
methods à la Lepski for instance shows that this boils down to proving concentration inequalities
of the type

(21) P
(∣∣ET (T̊T , gh)− E̊B(gh)

∣∣ ≥ eλBT/2c(q, T )
)
≤ e−qλBT , q > 0,

where, for 0 < h−1 ≤ eλBT , the test function gh has the form gh(y) = h−1/2g
(
h−1(x − y)

)
with

x ∈ D and g ∈ LC . The threshold c(q, T ) should be of order qλBT and would inflate the risk by a
slow term (of order T). By a suitable choice of q, it would then be possible to obtain adaptation for
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β in compact intervals. Concentration inequalities like (21) have been explored in [4] in discrete
time. To the best of our knowledge, such inequalities are not yet available in continuous time and
lie beyond the scope of the paper.

Information from T̊T versus ∂TT . In the regime B ∈ B+
b,C , having

∂EB(g) = λB
m

m− 1

∫ ∞
0

g(x)e−λBx exp
(
−
∫ x

0

B(y)dy
)
dx

and ignoring the fact that the constants m and λB are unknown (or rather knowing that they can
be estimated at the superoptimal rate eλBT/2), we can anticipate that by picking a suitable test
function g mimicking a delta function g(x) ≈ δx, the information about B(x) can only be inferred
through exp(−

∫ x
0
B(y)dy), which imposes to further take a derivative hence some ill-posedness.

We can briefly make all these arguments more precise (still in the regime B ∈ B+
b,C) : we assume

that we have estimators of m̂T of m and λ̂T of λB (using the ones defined in (13) and (14) or by
any other means) that converge with rate T−1eλBT/2 as in Proposition 5. Consider the quantity

f̂h,T (x) = −ET
(
∂TT ,

m̂T − 1

λ̂T m̂T

(
Kh

)′
(x− ·)

)
for a kernel satisfying Assumption 6. By Theorem 3 and integrating by part, we readily see that

(22) f̂h,T → −∂EB
(m− 1

λBm

(
Kh

)′
(x− ·)

)
=

∫ ∞
0

Kh(x− y)fB+λB (y)dy

in probability as T →∞, where fB+λB is the density associate to the division rate x; B(x)+λB .
On the one hand, it is not difficult to show that Proposition 15 (used in the proof of Theorem 7

below) is valid when substituting T̊T by ∂TT , so we expect (altough not formally established) the
rate of convergence in (22) to be of order h−3/2eλBT/2 since we take the derivative of the kernel
Kh. On the other hand, the limit

∫∞
0
Kh(x− y)fB+λB (y)dy approximates fB+λB (x) with an error

of order hβ if B ∈ HβD. Balancing the two error terms in h, we see that we can estimate fB+λB (x)

with an error of (presumably optimal) order exp(−λB β
2β+3T ). Due to the fact that the denomina-

tor in representation (3) can be estimated with parametric error rate exp(−λBT/2) (possibly up

to polynomially slow terms in T ), we end up with the rate of estimation exp(−λB β
2β+3T ) for B(x)

as well, and that can be related to an ill-posed problem of order 1 (see for instance [24]).

This phenomenon, namely the structure of an ill-posed problem of order 1 in restriction to data
alive at time T , has already been observed in other settings: for the estimation of a size-division
rate from living cells at a given large time in Doumic et al. [9, 8] or for the estimation of the
dislocation measure for a homogeneous fragmentation in Hoffmann and Krell [13]. Note also that

this phenomenon does not appear in parametric estimation, since the number of data in T̊T and
∂TT are of the same order of magnitude (or put differently, the rates in Theorems 3 and 4 are the
same and govern the rate of estimation of a one dimensional parameter).

4. Numerical implementation

We assume that each cell u ∈ U has exactly two children at each division (p2 = 1). This
can model the evolution of a population of cells reproducing by binary divisions, as described
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deterministically by (1). We pick a trial division rate B defined analytically by

B(x) =


1
3x

3 − 7
8x

2 + 5
8x+ 4

10 if 0 ≤ x ≤ 3
2

119
160 −

1
4 exp

(
− (x− 3

2 )
)

if x > 3
2

and represented in Figure 2 (bold red line). We have b ≤ B(x) ≤ m
m−1b for any x ≥ 0 for b = 0.4

and m = 2 and the lifetime density fB is non increasing (except in a vicinity of zero). Given
T > 0 we simulate the lifetime of the rooted cell ζ∅ with probability density fB and set d∅ = ζ∅.
For u ∈ U such that du > T , we do not simulate the lifetimes of its descendants since they are
not in the observation scheme T̊T ∪ ∂TT . For u ∈ U such that du ≤ T we simulate ζu0 and ζu1

independently with probability density fB ; we set du0 := du + ζu0 and du1 := du + ζu1. Using R
software, we generate M = 100 trees up to time T = 23, so that the mean number of observations
|T̊T | is sufficiently large. (Note that for a binary tree, we always have the identity |∂TT | = |T̊T |+1.)
Figure 1 represents a typical observation scheme with continuous or discrete representation. The
(random) number of observations fluctuates a lot as shown in Table 1 where some elementary
statistics are given.

Min. 1st Qu. Med. Mean 3rd Qu. Max. Std.
3 726 43 930 96 480 115 760 144 100 561 200 102 408

Table 1. Fluctuations of the number of observations |T̊T | for M = 100 Monte-
Carlo continuous trees observed up to time T = 23.

We take a Gaussian kernel K(x) = (2π)−1/2 exp(−x2/2) and the bandwidth ĥT is chosen here

according to the rule-of-thumb 1.06σ̂|T̊T |−1/5 where σ̂ is the empirical standard deviation of (ζu, u ∈
T̊T ). We also implemented standard cross-validation with less success. We evaluate B̂T on a regular
grid of D = [0.25, 0.5] with mesh ∆x = 0.01. For each sample we compute the empirical error

ei =
‖B̂(i)

T −B‖∆x
‖B‖∆x

, i = 1, . . . ,M,

where ‖ · ‖∆x denotes the discrete norm over the numerical sampling. Table 2 displays the mean-

empirical error e = M−1
∑M
i=1 ei together with the empirical standard deviation

(
M−1

∑M
i=1(ei −

e)2
)1/2

. The comparison of the density of interest fB and the biased density fHB on Figure 2

T 13 15 17 19 21 23

Mean |T̊T | 652 1 847 5 202 14 634 41 151 115 760
e 0.1624 0.1046 0.0735 0.0448 0.0307 0.0178

Std. dev. 0.1052 0.0764 0.0599 0.0260 0.0197 0.0092

Table 2. Mean empirical relative error e and its standard deviation, with respect
to T , for the division rate B reconstructed over the interval D = [0.25, 2.5] by the

estimator B̂T .

highlights the bias selection since fHB gives more weight to small lifetimes than fB . The error
deteriorates as x grows since the biased density fHB (bold blue line - we approximate the Malthus
parameter using (6) and we find λB ≈ 0.5173) decreases, see Figure 2. The larger T , the better the
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reconstruction at a visual level, as shown on Figure 2 where 95%-level confidence bands are built

so that for each point x, the lower and upper bounds include 95% of the estimators (B̂
(i)
T (x), i =

1 . . .M). Close to 0, B(x) does not lie in the confidence band: our estimator exhibits a large bias
there, and this is presumably due to a boundary effect. The error is close to exp(−2λBT/5) as
expected: indeed, for a kernel of order n0, the bias term in density estimation is of order hβ∧(n0+1).

Given that B is smooth in our example, we rather expect exp(−λB (n0+1)
2(n0+1)+1T ) = exp(−2λBT/5)

for the Gaussian kernel with n0 = 1 that we use here, and this is consistent with what we observe
in Figure 3.

Figure 2. Reconstruction of B over D = [0.1, 4] with 95%-level confidence bands
constructed over M = 100 Monte-Carlo continuous trees. In bold red line: x ;

B(x); in bold blue line: fHB ; in blue line: fB (on the same y-axis scale). Left:
T = 15. Right: T = 23.

5. Proofs

For a locally integrable B : [0,∞)→ [0,∞) such that
∫∞

B(y)dy =∞, recall that we set

fB(x) = B(x)e−
∫ x
0
B(y)dy, x ≥ 0.

Recall that HB is characterised by

fHB (x) = me−λBxfB(x), x ≥ 0.

5.1. Preliminaries.

Many-to-one formulae. For u ∈ U , we write ζtu for the age of the cell u at time t ∈ Iu = [bu, du),
i.e. ζtu = (t− bu)1{t∈Iu}. We extend ζtu over [0, bu) by setting ζtu = ζtu(t), where u(t) is the ancestor

of u living at time t, defined by u(t) = v if v � u and (v, t) ∈ T. For t ≥ du we set ζtu = ζu. Note

that ζTu = ζu on the event u ∈ T̊T .

Let (χt)t≥0 and (χ̃t)t≥0 denote the one-dimensional Markov processes with infinitesimal gen-
erators (densely defined on continuous functions vanishing at infinity) AB and AHB respectively,
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Figure 3. The log-average relative empirical error over M = 100 Monte-Carlo
continuous trees vs. T (i.e. the log-rate) for x ; B(x) reconstructed over D =

[0.25, 2.5] with x ; B̂T (x) (dashed blue line) compared to the expected log-rate
(solid red line).

where

ABg(x) = g′(x) +B(x)
(
g(0)− g(x)

)
and such that P(χ0 = 0) = P(χ̃0 = 0) = 1. We also denote by (P tHB )t≥0 the Markov semigroup
associated to AHB .

