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ADAPTIVE ESTIMATION FOR BIFURCATING MARKOV CHAINS

S. VALÈRE BITSEKI PENDA, MARC HOFFMANN AND ADÉLAÏDE OLIVIER

Abstract. In a first part, we prove Bernstein-type deviation inequalities for bifurcating Markov
chains (BMC) under a geometric ergodicity assumption, completing former results of Guyon

and Bitseki Penda, Djellout and Guillin. These preliminary results are the key ingredient to

implement nonparametric wavelet thresholding estimation procedures: in a second part, we
construct nonparametric estimators of the transition density of a BMC, of its mean transition

density and of the corresponding invariant density, and show smoothness adaptation over various

multivariate Besov classes under Lp-loss error, for 1 ≤ p <∞. We prove that our estimators are
(nearly) optimal in a minimax sense. As an application, we obtain new results for the estimation

of the splitting size-dependent rate of growth-fragmentation models and we extend the statistical

study of bifurcating autoregressive processes.

Mathematics Subject Classification (2010): 62G05, 62M05, 60J80, 60J20, 92D25,
Keywords: Bifurcating Markov chains, binary trees, deviations inequalities, nonparametric

adaptive estimation, minimax rates of convergence, bifurcating autoregressive process, growth-
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1. Introduction

1.1. Bifurcating Markov chains. Bifurcating Markov Chains (BMC) are Markov chains in-
dexed by a tree (Athreya and Kang [1], Benjamini and Peres [6], Takacs [39]) that are particularly
well adapted to model and understand dependent data mechanisms involved in cell division. To
that end, bifurcating autoregressive models (a specific class of BMC, also considered in the paper)
were first introduced by Cowan and Staudte [16]. More recently Guyon [28] systematically studied
BMC in a general framework. In continuous time, BMC encode certain piecewise deterministic
Markov processes on trees that serve as the stochastic realisation of growth-fragmentation models
(see e.g. Doumic et al. [26], Robert et al. [38] for modelling cell division in Escherichia coli and
the references therein).

For m ≥ 0, let Gm = {0, 1}m (with G0 = {∅}) and introduce the infinite genealogical tree

T =

∞⋃
m=0

Gm.

For u ∈ Gm, set |u| = m and define the concatenation u0 = (u, 0) ∈ Gm+1 and u1 = (u, 1) ∈ Gm+1.
A bifurcating Markov chain is specified by 1) a measurable state space (S,S) with a Markov
kernel (later called T-transition) P from (S,S) to (S×S,S⊗S) and 2) a filtered probability space(
Ω,F, (Fm)m≥0,P

)
. Following Guyon, we have the

Definition 1. A bifurcating Markov chain is a family (Xu)u∈T of random variables with value in
(S,S) such that Xu is F|u|-measurable for every u ∈ T and

E
[ ∏
u∈Gm

gu(Xu, Xu0, Xu1)
∣∣Fm] =

∏
u∈Gm

Pgu(Xu)

1
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for every m ≥ 0 and any family of (bounded) measurable functions (gu)u∈Gm , where Pg(x) =∫
S×S g(x, y, z)P(x, dy dz) denotes the action of P on g.

The distribution of (Xu)u∈T is thus entirely determined by P and an initial distribution for X∅.
Informally, we may view (Xu)u∈T as a population of individuals, cells or particles indexed by T
and governed by the following dynamics: to each u ∈ T we associate a trait Xu (its size, lifetime,
growth rate, DNA content and so on) with value in S. At its time of death, the particle u gives rize
to two children u0 and u1. Conditional on Xu = x, the trait (Xu0, Xu1) ∈ S× S of the offspring of
u is distributed according to P(x, dy dz).

For n ≥ 0, let Tn =
⋃n
m=0 Gm denote the genealogical tree up to the n-th generation. Assume

we observe Xn = (Xu)u∈Tn , i.e. we have 2n+1 − 1 random variables with value in S. There are
several objects of interest that we may try to infer from the data Xn. Similarly to fragmentation
processes (see e.g. Bertoin [9]) a key role for both asymptotic and non-asymptotic analysis of
bifurcating Markov chains is played by the so-called tagged-branch chain, as shown by Guyon [28]
and Bitseki Penda et al. [11]. The tagged-branch chain (Ym)m≥0 corresponds to a lineage picked
at random in the population (Xu)u∈T: it is a Markov chain with value in S defined by Y0 = X∅
and for m ≥ 1,

Ym = X∅ε1···εm ,

where (εm)m≥1 is a sequence of independent Bernoulli variables with parameter 1/2, independent
of (Xu)u∈T. It has transition

Q = (P0 + P1) /2,

obtained from the marginal transitions

P0(x, dy) =

∫
z∈S

P(x, dy dz) and P1(x, dz) =

∫
y∈S

P(x, dy dz)

of P. Guyon proves in [28] that if (Ym)m≥0 is ergodic with invariant measure ν, then the convergence

(1)
1

|Gn|
∑
u∈Gn

g(Xu)→
∫
S

g(x)ν(dx)

holds almost-surely as n→∞ for appropriate test functions g. Moreover, we also have convergence
results of the type

(2)
1

|Tn|
∑
u∈Tn

g(Xu, Xu0, Xu1)→
∫
S

Pg(x)ν(dx)

almost-surely as n → ∞. These results are appended with central limit theorems (Theorem 19
of [28]) and Hoeffding-type deviations inequalities in a non-asymptotic setting (Theorem 2.11 and
2.12 of Bitseki Penda et al. [11]).