Proposition 10 (Many-to-one formulae). For any g ∈ LC , we have

(23) E
[ ∑
u∈∂TT

g(ζTu )
]

=
eλBT

m
E
[
g(χ̃T )B(χ̃T )−1HB(χ̃T )

]
,

and

(24) E
[ ∑
u∈T̊T

g(ζTu )
]

= E
[ ∑
u∈T̊T

g(ζu)
]

=
1

m

∫ T

0

eλBsE
[
g(χ̃s)HB(χ̃s)

]
ds.

In order to compute rates of convergence, we will also need many-to-one formulae over pairs
of individuals. We can pick two individuals in the same lineage or over forks, i.e. over pairs of
individuals that are not in the same lineage. If u, v ∈ U , u ∧ v denote their most recent common
ancestor. Define

FU = {(u, v) ∈ U2, |u ∧ v| < |u| ∧ |v|} and FT = FU ∩ T 2.

Introduce also m̄ =
∑
i 6=j
∑
k≥i∨j pk which is finite by Assumption 2.

Proposition 11 (Many-to-one formulae over pairs). For any g ∈ LC , we have

E
[ ∑
u,v∈∂TT ,
u 6=v

g(ζTu )g(ζTv )
]

=
m̄

m3

∫ T

0

eλBs
(
eλB(T−s)PT−sHB

(
g
HB

B

)
(0)
)2

P sHBHB(0)ds,(25)
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E
[ ∑

(u,v)∈FT ∩T̊ 2
T

g(ζu)g(ζv)
]

=
m̄

m3

∫ T

0

eλBs
(∫ T−s

0

eλBtP tHB (gHB)(0)dt

)2

P sHBHB(0)ds,(26)

and

E
[ ∑
u,v∈T̊T ,
u≺v

g(ζu)g(ζv)
]

=

∫ T

0

eλBs
(∫ T−s

0

eλBtP tHB
(
gHB

)
(0)dt

)
P sHB (gHB)(0)ds.(27)

The identity (25) is a particular case of Lemma 3.9 of Cloez [5]. In order to obtain identity
(26), we closely follow the method of Bansaye et al. [3]. Although the setting in [3] is much more
general than ours, it formally only applies for exponential renewal times (corresponding to constant
functions B) so we need to slightly accommodate their proof. The same ideas enable us to prove
(27). This is set out in details in the appendix.

Geometric ergodicity of the auxiliary Markov process. Define the probability measure

µB(x)dx = cB exp(−
∫ x

0

HB(y)dy)dx for x ≥ 0.

We have the fast convergence of PTHB toward µB as T →∞. More precisely,

Proposition 12. Let ρB = infxHB(x). For any B ∈ Bb,C , g ∈ LC′ , t ≥ 0 and x ∈ (0,∞), we
have ∣∣∣P tHBg(x)−

∫ ∞
0

g(y)µB(y)dy
∣∣∣ ≤ 2 sup

y
|g(y)| exp

(
− ρBt

)
.

Proof. First, one readily checks that
∫∞

0
AHBf(x)µB(x)dx = 0 for any continuous f , and since

moreover P tHB is Feller, it admits µB(x)dx as an invariant probability. It is now sufficient to show

‖Qx,tB − µB‖TV ≤ exp(−ρBt)

where Qx,tB denotes the law of of the Markov process with infinitesimal generator AHB started
from x at time t = 0 and ‖ · ‖TV is the total variation norm between probability measures. Let
N(ds dt) be a Poisson random measure with intensity ds ⊗ dt on [0,∞) × [0,∞). Define on the
same probability space two random processes (Yt)t≥0 and (Zt)t≥0 such that

Yt = x+ t−
∫ t

0

∫ ∞
0

Ys−1{z≤HB(Ys− )}N(dz ds), t ≥ 0,

Zt = Z0 + t−
∫ t

0

∫ ∞
0

Zs−1{z≤HB(Zs− )}N(dz ds), t ≥ 0,

where Z0 is a random variable with distribution µB . We have that both (Yt)t≥0 and (Zt)t≥0 are
Markov processes driven by the same Poisson random measure with generator AHB . Moreover, if
N has a jump in [0, t) × [0, infxHB(x)], then Yt and Zt both necessarily start from 0 after this
jump and coincide further on. It follows that

P(Yt 6= Zt) ≤ P
(∫ t

0

∫ infxHB(x)

0

N(ds dt) = 0
)

= exp(− inf
x
HB(x)t) = exp(−ρBt).

Observing that Yt and Zt have distribution Qx,tB and µB respectively, we conclude thanks to the

fact that ‖Qx,tB − µB‖TV ≤ P(Yt 6= Zt).
�
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5.2. Proof of Theorems 3 and 4. In order to ease notation, when no confusion is possible, we
abbreviate Bb,C by B and LC by L.

Proof of Theorem 3. Writing

emin{λB/2,ρB}T
(
ET (∂TT , g)− ∂EB(g)

)
=

eλBT∣∣∂TT ∣∣ e(min{λB/2,ρB}−λB)T
∑
u∈∂TT

(
g(ζTu )− ∂EB(g)

)
,

Theorem 3 is then a consequence of the following two facts: first we claim that

(28) eλBT
∣∣∂TT ∣∣−1 →WB in probability as T →∞,

uniformly in B ∈ B, where the random variable WB satisfies P(WB > 0) = 1, and second, for
B ∈ B and g ∈ L, we claim that the following estimate holds:

(29) E
[( ∑

u∈∂TT

(
g(ζTu )− ∂EB(g)

))2]
. e(2λB−min{λB ,2ρB})T ,

where . means up to a constant (possibly varying from line to line) that only depends on B and
L and up to a multiplicative slow term of order T in the case λB = 2ρB .

Step 1. The convergence (28) is a consequence of the following lemma:

Lemma 13. For every B ∈ B, there exists W̃B with P(W̃B > 0) = 1 such that

(30) E
[( |∂TT |

E
[
|∂TT |

] − W̃B

)2]
→ 0 as T →∞,

uniformly in B ∈ B and

(31) κ−1
B eλBTE

[
|∂TT |

]
→ 1 as T →∞,

uniformly in B ∈ B, where κ−1
B = λB

m
m−1

∫∞
0

exp(−
∫ x

0
HB(y)dy)dx.

Lemma 13 is well known, and follows from classical renewal arguments, see Chapter 6 in the
book of Harris [12]. Only the uniformity in B ∈ B requires an extra argument, but with a uniform
version of the key renewal theorem of [23], it readily follows from the proof of Harris, so we omit

it. Note that (30) and (31) entail the convergence eλBT |∂TT |−1 → κBW̃
−1
B = WB in probability

as T →∞ uniformly in B ∈ B, and this entails (28).

Step 2. We now turn to the proof of (29). Without loss of generality, we may (and will) assume
that ∂EB(g) = 0. We have

E
[( ∑
u∈∂TT

g(ζTu )
)2]

= E
[ ∑
u∈∂TT

g(ζTu )2
]

+ E
[ ∑
u,v∈∂TT ,
u 6=v

g(ζTu )g(ζTv )
]

= I + II,

say. By (23) in Proposition 10, we write

I =
eλBT

m
E
[
g(χ̃T )2B(χ̃T )−1HB(χ̃T )

]
≤ eλBT

m

∫ ∞
0

g(x)2HB(x)
B(x) µB(x)dx+ eλBT

m

∣∣∣PTHB(g2HB
B

)
(0)−

∫ ∞
0

g(x)2HB(x)
B(x) µB(x)dx

∣∣∣.
Since g ∈ L and B ∈ B, we successively have

m−1

∫ ∞
0

g(x)2HB(x)
B(x) µB(x)dx . 1 and g(x)2HB(x)

B(x) . 1.
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Note that for B ∈ B, we have

HB(x) =
B(x)∫∞

x
B(y)e−λB(y−x) exp(−

∫ y
x
B(u)du)dy

≤ b2 max{C, 1}
λB + bmax{C, 1}

.

We also have λB ≤ λB̃ as soon as B(x) ≤ B̃(x) for all x (see for instance the proof of Propo-
sition 9) so infB∈B λB > 0 and the uniformity in the above estimates follows likewise. Applying
Proposition 12 we derive∣∣∣PTHB(g2HB

B

)
(0)−

∫ ∞
0

g(x)2HB(x)
B(x) µB(x)dx

∣∣∣ . 1,

and we conclude that I . eλBT ≤ e(2λB−min{λB ,2ρB})T . By (25) of Proposition 11 we have

II =
m̄e2λBT

m3

∫ T

0

e−λBs
(
PT−sHB

(
gHBB

)
(0)
)2

P sHBHB(0)ds.

Since B ∈ B and g ∈ L, the estimates P sHBHB(0) . 1 and |g(x)|HB(x)
B(x) . 1 hold true. Applying

Proposition 12 to the test function g(x)HB(x)
B(x) which has vanishing integral under µB , we obtain∣∣PT−sHB

(
gHBB

)
(0)
∣∣ . e−ρB(T−s)

hence

|II| . e2λBT

∫ T

0

e−λBse−2ρB(T−s)ds .

{
eλBT if 2ρB ≥ λB
e2(λB−ρB)T if 2ρB < λB ,

up to a multiplicative slow term of order T when 2ρB = λB . Note also that the estimate is uniform
in B ∈ B since infB∈B λB > 0 and infB∈B ρB > 0. We conclude |II| . e(2λB−min{λB ,2ρB})T . �

Proof of Theorem 4. The proof goes along the same line but is slightly more intricate. First, we
implicitly work on the event {

∣∣T̊T ∣∣ ≥ 1} which has probability that goes to 1 as T →∞, uniformly
in B ∈ B. We again write

emin{λB/2,ρB}T
(
E(T̊T , g)− E̊B(g)

)
=
eλBT∣∣T̊T ∣∣ e(min{λB/2,ρB}−λB)T

∑
u∈T̊T

(
g(ζTu )− E̊B(g)

)
,

and we claim that

(32) eλBT
∣∣T̊T ∣∣−1 →W ′B > 0 in probability as T →∞,

uniformly in B ∈ B, where W ′B satisfies P(W ′B > 0) = 1 and that the following estimate holds:

(33) E
[( ∑

u∈T̊T

(
g(ζTu )− E̊B(g)

))2]
. e(2λB−min{λB ,2ρB})T ,

uniformly in B ∈ B and g ∈ L. In the same way as in the proof of Theorem 3, (32) is a consequence
of the following classical result, which can be obtained in the same way as for Lemma 13 and proof
which we omit.

Lemma 14. For every B ∈ B, there exists W̃ ′B > 0 with P(W̃ ′B > 0) = 1 such that

E
[( |T̊T |

E
[
|T̊T |

] − W̃ ′B)2]
→ 0 as T →∞,

uniformly in B ∈ B and

(κ′B)−1eλBTE
[
|T̊T |

]
→ 1 as T →∞,
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uniformly in B ∈ B, where (κ′B)−1 = λBm
∫∞

0
exp(−

∫ x
0
HB(y)dy)dx.

It remains to prove (33). We again assume without loss of generality that E̊B(g) = 0 and we
plan to use the following decomposition:

(34) E
[( ∑
u∈T̊T

g(ζu)
)2]

= I + II + III,

with

I = E
[ ∑
u∈T̊T

g(ζu)2
]
,

II = E
[ ∑

(u,v)∈FT ∩T̊ 2
T

g(ζu)g(ζv)
]

and

III = 2E
[ ∑
u,v∈T̊T ,
u≺v

g(ζu)g(ζv)
]
.

Step 1. By (24) of Proposition 10, we have

I =
1

m

∫ T

0

eλBsE
[
g(χ̃s)

2HB(χ̃s)
]
ds,

In the same way as for the term I in the proof of Theorem 3, we readily check that g ∈ L and
B ∈ B guarantee that E

[
g(χ̃s)

2HB(χ̃s)
]
. 1 therefore I . eλBT ≤ e(2λB−min{λB ,2ρB})T .

Step 2. By (26) of Proposition 11, we have

II =
m̄

m3

∫ T

0

eλBs
(∫ T−s

0

eλBtP tHB (gHB)(0)dt
)2

P sHB (HB)(0)ds.

We work as for the term II in the proof of Theorem 3: we successively have P sHB (HB)(0) . 1

and
∣∣P tHB (gHB)(0)| . exp(−ρBt) by Proposition 12 and the fact that gHB has vanishing integral

under µB . Therefore

|II| .
∫ T

0

eλBs
(∫ T−s

0

e(λB−ρB)tdt
)2

ds .

{
eλBT if 2ρB ≥ λB
e2(λB−ρB)T if 2ρB < λB

up to a multiplicative slow term of order T when 2ρB = λB . We conclude |II| . e(2λB−min{λB ,2ρB})T

likewise.

Step 3. By (27) of Proposition 11, we have

|III| ≤
∫ T

0

eλBs
∣∣∣ ∫ T−s

0

eλBtP tHB
(
gHB

)
(0)dt

∣∣∣P sHB (|g|HB)(0)ds.

In the same way as for the term II, we have |P sHB (|g|HB)(0)| . 1 and |P tHB (gHB)(0)| . exp(−ρBt).
Therefore

|III| .
∫ T

0

eλBs
( ∫ T−s

0

e(λB−ρB)tdt
)
ds . eλBT ≤ e(2λB−min{λB ,2ρB})T .

�
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5.3. Proof of Proposition 5. Conditional on T̊T , the random variables (νu, u ∈ T̊T ) are inde-
pendent, with common distribution pk. It follows that

E
[
(m̂T −m)2 |T̊T

]
≤ |T̊T |−1

∑
k

k2pk.

Since eλBT |T̊T |−1 is B-tight thanks to Lemma 14, we obtain the result for eλBT/2(m̂T −m). The

B-tightness of T−1vT (B)−1(λ̂T − λB) is a consequence of Theorem 3 and 4, together with the
convergence of the preliminary estimators m̂T . For M > 0,

ET (Id, ∂TT )− ∂EB(Id) =
(
ET (min{Id,M}, ∂TT )− ∂EB(min{Id,M})

)
+
(
ET
(
(· −M)1{·>M}, ∂TT

)
− ∂EB

(
(· −M)1{·>M}

))
= I + II

say. We choose M = MT = 2T and we apply Theorem 3 for the test functions gT (x) =
min{x,MT }/MT which are uniformly bounded in T to get the B-tightness of T−1vT (B)−1I. Since
ζu ≤ T when u ∈ ∂TT , we also have |II| = ∂EB

(
(· − 2T )1{·>2T}

)
and we deduce that vT (B)−1II

is B-tight. We study in the same way ET (Id, T̊T ) to conclude.

5.4. Proof of Theorem 7. The proof of Theorem 7 goes along the classical line of a bias-variance
analysis in nonparametrics (see for instance the classical textbook [24]). However, we have two

kind of extra difficulties: first we have to get rid of the random bandwidth ĥT = exp(−λ̂T 1
2β+1T )

defined in (18) (actually the most delicate part of the proof) and second, we have to get rid of the

preliminary estimators m̂T and λ̂T .

The point x ∈ (0,∞) where we estimate B(x) is fixed throughout, and further omitted in the
notation. We first need a slight extension of Theorem 4 – actually of the estimate (33) – in order
to accommodate test functions g = gT such that gT → δx weakly as T → ∞. For a function
g : [0,∞)→ R let

|g|1 =

∫ ∞
0

|g(y)|dy, |g|22 =

∫ ∞
0

g(y)2dy and |g|∞ = sup
y
|g(y)|

denote the usual Lp-norms over [0,∞) for p = 1, 2,∞. Define also
(35)

ΦT (B, g) =

 |g|
2
2 + inf0≤v≤T

(
|g|21eλBv + |g|2∞e(2(λB−ρB)+−λB)v

)
+ |g|1|g|∞ if λB ≤ 2ρB

|g|22 + |g|2∞e(λB−2ρB)T + |g|1|g|∞ if λB > 2ρB .

Proposition 15. In the same setting as Theorem 4, we have, for any g ∈ L,

E
[( ∑

u∈T̊T

(
g(ζTu )− E̊B(g)

))2]
. e(λB−ρB)+T |g|2∞ + eλBTΦT

(
B, g

)
,(36)

where the symbol . means here uniformly in B ∈ B and independently of g.

Let us briefly comment on Proposition 15. If g is bounded and compactly supported with∫
g = 1, consider the function ghT (y) = h−1

T g
(
h−1
T (x − y)

)
that mimics the Dirac function δx for

hT → 0. It is noteworthy that in the left-hand side of (36), ghT (ζTu )2 is of order h−2
T while the

right-hand side is of order eλBTh−1
T if we pick ω = h−1

T (allowed as soon as h−1
T ≤ eλBT ). We can

thus expect to gain a crucial factor hT thanks to averaging over T̊T .
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Proof. We carefully revisit the estimate (33) in the proof of Theorem 4 keeping up with the same

notation and assuming with no loss of generality that E̊B(g) = 0. Recall decomposition (34).

Step 1. For the term I, we insert
∫∞

0
g(y)2HB(y)µB(y)dy = mcB

∫∞
0
g(y)2e−λByfB(y)dy to obtain

I = IV + V, where

IV . eλBT
∫ ∞

0

g(y)2e−λByfB(y)dy

and

|V | ≤ 1

m

∫ T

0

eλBs
∣∣∣P sHB(g2HB

)
(0)−

∫ ∞
0

g(y)2HB(y)µB(y)dy
∣∣∣ds.

Clearly, |IV | . eλBT |g|22. By Proposition 12, we further infer

|V | . |g|2∞
∫ T

0

eλBse−ρBsds . |g|2∞e(λB−ρB)+T .

Step 2. For the term II, using P sHB (HB)(0) . 1 we now obtain

II . eλBT
∫ T

0

e−λBs
(∫ s

0

eλBtP tHB (gHB)(0)dt
)2

ds.