1.2. Objectives. The observation of Xn enables us to identify ν(dx) as n → ∞ thanks to (1).
Consequently, convergence (2) reveals P and therefore Q is identified as well, at least asymptotically.
The purpose of the present paper is at least threefold:

1) Construct – under appropriate regularity conditions – estimators of ν,Q and P and study
their rates of convergence as n→∞ under various loss functions. When S ⊆ R and when
P is absolutely continuous w.r.t. the Lebesgue measure, we estimate the corresponding
density functions under various smoothness class assumptions and build smoothness adap-
tive estimators, i.e. estimator that achieve an optimal rate of convergence without prior
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knowledge of the smoothness class.

2) Apply these constructions to investigate further specific classes of BMC. These include
binary growth-fragmentation processes, where we subsequently estimate adaptively the
splitting rate of a size-dependent model, thus extending previous results of Doumic et al.
[26] and bifurcating autoregressive processes, where we complete previous studies of Bitseki
Penda et al. [12] and Bitseki Penda and Olivier [13].

3) For the estimation of ν,Q and P and the subsequent estimation results of 2), prove that
our results are sharp in a minimax sense.

Our smoothness adaptive estimators are based on wavelet thresholding for density estimation
(Donoho et al. [24] in the generalised framework of Kerkyacharian and Picard [32]). Implementing
these techniques requires concentration properties of empirical wavelet coefficients. To that end,
we prove new deviation inequalities for bifurcating Markov chains that we develop independently
in a more general setting, when S is not necessarily restricted to R. Note also that when P0 = P1,
we have Q = P0 = P1 as well and we retrieve the usual framework of nonparametric estimation
of Markov chains when the observation is based on (Yi)1≤i≤n solely. We are therefore in the line
of combining and generalising the study of Clémençon [15] and Lacour [33, 34] that both consider
adaptive estimation for Markov chains when S ⊆ R.

1.3. Main results and organisation of the paper. In Section 2, we generalise the Hoeffding-
type deviations inequalities of Bitseki Penda et al. [11] for BMC to Bernstein-type inequalities:
when P is uniformly geometrically ergodic (Assumption 3 below), we prove in Theorem 5 deviations
of the form

P
( 1

|Gn|
∑
u∈Gn

g(Xu, Xu0, Xu1)−
∫

Pg dν ≥ δ
)
≤ exp

(
− κ|Gn|δ2

Σn(g) + |g|∞δ

)

and

P
( 1

|Tn|
∑
u∈Tn

g(Xu, Xu0, Xu1)−
∫

Pg dν ≥ δ
)
≤ exp

(
− κ̃n−1|Tn|δ2

Σn(g) + |g|∞δ

)
,

where κ, κ̃ > 0 only depend on P and Σn(g) is a variance term which depends on a combina-
tion of the Lp-norms of g for p = 1, 2,∞ w.r.t. a common dominating measure for the family
{Q(x, dy), x ∈ S}. The precise results are stated in Theorems 4 and 5.

Section 3 is devoted to the statistical estimation of ν,Q and P when S ⊆ R and the family
{P(x, dy dz), x ∈ S} is dominated by the Lebesgue measure on R2. In that setting, abusing nota-
tion slightly, we have ν(dx) = ν(x)dx, Q(x, dy) = Q(x, y)dy and P(x, dy dz) = P(x, y, z)dydz for
some functions x ; ν(x), (x, y) ; Q(x, y) and (x, y, z) ; P(x, y, z) that we reconstruct nonpara-
metrically. Our estimators are constructed in several steps:
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i) We approximate the functions ν(x), fQ(x, y) = ν(x)Q(x, y) and fP(x, y, z) = ν(x)P(x, y, z)
by atomic representations

ν(x) ≈
∑

λ∈V1(ν)

〈ν, ψ1
λ〉ψ1

λ(x),

fQ(x, y) ≈
∑

λ∈V2(fQ)

〈fQ, ψ2
λ〉ψ2

λ(x, y),

fP(x, y, z) ≈
∑

λ∈V3(fP)

〈fP, ψ3
λ〉ψ3

λ(x, y, z),

where 〈·, ·〉 denotes the usual L2-inner product (over Rd, for d = 1, 2, 3 respectively) and(
ψdλ, λ ∈ Vd(·)

)
is a collection of functions (wavelets) in L2(Rd) that are localised in time

and frequency, indexed by a set Vd(·) that depends on the signal itself1.

ii) We estimate

〈ν, ψ1
λ〉 by |Tn|−1

∑
u∈Tn

ψ1
λ(Xu),

〈fQ, ψ2
λ〉 by |T?n|−1

∑
u∈T?n

ψ2
λ(Xu− , Xu),

〈fP, ψ3
λ〉 by |Tn−1|−1

∑
u∈Tn−1

ψ3
λ(Xu, Xu0, Xu1),

where Xu− denotes the trait of the parent of u and T?n = Tn \G0, and specify a selection
rule for Vd(·) (with the dependence in the unknown function somehow replaced by an es-
timator). The rule is dictated by hard thresholding over the estimation of the coefficients
that are kept only if they exceed some noise level, tuned with |Tn| and prior knowledge on
the unknown function, as follows by standard density estimation by wavelet thresholding
(Donoho et al. [25], Kerkyacharian and Picard [32]).

iii) Denoting by ν̂n(x), f̂n(x, y) and f̂n(x, y, z) the estimators of ν(x), fQ(x, y) and fP(x, y, z)
respectively constructed in Step ii), we finally take as estimators for Q(x, y) and P(x, y, z)
the quotient estimators

Q̂n(x, y) =
f̂n(x, y)

ν̂n(x)
and P̂n(x, y, z) =

f̂n(x, y, z)

ν̂n(x)

provided ν̂n(x) exceeds a minimal threshold.

Beyond the inherent technical difficulties of the approximation Steps i) and iii), the crucial novel
part is the estimation Step ii), where Theorems 4 and 5 are used to estimate precisely the prob-
ability that the thresholding rule applied to the empirical wavelet coefficient is close in effect to
thresholding the true coefficients.