A new difficulty appears here, since the crude bound

(37) |P tHB (gHB)(0)| . |g|∞ exp(−ρBt)

given by Proposition 12 does not yield to the correct order for small value of t because of the term
|g|∞. We need the following refinement (for small values of t), based on a renewal argument and
proved in Appendix:

Lemma 16. For every t ≥ 0 and g ∈ L, we have∣∣P tHB(gHB

)
(0)
∣∣ . |g(t)|e−λBt + |g|1

uniformly in B ∈ B.

Let v ∈ [0, T ] be arbitrary. For 0 ≤ s ≤ v, by Lemma 16 we obtain

Is =
(∫ s

0

eλBt|P tHB (gHB)(0)|dt
)2

.
(∫ s

0

|g(t)|dt+ |g|1
∫ s

0

eλBtdt
)2

. |g|21e2λBs.

For s ≥ v, we have by (37)

Is . Iv + |g|2∞
(∫ s

v

e(λB−ρB)tdt
)2

. Iv + |g|2∞
(
e2(λB−ρB)s1{λB>ρB} + (s− v)21{λB≤ρB}1{s≥v}

)
.

On the one hand,
∫ v

0
e−λBsIsds . |g|21eλBv and on the other hand

∫ T
v
e−λBsIsds is less than

Iv
∫ T

v

e−λBsds+ |g|2∞
(∫ T

v

e−λBse2(λB−ρB)+sds+

∫ T

v

e−λBs(s− v)2ds1{λB≤ρB}

)

.


|g|21eλBv + |g|2∞e−λBv if λB ≤ ρB

|g|21eλBv + |g|2∞e(λB−2ρB)v if ρB ≤ λB ≤ 2ρB

|g|21eλBv + |g|2∞e(λB−2ρB)T if λB ≥ 2ρB ,
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whence for every v ∈ [0, T ], we derive

|II| . eλBT
(
|g|21eλBv + |g|2∞

(
e(−λB+2(λB−ρB)+)v1{λB≤2ρB} + e(λB−2ρB)T1{λB>2ρB}

))
.

Step 3. Finally going back to Step 3 in the proof of Theorem 4 we readily obtain

|III| .
∫ T

0

eλBsP sHB
(
|g|HB

)
(0)

∫ T−s

0

eλBt
∣∣P tHB(gHB

)
(0)
∣∣dtds

.
∫ T

0

eλBs(|g(s)|e−λBs + |g|1)|g|∞
∫ T−s

0

eλBte−ρBtdtds

by applying Lemma 16 for the term involving P sHB and the estimate (37) for the term involving

P tHB , therefore |III| . eλBT |g|1|g|∞. �

Proposition 15 enables us to obtain the next result which is the key ingredient to get rid of

the random bandwidth ĥT , thanks to the fact that it is concentrated around its estimated value

hT (β) = e−
1

2β+1λBT . To that end, define, for C > 0

CC =
{
g : R→ R, supp(g) ⊂ [0, C] and sup

y
|g(y)| ≤ C

}
.

Denote by C1
C (later abbreviated by C1) the subset of CC of functions that are moreover differ-

entiable, with derivative uniformly bounded by C. For h > 0 we set gh(y) = h−1g
(
h−1(x − y)

)
.

Finally, for a, b ≥ 0 we set [a ± b] = [(a − b)+, a + b]. Recall from Section 3.2 that vT (B) =
e−min{ρB ,λB/2}T if λB 6= 2ρB and T 1/2e−λBT/2 otherwise.

Proposition 17. Assume that β ≥ 1/2. Define $B = min{max{1, λB/ρB}, 2}. For every κ > 0,

vT (B)−1 sup
h∈[hT (β)(1±κT 2vT (B))]

∣∣ET (T̊T , h$B/2fgh)− E̊B(h$B/2fgh)
∣∣

is B × L× C1-tight for the parameter (B, f, g).

Proof. Step 1. Define fgh = fgh − E̊B(fgh). Writing

vT (B)−1
(
ET
(
T̊T , h$B/2fgh)− E̊B(h$B/2fgh)

)
=
eλBT

|T̊T |
e(min{ρB ,λB/2}−λB)T (T−1/2)1{λB=2ρB}

∑
u∈T̊T

h$B/2fgh(ζu),

we see as in the proof of Theorem 4 that thanks to Lemma 14, it is enough to prove the B-tightness
of

sup
h∈[hT (β)(1±κT 2vT (B))]

|V Th | = sup
s∈[0,1]

|V Ths |,

where
V Th = e(min{ρB ,λB/2}−λB)T (T−1/2)1{λB=2ρB}

∑
u∈T̊T

h$B/2fgh(ζu),

and
hs = hT (β)

(
1− κT 2vT (B)

)
+ 2sκhT (β)T 2vT (B), s ∈ [0, 1].

Step 2. We claim that

(38)


supT>0 E

[
(V Th0

)2
]
<∞

E
[(
V Tht − V

T
hs

)2] ≤ C ′(t− s)2 for s, t ∈ [0, 1],
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for some constant C ′ > 0 that does not depend on T nor B ∈ B. Then, by Kolmogorov continuity
criterion, this implies in particular that

sup
T>0

sup
B∈B

E
[

sup
s∈[0,1]

|V Ths |
]
<∞

hence the result (see for instance [22] to track the constant and obtain a uniform version of the
continuity criterion). We have

V Tht − V
T
hs = e(min{ρB ,

λB
2 }−λB)T (T−

1
21{λB=2ρB})

∑
u∈T̊T

(
∆s,t(h

$B/2fgh)(ζu)− E̊B
(
∆s,t(h

$B/2fgh)
))

where ∆s,t(h
$B/2fgh)(y) = h

$B/2
t f(y)ght(y)−h$B/2s f(y)ghs(y). By Proposition 15, we derive that

E[(V Tht − V
T
hs

)2] is less than
e−λBT |∆s,t(h

$B/2fgh)|2∞ + ΦT
(
B,∆s,t(h

$B/2fgh)
)

if λB ≤ ρB

e−ρBT |∆s,t(h
$B/2fgh)|2∞ + ΦT

(
B,∆s,t(h

$B/2fgh)
)

if ρB ≤ λB ≤ 2ρB

e−(λB−ρB)T |∆s,t(h
$B/2fgh)|2∞ + e−(λB−2ρB)TΦT

(
B,∆s,t(h

$B/2fgh)
)

if λB ≥ 2ρB

(we ignore the slow term in the limiting case λB = 2ρB) and the remainder of the proof amounts
to check that each term in the estimate above has order (t− s)2 uniformly in T and B ∈ B.

Step 3. For every y, we have

∆s,t

(
h$B/2fgh

)
(y) = (ht − hs)∂h

(
h$B/2f(y)gh(y)

)
|h=h?(y)

for some h?(y) ∈ [min{ht, hs},max{ht, hs}]. Observe now that since g ∈ C1 and f ∈ L, we have

∂h
(
h$B/2fgh(y)

)
= ($B2 − 1)h

$B
2 −2f(y)g

(
h−1(x− y)

)
− h

$B
2 −3(x− y)f(y)g′

(
h−1(x− y)

)
therefore, for small enough h (which is always the case for T large enough, uniformly in B ∈ B)
and since |x− y| . h thanks to the fact that g is compactly supported, we obtain

|∂h
(
h$B/2fgh(y)

)
| . h$B/2−21[0,C]

(
h−1(x− y)

)
.

Assume with no loss of generality that s ≤ t so that hs ≤ h(y)? ≤ ht. It follows that∣∣∆s,t

(
h$B/2fgh)(y)

∣∣ . (ht − hs)h?(y)$B/2−21[0,C]

(
h?(y)−1(x− y)

)
≤ (ht − hs)h$B/2−2

s 1[0,C]

(
h−1
t (x− y)

)
.

Using that ht − hs = 2(t− s)κT 2hT (β)vT (B), we successively obtain∣∣∆s,t(h
$B/2fgh)

∣∣2
∞ . (ht − hs)2h$B−4

s . (t− s)2T 4vT (B)2hT (β)$B−2,∣∣∆s,t(h
$B/2fgh)

∣∣2
2
. (ht − hs)2h$B−4

s ht . (t− s)2T 4vT (B)2hT (β)$B−1,∣∣∆s,t(h
$B/2fgh)

∣∣2
1
. (ht − hs)2h$B−4

s h2
t . (t− s)2T 4vT (B)2hT (β)$B ,∣∣∆s,t(h

$B/2fgh)
∣∣
1

∣∣∆s,t

(
h$B/2fgh)

∣∣
∞ . (t− s)2T 4vT (B)2hT (β)$B−1.
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Step 4. Recall that hT (β) = e−λBT/(2β+1). When λB ≤ ρB , we have vT (B) = e−λBT/2 and
$B = 1. By definition of ΦT in (35) together with the estimates of Steps 2 and 3, we obtain

E
[
(V Tht − V

T
hs)

2
]
. e−λBT |∆s,t(h

1/2fgh)|2∞ + ΦT
(
B,∆s,t(h

1/2fgh)
)

. (t− s)2T 4
(
e
λB(

1
2β+1−2)T

+ e−λBT + e
−λB(

1
2β+1 +1)T

eλBv + e
λB(

1
2β+1−1)T

e−λBv
)

which is of order (t− s)2 uniformly in T > 0 by picking v = 0 for instance. When ρB ≤ λB ≤ 2ρB ,
we still have vT (B) = e−λBT/2 but now $B = λB/ρB . It follows that E[(V Tht − V

T
hs

)2] is of order

e−ρBT |∆s,t(h
λB/2ρBfgh)|2∞ + ΦT

(
B,∆s,t(h

λB/2ρBfgh)
)

. (t− s)2T 4
(
e
λB(

2−λB/ρB
2β+1 −1)T

(e−ρBT + e(λB−2ρB)v) + e
λB(

1−λB/ρB
2β+1 −1)T

+ e
−λB(

λB/ρB
2β+1 +1)T

eλBv
)

and this last term is again of order (t− s)2 uniformly in T > 0 by noting that 1 ≤ λB/ρB ≤ 2 and
picking v = 0 for instance. Finally, when 2ρB ≤ λB , we have vT (B) = e−ρBT and $B = 2. This
entails

E
[
(V Tht − V

T
hs)

2
]
. e−(λB−ρB)T |∆s,t(hfgh)|2∞ + e−(λB−2ρB)TΦT

(
B,∆s,t(hfgh)

)
. (t− s)2T 4

(
e−(λB+ρB)T + e

−λB(
1

2β+1 +1)T
+ e−2ρBT

)
and these terms are all again of order (t− s)2 uniformly in T .