When ν,Q or P (identified with their densities w.r.t. appropriate dominating measures) belong
to an isotropic Besov ball of smoothness s measured in Lπ over a domain Dd in Rd, with s > d/π
and d = 1, 2, 3 respectively, we prove in Theorems 8, 9 and 10 that if Q is uniformly geometrically

1The precise meaning of the symbol ≈ and the properties of the ψλ’s are stated precisely in Section 3.1.
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ergodic, then our estimators achieve the rate |Tn|−αd(s,p,π) in Lp(D)-loss, up to additional log |Tn|
terms, where

αd(s, p, π) = min
{ s

2s+ d
,
s+ d(1/p− 1/π)

2s+ d(1− 2/π)

}
is the usual exponent for the minimax rate of estimation of a d-variate function with order of
smoothness s measured in Lπ in Lp-loss error. This rate is nearly optimal in a minimax sense for
d = 1, as follows from particular case Q(x, dy) = ν(dy) that boils down to density estimation with
|Tn| data: the optimality is then a direct consequence of Theorem 2 in Donoho et al. [25]. As for
the case d = 2 and d = 3, the structure of BMC comes into play and we need to prove a specific
optimality result, stated in Theorems 9 and 10. We rely on classical lower bound techniques for
density estimation and Markov chains (Hoffmann [31], Clémençon [15], Lacour [33, 34]).

We apply our generic results in Section 4 to two illustrative examples. We consider in Section 4.1
the growth-fragmentation model as studied in Doumic et al. [26], where we estimate the size-
dependent splitting rate of the model as a function of the invariant measure of an associated BMC
in Theorem 11. This enables us to extend the recent results of Doumic et al. in several directions:
adaptive estimation, extension of the smoothness classes and the loss functions considered, and
also a proof of a minimax lower bound. In Section 4.2, we show how bifurcating autoregressive
models (BAR) as developped for instance in de Saporta et al. [8] and Bitseki Penda and Olivier
[13] are embedded into our generic framework of estimation. A numerical illustration highlights the
feasibility of our procedure in practice and is presented in Section 4.3. The proofs are postponed
to Section 5.

2. Deviations inequalities for empirical means

In the sequel, we fix a (measurable) subset D ⊆ S that will be later needed for statistical
purposes. We need some regularity on the T-transition P via its mean transition Q = 1

2 (P0 + P1).

Assumption 2. The family {Q(x, dy), x ∈ S} is dominated by a common sigma-finite measure
n(dy). We have (abusing notation slightly)

Q(x, dy) = Q(x, y)n(dy) for every x ∈ S,

for some Q : S2 → [0,∞) such that

|Q|D = sup
x∈S,y∈D

Q(x, y) <∞.

An invariant probability measure for Q is a probability ν on (S,S) such that νQ = ν where
νQ(dy) =

∫
x∈S ν(dx)Q(x, dy). We set

Qr(x, dy) =

∫
z∈S

Q(x, dz)Qr−1(z, dy) with Q0(x, dy) = δx(dy)

for the r-th iteration of Q. For a function g : Sd → R with d = 1, 2, 3 and 1 ≤ p ≤ ∞, we denote
by |g|p its Lp-norm w.r.t. the measure n⊗d, allowing for the value |g|p = ∞ if g /∈ Lp(n⊗d). The
same notation applies to a function g : Dd → R tacitly considered as a function from Sd → R by
setting g(x) = 0 for x ∈ S \D.

Assumption 3. The mean transition Q admits a unique invariant probability measure ν and there
exist R > 0 and 0 < ρ < 1/2 such that∣∣Qmg(x)−

∫
S

g dν
∣∣ ≤ R|g|∞ ρm, x ∈ S, m ≥ 0,



6 S. VALÈRE BITSEKI PENDA, MARC HOFFMANN AND ADÉLAÏDE OLIVIER

for every g integrable w.r.t. ν.

Assumption 3 is a uniform geometric ergodicity condition that can be verified in most appli-
cations using the theory of Meyn and Tweedie [36]. The ergodicity rate should be small enough
(ρ < 1/2) and this point is crucial for the proofs. However this is sometimes delicate to check in
applications and we refer to Hairer and Mattingly [29] for an explicit control of the ergodicity rate.

Our first result is a deviation inequality for empirical means over Gn or Tn. We need some
notation. Let

κ1 =κ1(Q,D) = 32 max
{
|Q|D, 4|Q|2D, 4R2(1 + ρ)2

}
,

κ2 =κ2(Q) = 16
3 max

{
1 +Rρ,R(1 + ρ)

}
,

κ3 =κ3(Q,D) = 96 max
{
|Q|D, 16|Q|2D, 4R2(1 + ρ)2(1− 2ρ)−2

}
,

κ4 =κ4(Q) = 16
3 max

{
1 +Rρ,R(1 + ρ)(1− 2ρ)−1

}
,

where |Q|D = supx∈S,y∈D Q(x, y) is defined in Assumption 2. For g : Sd → R, define Σ1,1(g) = |g|22
and for n ≥ 2,

(3) Σ1,n(g) = |g|22 + min
1≤`≤n−1

(
|g|212` + |g|2∞2−`

)
.

Define also Σ2,1(g) = |Pg2|1 and for n ≥ 2,

(4) Σ2,n(g) = |Pg2|1 + min
1≤`≤n−1

(
|Pg|212` + |Pg|2∞2−`

)
.

Theorem 4. Work under Assumptions 2 and 3. Then, for every n ≥ 1 and every g : D ⊆ S→ R
integrable w.r.t. ν, the following inequalities hold true:

(i) For any δ > 0 such that δ ≥ 4R|g|∞|Gn|−1, we have

P
( 1

|Gn|
∑
u∈Gn

g(Xu)−
∫
S

g dν ≥ δ
)
≤ exp

( −|Gn|δ2

κ1Σ1,n(g) + κ2|g|∞δ

)
.

(ii) For any δ > 0 such that δ ≥ 4R(1− 2ρ)−1|g|∞|Tn|−1, we have

P
( 1

|Tn|
∑
u∈Tn

g(Xu)−
∫
S

g dν ≥ δ
)
≤ exp

( −|Tn|δ2

κ3Σ1,n(g) + κ4|g|∞δ

)
.

Theorem 5. Work under Assumptions 2 and 3. Then, for every n ≥ 2 and for every g : D3 ⊆
S3 → R such that Pg is well defined and integrable w.r.t. ν, the following inequalities hold true:

(i) For any δ > 0 such that δ ≥ 4R|Pg|∞|Gn|−1, we have

P
( 1

|Gn|
∑
u∈Gn

g(Xu, Xu0, Xu1)−
∫
S

Pg dν ≥ δ
)
≤ exp

( −|Gn|δ2

κ1Σ2,n(g) + κ2|g|∞δ

)
.

(ii) For any δ > 0 such that δ ≥ 4(nR|Pg|∞ + |g|∞)|Tn−1|−1, we have

P
( 1

|Tn−1|
∑

u∈Tn−1

g(Xu, Xu0, Xu1)−
∫
S

Pg dν ≥ δ
)
≤ exp

( −n−1|Tn−1|δ2

κ1Σ2,n−1(g) + κ2|g|∞δ

)
.
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A few remarks are in order:

1) Theorem 4 (i) is a direct consequence of Theorem 5 (i) but Theorem 4 (ii) is not a corollary of
Theorem 5 (ii): we note that a slow term or order n−1 ≈ (log |Tn|)−1 comes in Theorem 5 (ii).
2) Bitseki-Penda et al. in [11] study similar Hoeffding-type deviations inequalities for functionals
of bifurcating Markov chains under ergodicity assumption and for uniformly bounded functions.
In the present work and for statistical purposes, we need Bernstein-type deviations inequalities
which require a specific treatment than cannot be obtained from a direct adaptation of [11]. In
particular, we apply our results to multivariate wavelets test functions ψdλ that are well localised
but unbounded, and a fine control of the conditional variance Σi,n(ψdλ), i = 1, 2 is of crucial
importance.
3) Assumption 3 about the uniform geometric ergodicity is quite strong, although satisfied in the
two examples developed in Section 4 (at the cost however of assuming that the splitting rate of
the growth-fragmentation model has bounded support in Section 4.1). Presumably, a way to relax
this restriction would be to require a weaker geometric ergodicity condition of the form∣∣Qmg(x)−

∫
S

g dν
∣∣ ≤ R|g|∞V (x) ρm, x ∈ S, m ≥ 0,

for some Lyapunov function V : S → [1,∞). Analogous results could then be obtained via
transportation information inequalities for bifurcating Markov chains with a similar approach as
in Gao et al. [27], but this lies beyond the scope of the paper.

3. Statistical estimation

In this section, we take (S,S) =
(
R,B(R)

)
. As in the previous section, we fix a compact interval

D ⊆ S. The following assumption will be needed here

Assumption 6. The family {P(x, dy dz), x ∈ S} is dominated w.r.t. the Lebesgue measure on(
R2,B(R2)

)
. We have (abusing notation slightly)

P(x, dy dz) = P(x, y, z)dy dz for every x ∈ S

for some P : S3 → [0,∞) such that

|P|D,1 =

∫
S2

sup
x∈D

P(x, y, z)dydz <∞.

Under Assumptions 2, 3 and 6 with n(dy) = dy, we have (abusing notation slightly)

P(x, dy dz) = P(x, y, z)dy dz, Q(x, dy) = Q(x, y)dy and ν(dx) = ν(x)dx.

For some n ≥ 1, we observe Xn = (Xu)u∈Tn and we aim at constructing nonparametric estimators
of x; ν(x), (x, y) ; Q(x, y) and (x, y, z) ; P(x, y, z) for x, y, z ∈ D. To that end, we use regular
wavelet bases adapted to the domain Dd for d = 1, 2, 3.

3.1. Atomic decompositions and wavelets. Wavelet bases (ψdλ)λ adapted to a domain Dd in
Rd, for d = 1, 2, 3 are documented in numerous textbooks, see e.g. Cohen [17]. The multi-index
λ concatenates the spatial index and the resolution level j = |λ|. We set Λj = {λ, |λ| = j} and
Λ = ∪j≥−1Λj . Thus, for g ∈ Lπ(Dd) for some π ∈ (0,∞], we have

g =
∑
j≥−1

∑
λ∈Λj

gλψ
d
λ =

∑
λ∈Λ

gλψ
d
λ, with gλ = 〈g, ψdλ〉,
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where we have set j = −1 in order to incorporate the low frequency part of the decomposition and
〈g, ψdλ〉 =

∫
gψdλ denotes the inner product in L2(Rd). From now on, the basis (ψdλ)λ is fixed. For

s > 0 and π ∈ (0,∞], g belongs to Bsπ,∞(D) if the following norm is finite:

(5) ‖g‖Bsπ,∞(D) = sup
j≥−1

2j(s+d(1/2−1/π))
( ∑
λ∈Λj

|〈g, ψdλ〉|π
)1/π

with the usual modification if π = ∞. Precise connection between this definition of Besov norm
and more standard ones can be found in [17]. Given a basis (ψdλ)λ, there exists σ > 0 such that for
π ≥ 1 and s ≤ σ the Besov space defined by (5) exactly matches the usual definition in terms of
moduli of smoothness for g. The index σ can be taken arbitrarily large. The additional properties
of the wavelet basis (ψdλ)λ that we need are summarized in the next assumption.