Step 5. It remains to show supT>0 E
[
(V Th0

)2
]
<∞ in order to complete the proof of (38). By Step

2 and the definition of $B , we readily have

E
[
(V Th0

)2
]
.


e−λBT |h1/2

0 fgh0 |2∞ + ΦT (B, h
1/2
0 fgh0) if λB ≤ ρB

e−ρBT |hλB/2ρB0 fgh0 |2∞ + ΦT (B, h
λB/2ρB
0 fgh0) if ρB ≤ λB ≤ 2ρB

e−(λB−ρB)T |h0fgh0
|2∞ + e−(λB−2ρB)TΦT (B, h0fgh0

) if λB ≥ 2ρB .

When λB ≤ ρB , since h0 is of order hT (β), we have

E
[
(V Th0

)2
]
. e−λBThT (β)−1 + 1 + hT (β)eλBv + hT (β)−1e−λBv

for every v ∈ [0, T ], and the choice v = 1
2β+1T entails E[(V Th0

)2] . 1. When ρB ≤ λB ≤ 2ρB , we

have

E
[
(V Th0

)2
]
. e−ρBThT (β)

λB
ρB
−2

+ hT (β)
λB
ρB
−1

+ hT (β)
λB
ρB eλBv + hT (β)

λB
ρB
−2
e(λB−2ρB)v.

The first term is bounded as soon as β ≥ 1/2 and the choice v = λB
ρB(2β+1)T for the last two terms

entails E[(V Th0
)2] . 1. Finally, when 2ρB ≤ λB we have

E
[
(V Th0

)2
]
. e−(λB−ρB)T + 1

and this term is bounded likewise. Eventually (38) is established and Proposition 17 is proved. �

We now get rid of the preliminary estimators m̂T and λ̂T . Remember that the target rate of

convergence for B̂T (x) is wT (B) = T 1{λB=2ρB} exp
(
−min{λB , 2ρB}β−(λB/ρB−1)+/2

2β+1 T
)
.

Lemma 18. Assume that β > 1. Let either GT (y) = gĥT (y) with g ∈ C1 or GT (y) = 1{y≤x} for

y ∈ [0,∞). Then

wT (B)−1
(
ET (T̊T , m̂−1

T eλ̂T ·GT )− ET
(
T̊T ,m−1eλB ·GT )

)
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is B-tight for the parameter B.

Proof. For u ∈ T̊T and its lifetime ζu, define

γT (u) = wT (B)−1
(
m̂−1
T eλ̂T ζu −m−1eλBζu

)
GT (ζu).

Lemma 18 amounts to show that |T̊T |−1
∑
u∈T̊T γT (u) is B-tight. Set hT (β) = exp(−λB 1

2β+1T )

and note that

wT (B)−1 = (T−1/2)1{λB=2ρB}emin{ρB ,λB/2}ThT (β)$B/2 = vT (B)−1hT (β)$B/2,

where $B = min{max{1, λB/ρB}, 2}. We first treat the case GT (y) = gĥT (y).

Step 1. By Proposition 5, we have

λ̂T = λB + TvT (B)rT and m̂−1
T = m−1 + e−λBT/2r′T ,

where both rT and r′T are B-tight. We then have the decomposition

γT (u) = wT (B)−1m̂−1
T (eλ̂T ζu − eλBζu)gĥT (ζu) + wT (B)−1(m̂−1

T −m
−1)eλBζugĥT (ζu)

= ThT (β)$B/2m̂−1
T rT ζue

ϑT ζugĥT (ζu) + wT (B)−1e−λBT/2eλBζur′T gĥT (ζu)

= I + II,

say, with ϑT ∈ [min{λB , λ̂T },max{λB , λ̂T }]. Since g ∈ C1 ⊂ C and m̂−1
T , ϑT and ĥT are B-tight,

we can write

|I| ≤ ThT (β)$B/2m̂−1
T rT (CĥT + x)eϑT (CĥT+x)|gĥT (ζu)| = ThT (β)$B/2|gĥT (ζu)|r̃T

and
|II| ≤ hT (β)$B/2eλB(CĥT+x)r′T |gĥT (ζu)| = hT (β)$B/2|gĥT (ζu)|r̃′T

where r̃T and r̃′T are B ∈ B-tight.

Step 2. We are left to proving the tightness of ThT (β)$B/2|gĥT (ζu)| when averaging over T̊T that

is to say the tightness of ThT (β)$B/2ET (T̊T , |gĥT |). We plan to use Proposition 17. For κ > 0, on
the event

AT,κ =
{
ĥT ∈ IT,κ

}
, IT,κ =

[
hT (β)(1± κT 2vT (B))

]
,

we have
ThT (β)$B/2ET (T̊T , |gĥT |) ≤ III + IV,

with
III = ThT (β)$B/2 sup

h∈IT,κ
E̊B(|gh|)

and

IV = ThT (β)$B/2
(
hT (β)(1− κT 2vT (B))

)−$B/2
sup

h∈IT,κ

∣∣ET (T̊T , h$B/2|gh|)− E̊B(h$B/2|gh|)
∣∣

≤ T sup
h∈IT,κ

∣∣ET (T̊T , h$B/2|gh|)− E̊B(h$B/2|gh|)∣∣.
Concerning the main term III, we write

E̊B(|gh|) = m

∫ ∞
0

h−1|g
(
h−1(x− y)

)
|e−λByfB(y)dy ≤ m sup

y

(
e−λByfB(y)

) ∫ ∞
0

|g(y)|dy . 1

since B ∈ B, so we have a bound that does not depend on h and we readily conclude III . 1 on
AT,κ. For the remainder term IV , we apply Proposition 17 and obtain the B-tightness of IV (that
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actually goes to 0 at a fast rate) on AT,κ.

Step 3. It remains to control the probability of AT,κ. By Proposition 5, we have λ̂T = λB +
TvT (B)rT , where rT is B-tight. It follows that

P(AcT,κ) = P
(
|ĥT − hT (β)| ≥ κhT (β)T 2vT (B)

)
= P

(∣∣1− e−(λ̂T−λB) 1
2β+1T

∣∣ ≥ κT 2vT (B)
)

= P
(
| 1
2β+1rT e

−ϑT 1
2β+1T | ≥ κ

)
where both |ϑT | ≤ |λ̂T − λB | and rT are tight, and this term can be made arbitrarily small by
taking κ large enough.

The case GT (y) = 1{y≤x} is obtained in the same way and is actually much simpler, since there

is no factor ĥ−1
T in the Step 2 which is therefore straightforward and there is also no need for a

Step 3. We omit the details. �

Proof of Theorem 7. We are ready to prove the main result of the paper. The key ingredient is
Proposition 17.

Step 1. In view of Lemma 18 with test function g = K, it is now sufficient to prove Theorem 7

replacing B̂T (x) by B̃T (x), where

B̃T (x) =
ET
(
T̊T ,m−1eλB ·KĥT

(x− ·)
)

1− ET (T̊T ,m−1eλB ·1{·≤x})
.

Since (x, y) ; x/(1 − y) is Lipschitz continuous on compact sets that are bounded away from
{y = 1}, this simply amounts to show the B-tightness of

(39) wT (B)−1
(
ET (T̊T ,m−1eλB ·1{·≤x})− E̊B(m−1eλB ·1{·≤x}

))
and

(40) wT (B)−1
(
ET
(
T̊T ,m−1eλB ·KĥT

(x− ·)
)
− fB(x)

)
,

where wT (B)−1 = (T−1/2)1{λB=2ρB}emin{ρB ,λB/2}ThT (β)$B/2 = vT (B)−1hT (β)$B/2. We readily
obtain the B-tightness of (39) by applying Theorem 4 with test function g(y) = m−1eλBy1{y≤x}
since vT (B)� wT (B) (we even have convergence to 0).

Step 2. We turn to the main term (40). For h > 0, introduce the notation

KhfB(x) = E̊B(m−1eλB ·Kh) =

∫ ∞
0

Kh(x− y)fB(y)dy.

For κ > 0 on the event AT,κ =
{
ĥT ∈ IT,κ

}
with IT,κ =

[
hT (β)(1± κT 2vT (B))

]
introducing the

approximation term KhfB(x), we obtain a bias-variance bound that reads∣∣ET (T̊T ,m−1eλB ·KĥT
)− fB(x)

∣∣ ≤ I + II,

with

I = sup
h∈IT,κ

∣∣KhfB(x)− fB(x)
∣∣
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and

II = sup
h∈IT,κ

∣∣ET (T̊T ,m−1eλB ·Kh)− E̊B(m−1eλB ·Kh)
∣∣.

The term I is treated by the following classical argument in nonparametric estimation: since

B ∈ HβD(L) we also have fB ∈ HβD(L′) for another constant L′ that only depends on D, L and β.
Write β = bβc+ {β} with bβc a non-negative integer, {β} > 0. By a Taylor expansion up to order
bβc (recall that the number n0 of vanishing moments of K in Assumption 6 satisfies n0 > β), we
obtain

I . sup
h∈IT,κ

hβ =
(
hT (β)(1 + κT 2vT (B)

)β
. wT (B)

see for instance, Proposition 1.2 in Tsybakov [24]. This term has the right order whenever λB ≤ ρB
and is negligible otherwise.

Step 3. We further bound the term II on AT,κ as follows:

|II| ≤
(
hT (β)(1− κT 2vT (B))

)−$B/2
sup

h∈IT,κ

∣∣ET (T̊T , h$B/2m−1eλB ·Kh)− E̊B(h$B/2m−1eλB ·Kh)
∣∣.

By assumption, we have β ≥ 1/2, so by Proposition 17 applied to f(y) = m−1eλBy1{y≤x+C} ∈
LC+x and g = K ∈ CC+x we conclude that vT (B)−1hT (β)$B/2|II| is B-tight. The fact that
vT (B)−1hT (β)$B/2 = wT (B)−1 enables us to conclude.

Step 4. It remains to control the probability of AT,κ. This is done exactly in the same way as for
Step 3 in the proof of Lemma 18. �

5.5. Proof of Theorem 8. We will prove actually a slightly stronger result, by restricting the
supremum in B over a neighbourhood of an arbitrary function B0, provided B0 is an element of

the set Bb,m defined in (20) and slightly smoother in HβD norm (and not identically equal to the

maximal element of Bb,m). (Remember also that Bb,m ⊂ B+
b,m/(m−1) by Proposition 9.)

Remember that the evolution of the Bellman-Harris model can be described by a piecewise
deterministic Markov process

X(t) =
(
X1(t), X2(t), . . .

)
, t ≥ 0

with values in S =
⋃
k≥1[0,∞)k and where the Xi(t) denote the (ordered) ages of the living

particles at time t. Following Löcherbach [18], we set D([0,∞),S) for the Skorokhod space of
càdlàg functions ϕ : [0,∞) → S and introduce the subset Ω ⊂ D([0,∞),S) of functions ϕ such
that:

(i) There is an increasing sequence of jump times T0 = 0 < T1 < T2 < · · · such that the
restriction ϕ∣∣[Tk,Tk+1)

is continuous with values in [0,∞)lk,ϕ for some lk,ϕ ≥ 0 and every

k ≥ 0.
(ii) We have `

(
ϕ(Tk)

)
6= `
(
ϕ(Tk+1)

)
for every k ≥ 0, where we set `(x) =

∑
k≥0 k1{x∈[0,∞)k}

for x ∈ S.

We endow Ω with its Borel sigma-field F , its canonical process Xt(ϕ) = (ϕ1(t), ϕ2(t), . . .) and
its canonical filtration (Ft)t≥0 (modified in order to be right-continuous). By Proposition 3.3
of Löcherbach [18], there is a unique probability measure PB on (Ω,F , (Ft)t≥0) such that X is
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strongly Markov under PB with PB(X(0) = 0) = 1 (i.e. we start with one common ancestor with
age 0 at time 0) and such that the random continuous time rooted tree associated to X via∑

i≥1

1{Xi(t)>0}δXi(t) =
∑
u∈T

1{t∈[bu,du)}δt−bu

is a Harris-Bellman process according to Definition 1. The strategy for proving the lower bound
is a classical two point information inequality: we nevertheless need to be careful since the target

lower bound rate e−λB
β

2β+1T is parameter dependent in a non-trivial way.

Step 1. Let δ > 0. Fix B0 ∈ Bb,m ∩ HβD(L − δ) and x ∈ D. Then, for large enough T , setting

hT (B) = e−λB
1

2β+1T , we construct a perturbation BT of B0 defined by

BT (y) = B0(y) + ahT (B0)β+1KhT (B0)

(
y − x

)
, y ∈ [0,∞),

for some nonnegative smooth kernel K with compact support such that K(0) = 1 and for some

a = aδ,K > 0 chosen in such a way that BT ∈ Bb,m ∩ HβD(L) for every T ≥ 0. Such a choice
is always possible (if B0 6= max{C, 1} identically in a neighbourhood of x, which we may and
will assume from now on) thanks to the assumption ‖B0‖HβD ≤ L − δ; it suffices then to impose

‖ahβ+1
T KhT (· − x)‖HβD ≤ δ which is easily obtained by picking aδ,K sufficiently small.

Also, by construction, we have B0(y) ≤ BT (y) for every y ≥ 0 hence λB0
≤ λBT , compare the

proof of Proposition 12 (ii) and at y = x, the lower estimate |B0(x)−BT (x)| = aδ,Kh
β
T (B0) holds,

and this quantity is of order e−λB0
β

2β+1T .

Step 2. Abusing notation slightly, we further write PB for PB |FT , i.e. the measure in restriction

to the σ-field generated by the observation (X(t))0≤t≤T . Since B0, BT ∈ Bb,m ∩ HβD(L), for an

arbitrary estimator B̂T (x) and any constant C ′ > 0 the maximal risk is bounded below by

max
B∈{B0,BT }

PB
(
eλB

β
2β+1T |B̂T (x)−B(x)| ≥ C ′

)
≥ 1

2

(
PB0

(
eλB0

β
2β+1T |B̂T (x)−B0(x)| ≥ C ′

)
+ PBT

(
eλBT

β
2β+1T |B̂T (x)−BT (x)| ≥ C ′

))
≥ 1

2 EB0

[
1{

e
λB0

β
2β+1

T |B̂T (x)−B0(x)|≥C′
} + 1{

e
λBT

β
2β+1

T |B̂T (x)−BT (x)|≥C′
}]− 1

2‖PB0 − PBT ‖TV .

By triangle inequality, we have

eλB0
β

2β+1T |B̂T (x)−B0(x)|+ eλBT
β

2β+1T |B̂T (x)−BT (x)|

≥emin{λB0
,λBT }

β
2β+1T |B0(x)−BT (x)| ≥ aK,δ

by Step 1, so if we pick C ′ < aK,δ/2, one of the two indicators within the expectation above must
be equal to one with full PB0

-probability. In that case

max
B∈{B0,BT }

PB
(
eλB

β
2β+1T |B̂T (x)−B(x)| ≥ C ′

)
≥ 1

2 (1− ‖PB0
− PBT ‖TV )

and Theorem 8 is thus proved if lim supT→∞ ‖PB0
− PBT ‖TV < 1.
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Step 3. By Pinsker’s inequality, we have ‖PB0 − PBT ‖TV ≤
√

2
2

(
EB0

[
log

dPB0

dPBT

])1/2

. By Theo-

rem 3.5 in [18], the measures PB0 and PBT are equivalent on FT and we have

log
(dPBT
dPB0

)
=
∑
u∈T̊T

log

(
BT
B0

(ζu)

)
−
∫ T

0

∑
u∈∂Ts

(BT −B0)(ζsu) ds,

where ζtu denotes the age of the cell u at time t ∈ Iu = [bu, du). Using − log(1 + x) ≤ x2 − x if
x ≥ −1/2 and setting εT (y) = aK,δhT (B0)β+1KhT (B0)

(
y − x

)
, we further infer

‖PB0
− PBT ‖2TV ≤

1

2

(
EB0

[ ∑
u∈T̊T

ε2
T

B2
0

(ζu)
]
− EB0

[ ∑
u∈T̊T

εT
B0

(ζu)
]

+

∫ T

0

EB0

[ ∑
u∈∂Ts

εT (ζsu)
]
ds
)

=
1

2m

∫ T

0

eλB0
s EB0

[ ε2
T

B2
0

(χ̃s)HB0
(χ̃s)

]
ds

by (23) and (24) in Proposition 10 and the fact that the last two terms cancel. We now use the
same kind of estimates as in the proof of Proposition 15, Step 1 with test function g = εT /B0 to
finally get

‖PB0 − PBT ‖2TV . eλB0
T
∣∣B−1

0 εT
∣∣2
2

+
∣∣B−1

0 εT
∣∣2
∞ . a

2
K,δ

and this term can be made arbitrarily small by picking aK,δ small enough.