Assumption 7. For p ≥ 1,

(6) ‖ψdλ‖
p
Lp ∼ 2|λ|d(p/2−1),

for some σ > 0 and for all s ≤ σ, j0 ≥ 0,

(7) ‖g −
∑
j≤j0

∑
λ∈Λj

gλψ
d
λ‖Lp . 2−j0s‖g‖Bsp,∞(D),

for any subset Λ0 ⊂ Λ,

(8)

∫
D

( ∑
λ∈Λ0

|ψdλ(x)|2
)p/2

dx ∼
∑
λ∈Λ0

‖ψdλ‖
p
Lp .

If p > 1, for any sequence (uλ)λ∈Λ,

(9)
∥∥(∑

λ∈Λ

|uλψdλ|2
)1/2∥∥

Lp
∼ ‖

∑
λ∈Λ

uλψ
d
λ‖Lp .

The symbol ∼ means inequality in both ways, up to a constant depending on p and D only.
The property (7) reflects that our definition (5) of Besov spaces matches the definition in term
of linear approximation. Property (9) reflects an unconditional basis property, see Kerkyacharian
and Picard [32], De Vore et al. [21] and (8) is referred to as a superconcentration inequality, or
Temlyakov property [32]. The formulation of (8)-(9) in the context of statistical estimation is
posterior to the original papers of Donoho and Johnstone [22, 23] and Donoho et al. [25, 24] and
is due to Kerkyacharian and Picard [32]. The existence of compactly supported wavelet bases
satisfying Assumption 7 is discussed in Meyer [35], see also Cohen [17].

3.2. Estimation of the invariant density ν. Recall that we estimate x ; ν(x) for x ∈ D,
taken as a compact interval in S ⊆ R. We approximate the representation

ν(x) =
∑
λ∈Λ

νλψ
1
λ(x), νλ = 〈ν, ψ1

λ〉

by

ν̂n(x) =
∑
|λ|≤J

ν̂λ,nψ
1
λ(x),

with

ν̂λ,n = Tλ,η

( 1

|Tn|
∑
u∈Tn

ψ1
λ(Xu)

)
,
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and Tλ,η(x) = x1|x|≥η denotes the standard threshold operator (with Tλ,η(x) = x for the low
frequency part when λ ∈ Λ−1). Thus ν̂n is specified by the maximal resolution level J and the
threshold η.

Theorem 8. Work under Assumptions 2 and 3 with n(dx) = dx. Specify ν̂n with

J = log2

|Tn|
log |Tn|

and η = c
√

log |Tn|/|Tn|

for some c > 0. For every π ∈ (0,∞], s > 1/π and p ≥ 1, for large enough n and c, the following
estimate holds (

E
[
‖ν̂n − ν‖pLp(D)

])1/p

.
( log |Tn|
|Tn|

)α1(s,p,π)

,

with α1(s, p, π) = min
{

s
2s+1 ,

s+1/p−1/π
2s+1−2/π

}
, up to a constant that depends on s, p, π, ‖ν‖Bsπ,∞(D), ρ,

R and |Q|D and that is continuous in its arguments.

Two remarks are in order:

1) The upper-rate of convergence is the classical minimax rate in density estimation. We infer that
our estimator is nearly optimal in a minimax sense as follows from Theorem 2 in Donoho et al.
[25] applied to the class Q(x, y)dy = ν(y)dy, i.e. in the particular case when we have i.i.d. Xu’s.
We highlight the fact that n represents here the number of observed generations in the tree, which
means that we observe |Tn| = 2n+1 − 1 traits.
2) The estimator ν̂n is smooth-adaptive in the following sense: for every s0 > 0, 0 < ρ0 < 1/2,
R0 > 0 and Q0 > 0, define the sets A(s0) = {(s, π), s ≥ s0, s0 ≥ 1/π} and

Q(ρ0, R0,Q0) = {Q such that ρ ≤ ρ0, R ≤ R0, |Q|D,≤ Q0},

where Q is taken among mean transitions for which Assumption 3 holds. Then, for every C > 0,
there exists c? = c?(D, p, s0, ρ0, R0,Q0, C) such that ν̂n specified with c? satisfies

sup
n

sup
(s,π)∈A(s0)

sup
ν,Q

( |Tn|
log |Tn|

)pα1(s,p,π)

E
[
‖ν̂n − ν‖pLp(D)

]
<∞

where the supremum is taken among (ν,Q) such that νQ = ν with Q ∈ Q(ρ0, R0,Q0) and ‖ν‖Bsπ,∞(D)

≤ C. In particular, ν̂n achieves the (near) optimal rate of convergence over Besov balls simultane-
ously for all (s, π) ∈ A(s0). Analogous smoothness adaptive results hold for Theorems 9, 10 and 11
below.

3.3. Estimation of the density of the mean transition Q. In this section we estimate (x, y) ;
Q(x, y) for (x, y) ∈ D2 and D is a compact interval in S ⊆ R. In a first step, we estimate the density

fQ(x, y) = ν(x)Q(x, y)

of the distribution of (Xu− , Xu) when L(X∅) = ν (a restriction we do not need here) by

f̂n(x, y) =
∑
|λ|≤J

f̂λ,nψ
2
λ(x, y),

with

f̂λ,n = Tλ,η

( 1

|T?n|
∑
u∈T?n

ψ2
λ(Xu− , Xu)

)
,
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and Tλ,η(·) is the hard-threshold estimator defined in Section 3.2 and T?n = Tn \G0. We can now
estimate the density Q(x, y) of the mean transition probability by

(10) Q̂n(x, y) =
f̂n(x, y)

max{ν̂n(x), $}

for some threshold $ > 0. Thus the estimator Q̂n is specified by J , η and $. Define also

(11) m(ν) = inf
x
ν(x)

where the infimum is taken among all x such that (x, y) ∈ D2 for some y.

Theorem 9. Work under Assumptions 2 and 3 with n(dx) = dx. Specify Q̂n with

J = 1
2 log2

|Tn|
log |Tn|

and η = c
√

(log |Tn|)2/|Tn|

for some c > 0 and $ > 0. For every π ∈ [1,∞], s > 2/π and p ≥ 1, for large enough n and c and
small enough $, the following estimate holds

(12)
(
E
[
‖Q̂n − Q‖pLp(D2)

])1/p

.
( (log |Tn|)2

|Tn|

)α2(s,p,π)

,

with α2(s, p, π) = min
{

s
2s+2 ,

s/2+1/p−1/π
s+1−2/π

}
, provided m(ν) ≥ $ > 0 and up to a constant that

depends on s, p, π, ‖Q‖Bsπ,∞(D2), m(ν) and that is continuous in its arguments.

This rate is moreover (nearly) optimal: define ε2 = sπ − (p− π). We have

inf
Q̂n

sup
Q

(
E
[
‖Q̂n − Q‖pLp(D2)

])1/p

&

 |Tn|
−α2(s,p,π) if ε2 > 0( log |Tn|
|Tn|

)α2(s,p,π)

if ε2 ≤ 0,

where the infimum is taken among all estimators of Q based on (Xu)u∈Tn and the supremum is
taken among all Q such that ‖Q‖Bsπ,∞(D2) ≤ C and m(ν) ≥ C ′ for some C,C ′ > 0.

3.4. Estimation of the density of the T-transition P. In this section we estimate (x, y, z) ;
P(x, y, z) for (x, y, z) ∈ D3 and D is a compact interval in S ⊆ R. In a first step, we estimate the
density

fP(x, y, z) = ν(x)P(x, y, z)

of the distribution of (Xu, Xu0, Xu1) (when L(X∅) = ν) by

f̂n(x, y, z) =
∑
|λ|≤J

f̂λ,nψ
3
λ(x, y, z),

with

f̂λ,n = Tλ,η

( 1

|Tn−1|
∑

u∈Tn−1

ψ3
λ(Xu, Xu0, Xu1)

)
,

and Tλ,η(·) is the hard-threshold estimator defined in Section 3.2. In the same way as in the
previous section, we can next estimate the density P of the T-transition by

(13) P̂n(x, y, z) =
f̂n(x, y, z)

max{ν̂n(x), $}

for some threshold $ > 0. Thus the estimator P̂n is specified by J , η and $.
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Theorem 10. Work under Assumptions 2, 3 and 6. Specify P̂n with

J = 1
3 log2

|Tn|
log |Tn|

and η = c
√

(log |Tn|)2/|Tn|

for some c > 0 and $ > 0. For every π ∈ [1,∞], s > 3/π and p ≥ 1, for large enough n and c
and small enough $, the following estimate holds

(14)
(
E
[
‖P̂n − P‖pLp(D3)

])1/p

.
( (log |Tn|)2

|Tn|

)α3(s,p,π)

,

with α3(s, p, π) = min
{

s
2s+3 ,

s/3+1/p−1/π
2s/3+1−2/π

}
, provided m(ν) ≥ $ > 0 and up to a constant that

depends on s, p, π, ‖P‖Bsπ,∞(D3) and m(ν) and that is continuous in its arguments.

This rate is moreover (nearly) optimal: define ε3 = sπ
3 −

p−π
2 . We have

inf
P̂n

sup
P

(
E
[
‖P̂n − P‖pLp(D3)

])1/p

&

 |Tn|
−α3(s,p,π) if ε3 > 0( log |Tn|
|Tn|

)α3(s,p,π)

if ε3 ≤ 0,

where the infimum is taken among all estimators of P based on (Xu)u∈Tn and the supremum is
taken among all P such that ‖P‖Bsπ,∞(D3) ≤ C and m(ν) ≥ C ′ for some C,C ′ > 0.

4. Applications

4.1. Estimation of the size-dependent splitting rate in a growth-fragmentation model.
Recently, Doumic et al. [26] have studied the problem of estimating nonparametrically the size-
dependent splitting rate in growth-fragmentation models (see e.g. the textbook of Perthame [37]).
Stochastically, these are piecewise deterministic Marvov processes on trees that model the evolution
of a population of cells or bacteria: to each node (or cell) u ∈ T, we associate as trait Xu ∈ S ⊂
(0,∞) the size at birth of the cell u. The evolution mechanism is described as follows: each cell
grows exponentially with a common rate τ > 0. A cell of size x splits into two newborn cells of size
x/2 each (thus Xu0 = Xu1 here), with a size-dependent splitting rate B(x) for some B : S→ [0,∞).
Two newborn cells start a new life independently of each other. If ζu denotes the lifetime of the
cell u, we thus have

(15) P
(
ζu ∈ [t, t+ dt)

∣∣ζu ≥ t,Xu = x
)

= B
(
x exp(τt)

)
dt

and

(16) Xu = 1
2Xu− exp(τζu−)

so that (15) and (16) entirely determine the evolution of the population. We are interested in
estimating x; B(x) for x ∈ D where D ⊂ S is a given compact interval. The process (Xu)u∈T is
a bifurcating Markov chain with state space S and T-transition any version of

PB(x, dy dz) = P
(
Xu0 ∈ dy,Xu1 ∈ dz |Xu− = x

)
.

Moreover, using (15) and (16), (see for instance the derivation of Equation (11) in [26]), it is not
difficult to check that

PB(x, dy dz) = QB(x, dy)⊗ δy(dz)

where δy denotes the Dirac mass at y and

(17) QB(x, dy) =
B(2y)

τy
exp

(
−
∫ y

x/2

B(2z)

τz
dz
)
1{y≥x/2}dy.
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If we assume moreover that x ; B(x) is continuous, then we have Assumption 2 with Q = QB
and n(dx) = dx.