5.6. Proof of Proposition 9. Pick B ∈ Bb,m. We need to prove that λB ≤ ρB = infxHB(x).
By representation (3), we have

HB(x) =
me−λBxfB(x)

1−m
∫ x

0
e−λByfB(y)dy

=
me−λBxB(x)e−

∫ x
0
B(y)dy

1−m
∫ x

0
e−λByB(y)e−

∫ y
0
B(u)dudy

.

Set

GB(x) = me−λBxB(x)e−
∫ x
0
B(y)dy − λB

(
1−m

∫ x

0

e−λByB(y)e−
∫ y
0
B(u)dudy

)
.

The statement λB ≤ ρB is equivalent to proving that infx≥0GB(x) ≥ 0. We first claim that

B(x) ≤ B̃(x) for every x ∈ (0,∞) implies λB ≤ λB̃ .

Indeed, in that case, one can construct on the same probability space two random variables τB with
density fB and τB̃ with density fB̃ such that τB ≥ τB̃ . It follows that φB(λ) = E[e−λτB ] ≤ φB̃(λ) =

E[e−λτB̃ ] for every λ ≥ 0. Also, φB and φB̃ are both non-increasing, vanishing at infinity, and

φB(0) = φB̃(0) = 1 > 1
m . Consequently, the values λB and λB̃ such that φB(λB) = φB̃(λB̃) = 1

m
necessarily satisfy λB ≤ λB̃ hence the claim. Now, for constant functions B(x) = α, we clearly
have λB = (m− 1)α and this enables us to infer

λB ≤ (m− 1) sup
x
B(x).

Remember now that B ∈ Bb,m implies b ≤ B(x) ≤ m
m−1b for every x ≥ 0. Therefore

(41) λB ≤ (m− 1)
m

m− 1
b = mb ≤ mB(0)
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and GB(0) = mB(0)− λB ≥ 0 follows. Moreover, one readily checks that

G′B(x) = me−λBxe−
∫ x
0
B(y)dy

(
B′(x)−B(x)2

)
≤ 0

since B′(x)−B(x)2 ≤ 0 as soon as B ∈ Bb,m. So GB is non-increasing, GB(0) ≥ 0 and its infimum
is thus attained for x→∞. Since GB(∞) = 0, we conclude infx≥0GB(x) ≥ 0.

We finally briefly indicate how to show that B−b,C is non-trivial when C > mb/(m− 1). To that

end, pick 0 < x0 ≤ x1, mb/(m− 1) < c ≤ C and let B(x) = b for x ≤ x0, B(x) = c for x ≥ x1 and
any smooth continuation between x0 and x1 bounded above by C and below by b. Then, having b, c
such that 2m(m+ 2)b/(m− 1) < c and suitable choices for x0 and x1 implies ρB < λB/2. Having
2mb/(m− 1) > c and suitable choices for x0, x1 implies ρB < λB ≤ 2ρB . The computations, based
on the same kind of estimates, are rather tedious but not difficult. We omit the details.

6. Appendix

6.1. Heuristics for the convergences to the limits (9) and (8).

Information from ET (∂TT , g). Heuristically, we postulate for large T the approximation

ET (∂TT , g) ∼ 1

E[|∂TT |]
E
[ ∑
u∈∂TT

g(ζTu )
]
.

Then, a classical result based on renewal theory (see Theorem 17.1 pp 142-143 of [12]) gives the
estimate

(42) E
[
|∂TT |

]
∼ κBeλBT ,

where λB > 0 is the Malthus parameter defined in (6) and κB > 0 is an explicitly computable
constant (that also depends on m, see [12] and also Lemma 13 below). As for the numerator, call
χt the age of a particle at time t along a branch of the tree picked at random uniformly at each
branching event. The process (χt)t≥0 is Markov process with values in [0,∞) with infinitesimal
generator

(43) ABg(x) = g′(x) +B(x)
(
g(0)− g(x)

)
densely defined on continuous functions vanishing at infinity. Assume for simplicity that each cell
u ∈ U has exactly m children at each division. It is then relatively straightforward to obtain the
identity

(44) E
[ ∑
u∈∂TT

g(ζTu )
]

= E
[
mNT g(χT )

]
,

where Nt =
∑
s≤t 1{χs−χs−<0} is the counting process associated to (χt)t≥0, see Proposition 10 in

a general setting. Putting together (42) and (44), we thus expect

ET (∂TT , g) ∼ κ−1
B e−λBTE

[
mNT g(χT )

]
,

and we anticipate that the term e−λBT should somehow be compensated by the term mNT within
the expectation. To that end, following Cloez [5] (and also in Bansaye et al. [3] when B is constant)
one introduces an auxiliary “biased” Markov process (χ̃t)t≥0, with generator AHB for a biasing
function HB(x) characterised by

(45) fHB (x) = me−λBxfB(x), x ≥ 0,
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where fB(x) = B(x) exp(−
∫ x

0
B(y)dy) denotes the density associated to the division rate B, as

follows from (3) or (5). This implies

HB(x) =
me−λBxfB(x)

1−m
∫ x

0
e−λByfB(y)ds

.

Furthemore, this choice (and this choice only, see Proposition 10) enables us to obtain

(46) e−λBTE
[
mNT g(χT )

]
= m−1E

[
g(χ̃T )B(χ̃T )−1HB(χ̃T )

]
with χ̃0 = 0 under P. Moreover (χ̃t)t≥0 is geometrically ergodic, with invariant probability
cB exp(−

∫ x
0
HB(y)dy)dx (see Proposition 12). We further anticipate

E
[
g(χ̃T )B(χ̃T )−1HB(χ̃T )

]
∼ cB

∫ ∞
0

g(x)B(x)−1HB(x)e−
∫ x
0
HB(y)dydx

= mcB

∫ ∞
0

g(x)e−λBxB(x)−1fB(x)dx

assuming everthing is well-defined, since HB(x) exp(−
∫ x

0
HB(y)dy) = fHB (x) = me−λBfB(x) by

(45). Finally, we have κ−1
B cB = λB

m
m−1 by Lemma 13 which enables us to conclude

ET (∂TT , g) ∼ ∂EB(g),

where

∂EB(g) = λB
m

m− 1

∫ ∞
0

g(x)e−λBxe−
∫ x
0
B(y)dydx.

Unfortunately, the statistical information extracted from ET (∂TT , g) does not enable us to obtain
classical optimal rates of convergence, since the form of ∂EB(g) involves an antiderivative of B
leading to so-called ill-posedness. This is discussed at length in Section 3.3. We thus investigate
in a second step the statistical information we can get from T̊T .

Information from ET (T̊T , g). The situation is a bit different if we allow for data in T̊T . Note first

that ζTu = ζu on the event u ∈ T̊T . We also have in that case a many-to-one formula that now
reads

(47) E
[ ∑
u∈T̊T

g(ζTu )
]

= E
[ ∑
u∈T̊T

g(ζu)
]

= m−1

∫ T

0

eλBsE
[
g(χ̃s)HB(χ̃s)

]
ds,

where (χ̃t)t≥0 is the one-dimensional auxiliary Markov process with generator AHB , see (43), where
HB is characterised by (45) above. Assuming again ergodicity, we approximate the right-hand side
of (47) and obtain

E
[ ∑
u∈T̊T

g(ζu)
]
∼ cBm−1 e

λBT

λB

∫ ∞
0

g(x)HB(x)e−
∫ x
0
HB(u)dudx

= cB
eλBT

λB

∫ ∞
0

g(x)e−λBxfB(x)dx

since HB(x) exp(−
∫ x

0
HB(y)dy) = fHB (x) = me−λBxfB(x) by (45). We again have an approxi-

mation of the type (42) with another constant κ′B , see Lemma 14 and we eventually expect

ET (T̊T , g) ∼ E̊B
(
g
)
,
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where

E̊B
(
g
)

=
cB

λBκ′B

∫ ∞
0

g(x)e−λBxfB(x)dx = m

∫ ∞
0

g(x)e−λBxfB(x)dx

as T → ∞, where the last equality stems from the identity cB = λBκ
′
Bm that can be readily

derived by picking g = 1 and using (45) together with the fact that fHB is a density function.

6.2. Proof of Proposition 10. We start with a continuous time rooted tree which is a Bellman
Harris process in the sense of Definition 1, so we have random variables (ζu, νu, u ∈ U) satisfying
properties (i), (ii) and (iii) of the definition. For u ∈ U , and t ≥ 0, let Λut =

∑
v≺u(t) log(νv), t ≥ 0

denote the process that encodes the birth times and the numbers of children of the ancestors of u.
Let ϑ = (ϑk)k≥0 with ϑk ∈ U be such that |ϑk| = k for k ≥ 1 (with ϑ0 = ∅) and ϑk � ϑl for k ≤ l.
We associate to ϑ a counting process (Nt)t≥0 via the relationship

bϑNt ≤ t < dϑNt , t ≥ 0.

This enables us to further obtain a “tagged process of age” such that χt = ζtϑNt
for t ∈ IϑNt and

also a process (Λt)t≥0 that encodes the genealogy of the tagged branch

Λt =

Nt∑
k=1

log(νϑk), t ≥ 0.