Now, let S be a bounded and open interval in (0,∞) such that sup S > 2 inf S. Pick r ∈ S,
0 < L < τ log 2 and introduce the function class

C(r, L) =
{
B : S→ [0,∞),

∫ supS B(x)

x
dx =∞,

∫ r

inf S

B(x)

x
dx ≤ L

}
.

By Theorem 1.3 in Hairer and Mattingly [29] and the explicit representation (17) for QB , one can
check that for every B ∈ C(r, L), we have Assumption 3 with Q = QB . In particular, we comply
with the stringent requirement ρ = ρB ≤ C(r, L) for some C(r, L) < 1/2, i.e. uniformly over
C(r, L). Finally, we know by Proposition 2 in Doumic et al. [26] – see in particular Equation (24)
– that

B(x) =
τx

2

νB(x/2)∫ y
x/2

νB(z)dz
,

where νB denotes the unique invariant probability of the transition Q = QB . This yields a strategy
for estimating x ; B(x) via an estimator of x ; νB(x). For a given compact interval D ⊂ S,
define

(18) B̂n(x) =
τx

2

ν̂n(x/2)(
1
|Tn|

∑
u∈Tn 1{x/2≤Xu<x}

)
∨$

,

where ν̂n is the wavelet thresholding estimator given in Section 3.2 specified by a maximal resolution
level J and a threshold η and $ > 0. As a consequence of Theorem 8 we obtain the following

Theorem 11. Specify B̂n with

J = 1
2 log2

|Tn|
log |Tn|

and η = c
√

log |Tn|/|Tn|

for some c > 0. For every B ∈ C(r, L), s > 0, π ∈ (0,∞] and p ≥ 1, large enough n and c and
small enough $, the following estimate holds(

E
[
‖B̂n −B‖pLp(D)

])1/p

.
( log |Tn|
|Tn|

)α1(s,p,π)

,

with α1(s, p, π) = min
{

s
2s+1 ,

s+1/p−1/π
2s+1−2/π

}
, up to a constant that depends on s, p, π, ‖B‖Bsπ,∞(D), r

and L and that is continuous in its arguments.

This rate is moreover (nearly) optimal: define ε1 = sπ − 1
2 (p− π). We have

inf
B̂n

sup
B

(
E
[
‖B̂n −B‖pLp(D)

])1/p

&

 |Tn|
−α1(s,p,π) if ε1 > 0( log |Tn|
|Tn|

)α1(s,p,π)

if ε1 ≤ 0,

where the infimum is taken among all estimators of B based on (Xu)u∈Tn and the supremum is
taken among all B ∈ C(r, L) such that ‖B‖Bsπ,∞(D) ≤ C.

Two remarks are in order:

1) We improve on the results of Doumic et al. [26] in two directions: we have smoothness-
adaptation (in the sense described in Remark 2) after Theorem 8 in Section 3 for several loss
functions over various Besov smoothness classes, while [26] constructs a non-adapative estimator
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for Hölder smoothness in squared-error loss; moreover, we prove that the obtained rate is (nearly)
optimal in a minimax sense.
2) We unfortunately need to work under the quite stringent restriction that S is bounded in order
to obtain the uniform ergodicity Assumption 3, see Remark 3) after Theorem 5 in Section 2.

4.2. Bifurcating autoregressive process. Bifurcating autoregressive processes (BAR), first in-
troduced by Cowan and Staudte [16], are yet another stochastic model for understanding cell
division. The trait Xu may represent the growth rate of a bacteria u ∈ T in a population of
Escherichia Coli but other choices are obviously possible. Contrary to the growth-fragmentation
model of Section 4.1 the trait (Xu0, Xu1) of the two newborn cells differ and are linked through
the autoregressive dynamics

(19)

 Xu0 = f0(Xu) + σ0(Xu)εu0,

Xu1 = f1(Xu) + σ1(Xu)εu1,

initiated with X∅ and where

f0, f1 : R→ R and σ0, σ1 : R→ (0,∞)

are functions and (εu0
, εu1

)u∈T are i.i.d. noise variables with common density function G : R2 →
[0,∞) that specify the model.

The process (Xu)u∈T is a bifurcating Markov chain with state space S = R and T-transition

(20) P(x, dy dz) = G
(
σ0(x)−1

(
y − f0(x)

)
, σ1(x)−1

(
z − f1(x)

))
dy dz.

This model can be seen as an adaptation of nonlinear autoregressive model when the data have a
binary tree structure. The original BAR process in [16] is defined for linear link functions f0 and
f1 with f0 = f1 Several extensions have been studied from a parametric point of view, see e.g.
Basawa and Huggins [2, 3] and Basawa and Zhou [4, 5]. More recently, de Saporta et al. [8, 19]
introduces asymmetry and take into account missing data while Blandin [14], Bercu and Blandin
[7], and de Saporta et al. [20] study an extension with random coefficients. Bitseki-Penda and
Djellout [10] prove deviation inequalities and moderate deviations for estimators of parameters in
linear BAR processes. From a nonparametric point of view, we mention the applications of [12]
(Section 4) where deviations inequalities are derived for the Nadaraya-Watson type estimators of
f0 and f1 with constant and known functions σ0 and σ1). A detailed nonparametric study of these
estimators is carried out in Bitseki Penda and Olivier [13].

We focus here on the nonparametric estimation of the characteristics of the tagged-branch chain
ν and Q and on the T-transition P, based on the observation of (Xu)u∈Tn for some n ≥ 1. Such an
approach can be helpful for the subsequent study of goodness-of-fit tests for instance, when one
needs to assess whether the data (Xu)u∈T are generated by a model of the form (19) or not.

We set G0(x) =
∫
S
G(x, y)dy and G1(y) =

∫
S
G(x, y)dx for the marginals of G, and define, for

any M > 0,

δ(M) = min
{

inf
|x|≤M

G0(x), inf
|x|≤M

G1(x)
}
.