Step 1. Let us pick ϑ at random along the genealogical tree T . This means that if Hn denotes the
sigma-field generated by (ζu, νu, u ∈ T , |u| ≤ n), then on the event {t ∈ Iu} (i.e. the particle u is
living at time t), we have (or rather, we set)

P
(
ϑNt = u

∣∣H|u|) =
∏
v≺u

1

νv
= e−Λut .

It is not difficult to see that (χt)t≥0 is a Markov process with generator AB . By definition of
(χt)t≥0 and (Λt)t≥0, it follows that E[eΛT g(χT )] can be rewritten as∑

u∈U
E[eΛT g(χT )1{T∈Iu,u=ϑNT }] =

∑
u∈U

E[eΛuT g(ζTu )1{T∈Iu,u=ϑNT }] =
∑
u∈U

E[g(ζTu )1{T∈Iu}],

where the last equality is obtained by conditioning with respect to H|u|.

Step 2. For j ≥ 1, let τj = inf{t ≥ 0, Nt ≥ j}− inf{t ≥ 0, Nt ≥ j−1} denote the durations between
the jumps of (χt)t≥0, so that

eΛT g(χT ) =

∞∑
k=0

e
∑k
j=1 log(νϑj )g(T −

k∑
j=1

τj)1{∑k
j=1 τj≤T<

∑k+1
j=1 τj

}.
By properties (i)-(iii) of Definition 1, the τi are independent with common distribution fB(x)dx,
and independent of the νϑk that are independent with common distribution (pk)k≥1. We thus infer
that E[eΛT g(χT )] is equal to

∞∑
k=0

∑
hj≥1,j≤k

e
∑k
j=1 log(hj)

k∏
j=1

phj

∫
[0,∞)k+1

g(T −
k∑
j=1

tj)1{
∑k
j=1 tj≤T<

∑k+1
j=1 tj}

k+1∏
j=1

fB(tj)dt1 . . . dtk+1.
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We set FB(x) = 1−
∫ x

0
fB(y)dy and qk = m−1kpk, so that (qk)k≥1 defines a probability distribution.

Using fHB (x) = me−λBxfB(x), we can rewrite the preceding formula so that

e−λBTE
[
eΛT g(χT )

]
=

∞∑
k=0

∑
hj≥1,j≤k

k∏
j=1

qhj

∫
[0,∞)k

g(T −
k∑
j=1

tj)1{T−
∑k
j=1 tj≥0}e

−λB(T−
∑k
j=1 tj)

× FB(T −
k∑
j=1

tj)

k∏
j=1

fHB (tj)dt1 . . . dtk.

Step 3. Putting WB(x) = me−λBxFB(x)/FHB (x), we finally obtain the representation

e−λBTE
[
eΛT g(χT )

]
=

1

m
E
[
g(χ̃T )WB(χ̃T )

]
,

where (χ̃t)t≥0 is a Markov process with generator AHB that can be constructed in the same way

as (χt)t≥0, substituting fB by fHB . Straightforward computations give WB(x) = HB(x)
B(x) . Putting

together all the three steps, we have proved∑
u∈U

E
[
g(ζTu )1{T∈Iu

]
= E

[
eΛT g(χT )

]
=
eλBT

m
E
[
g(χ̃T )

HB(χ̃T )

B(χ̃T )

]
.

Noticing that
∑
u∈U E[g(ζTu )1{T∈Iu ] is nothing but E

[∑
u∈∂TT g(ζTu )

]
establishes (23).

Step 4. By definition of the set T̊T ,

E
[ ∑
u∈T̊T

g(ζu)
]

=
∑
u∈U

E
[
g(ζu)1{bu+ζu≤T}1{u∈T }

]
.

We denote by Ft the sigma-field generated by (ζsu, u ∈ ∂Ts, s ≤ t) and we note that du1{u∈T } is a
stopping time for the filtration (Ft)t≥0. Conditioning w.r.t Fbu , using that the ζu are independent
of Fbu , we successively obtain

E
[ ∑
u∈T̊T

g(ζu)
]

=
∑
u∈U

E
[
1{u∈T }

∫ ∞
0

g(x)1{bu+x≤T}B(x)e−
∫ x
0
B(y)dydx

]
=
∑
u∈U

E
[
1{u∈T }

∫ ∞
0

(∫ y

0

g(x)B(x)1{bu+x≤T}dx
)
B(y)e−

∫ y
0
B(z)dzdy

]
=
∑
u∈U

E
[
1{u∈T }

∫ ζu

0

g(x)B(x)1{bu+x≤T}dx
]

=
∑
u∈U

E
[
1{u∈T }

∫ du

bu

g(ζsu)B(ζsu)1{s≤T}ds
]
.

using that ζsu = s − bu for s ∈ Iu in order to obtain the last equality. Finally, observing that
{s ∈ Iu} = {u ∈ ∂Ts}, we finally infer

E
[ ∑
u∈T̊T

g(ζu)
]

=

∫ ∞
0

E
[ ∑
u∈∂Ts

g(ζsu)B(ζsu)
]
1{s≤T}ds.

Using (23) completes the proof of (24).
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6.3. Proof of (26) of Proposition 11. Whenever (u, v) ∈ FU there exist w, ũ and ṽ ∈ U together
with integers i 6= j, such that u = wiũ and v = wjṽ. Conditioning w.r.t Fdw , using the branching
property between descendants of w and the strong Markov property at time dw, we have

E
[ ∑

(u,v)∈FT ∩T̊ 2
T

g(ζu)g(ζv)
]

=
∑

(u,v)∈FU

E
[
g(ζu)1{du<T}1{u∈T }g(ζv)1{dv<T}1{v∈T }

]
=
∑
w∈U

∑
i 6=j

E
[
E
[∑
ũ∈U

g(ζwiũ)1{dwiũ<T}1{wiũ∈T }
∣∣Fdw]

× E
[∑
ṽ∈U

g(ζwjṽ)1{dwjṽ<T}1{wjṽ∈T }
∣∣Fdw]]

=
∑
w∈U

∑
i 6=j

E
[
1{wi∈T ,wj∈T }

(
E
[∑
u∈T

g(ζu)1{du<T−t}
]
|t=dw

)2
1{dw<T}

]
.

Notice that {wi ∈ T , wj ∈ T } = {w ∈ T } ∩ {i ≤ νw, j ≤ νw}, and νw is independent of dw and
has distribution (pk)k≥1. We conclude by using (24) of Proposition 10 (slightly generalized for test
functions that depend on du and ζu). Let us now turn to (27). For u, v ∈ T with u ≺ v, we have
uiw = v for some w ∈ T and some integer i. It follows that

E
[ ∑
u,v∈T̊T ,
u≺v

g(ζu)g(ζv)
]

=
∑
u∈U

∑
i

E
[
g(ζu)1{du<T}1{u∈T }E

[ ∑
w∈U

g(ζuiw)1{duiw<T}1{uiw∈T }
∣∣Fdu]]

=
∑
u∈U

∑
i

E
[
g(ζu)1{0≤du<T}1{ui∈T }E

[ ∑
w∈T

g(ζw)1{dw<T−s}
]
|s=du

1{du<T}

]
conditioning with respect to Fdu on {du < T} and applying the branching property. Next, we have

E
[ ∑
w∈T

g(ζw)1{dw<T−s}
]

= E
[ ∑
w∈T̊T−s

g(ζw)
]

=
1

m

∫ T−s

0

eλBtP tHB
(
gHB

)
(0)dt

by (24) of Proposition 10. Since {ui ∈ T } = {i ≤ νu}, and νu is independent of ζu and du and has
distribution with expectation m, we obtain

E
[ ∑
u,v∈T̊T ,
u≺v

g(ζu)g(ζv)
]

= E
[ ∑
u∈T̊T

g(ζu)

∫ T−du

0

eλBtP tHB
(
gHB

)
(0)dt

]
and we conclude by using once more (24) of Proposition 10 (slightly generalized for test functions
that depend on du and ζu).

6.4. Proof of Lemma 16. Let τ denote the first jump time of the process (χ̃t)t≥0. Conditioning
on {τ > t} and applying the strong Markov property yields

P tHB
(
gHB

)
(0) = g(t)HB(t)P(τ > t) +

∫ t

0

P t−uHB

(
gHB

)
(0)fHB (u)du.

The function t; u(t) = P tHB
(
gHB

)
(0) satisfies a renewal equation of the form u = u0 + u ? fHB ,

with locally bounded initial condition u0 = gHBP(τ > ·) and renewal distribution fHB (y)dy. Its
unique solution is given by

P tHB
(
gHB

)
(0) = g(t)HB(t)P(τ > t) +

∫ t

0

g(t− s)HB(t− s)P(τ > t− s)dE[Ñs],
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where Ñt =
∑
s≤t 1{χ̃s−χ̃s−<0} is the counting process associated to (χ̃t)t≥0. By construction, we

have E[Ñt] = E
[ ∫ t

0
HB(χ̃s)ds

]
and P(τ > t) =

∫∞
t
fHB (y)dy = m

∫∞
t
e−λByfB(y)dy ≤ me−λBt,

therefore

|P tHB
(
gHB

)
(0)| ≤ |g(t)|e−λBtm|HB |∞ + |HB |2∞

∫ t

0

|g(u)|du

and we obtain the desired estimate thanks to the fact that HB is uniformly bounded over B.
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