Assumption 12. For some ` > 0 and σ > 0, we have

max
{

sup
x
|f0(x)|, sup

x
|f1(x)|

}
≤ ` <∞
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and

min
{

inf
x
σ0(x), inf

x
σ1(x)

}
≥ σ > 0.

Moreover, G0 and G1 are bounded and there exists µ > 0 and M > `/σ such that δ
(
(µ+ `)/σ

)
> 0

and 2(Mσ − `)δ(M) > 1/2.

Using that G0 and G1 are bounded, and (20), we readily check that Assumption 6 is satisfied.
We also have Assumption 2 with n(dx) = dx and

Q(x, y) = 1
2

(
G0

(
y − f0(x)) +G1

(
y − f1(x)

))
,

Assumption 12 implies Assumption 3 as well, as follows from an straightfroward adaptation of
Lemma 25 in Bitseki Penda and Olivier [13]. Denoting by ν the invariant probability of Q we also
have m(ν) > 0 with m(ν) defined by (11), for every D ⊂ [−µ, µ], see the proof of Lemma 24 in
[13]. As a consequence, the results stated in Theorems 8, 9 and 10 of Section 3 carry over to the
setting of BAR processes satisfying Assumption 12. We thus readily obtain smoothness-adaptive
estimators estimators for ν,Q and P in this context and these results are new.

4.3. Numerical illustration. We focus on the growth-fragmentation model and reconstruct its

size-dependent splitting rate. We consider a perturbation of the baseline splitting rate B̃(x) =
x/(5− x) over the range x ∈ S = (0, 5) of the form

B(x) = B̃(x) + cT
(
2j(x− 7

2 )
)

with (c, j) = (3, 1) or (c, j) = (9, 4), and where T (x) = (1 + x)1{−1≤x<0} + (1 − x)1{0≤x≤1} is a
tent shaped function. Thus the trial splitting rate with parameter (c, j) = (9, 4) is more localized
around 7/2 and higher than the one associated with parameter (c, j) = (3, 1). One can easily check

that both B̃ and B belong to the class C(r, L) for an appropriate choice of (r, L). For a given B,
we simulate M = 100 Monte Carlo trees up to the generation n = 15. To do so, we draw the size
at birth of the initial cell X∅ uniformly in the interval [1.25, 2.25], we fix the growth rate τ = 2 and
given a size at birth Xu = x, we pick Xu0 according to the density y ; QB(x, y) defined by (17)
using a rejection sampling algorithm (with proposition density y ; QB̃(x, y)) and set Xu1 = Xu0.
Figure 1 illustrates quantitatively how fast the decorrelation on the tree occurs.

Computational aspects of statistical estimation using wavelets can be found in Härdle et al.,

Chapter 12 of [30]. We implement the estimator B̂n defined by (18) using the Matlab wavelet tool-
box. We take a wavelet filter corresponding to compactly supported Daubechies wavelets of order
8. As specified in Theorem 11, the maximal resolution level J is chosen as 1

2 log2(|Tn|/ log |Tn|)
and we threshold the coefficients ν̂λ,n which are too small by hard thresholding. We choose the

threshold proportional to
√

log |Tn|/|Tn| (and we calibrate the constant to 10 or 15 for respectively

the two trial splitting rates, mainly by visual inspection). We evaluate B̂n on a regular grid of
D = [1.5, 4.8] with mesh ∆x = (|Tn|)−1/2. For each sample we compute the empirical error

ei =
‖B̂(i)

n −B‖∆x
‖B‖∆x

, i = 1, . . . ,M,

where ‖ · ‖∆x denotes the discrete L2-norm over the numerical sampling and sum up the results

through the mean-empirical error ē = M−1
∑M
i=1 ei, together with the empirical standard devia-

tion
(
M−1

∑M
i=1(ei − ē)2

)1/2
.
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Figure 1. Sample autocorrelation of ordered (Xu0, u ∈ Gn−1) for n = 15. Note:
due to the binary tree structure the lags are {4, 6, 6, . . .}. As expected, we observe
a fast decorrelation.

Table 1 displays the numerical results we obtained, also giving the compression rate (columns %)
defined as the number of wavelet coefficients put to zero divided by the total number of coefficients.
We choose an oracle error as benchmark: the oracle estimator is computed by picking the best
resolution level J∗ with no coefficient thresholded. We also display the results when constructing

B̂n with Gn (instead of Tn), in which case an analog of Theorem 11 holds. For the large spike, the
thresholding estimator behaves quite well compared to the oracle for a large spike and achieves the
same performance for a high spike.

n = 12 n = 15
Oracle Threshold est. Oracle Threshold est.

Mean
(sd.)

J∗ Mean
(sd.)

% Mean
(sd.)

J∗ Mean
(sd.)

%

Large
spike

Tn 0.0677
(0.0159)

5 0.1020
(0.0196)

96.6 0.0324
(0.0055)

6 0.0502
(0.0055)

97.1

Gn 0.0933
(0.0202)

5 0.1454
(0.0267)

97.9 0.0453
(0.0081)

6 0.0728
(0.0097)

96.7

High
spike

Tn 0.1343
(0.0180)

7 0.1281
(0.0163)

97.4 0.0586
(0.0059)

8 0.0596
(0.0060)

97.7

Gn 0.1556
(0.0222)

7 0.1676
(0.0228)

97.7 0.0787
(0.0079)

8 0.0847
(0.0087)

97.9

Table 1. Mean empirical relative error ē and its standard deviation, with respect
to n, for the trial splitting rate B specified by (c, j) = (3, 1) (large spike) or
(c, j) = (4, 9) (high spike) reconstructed over the interval D = [1.5, 4.8] by the

estimator B̂n. Note: for n = 15, 1
2 |Tn| = 32 767 and 1

2 |Gn| = 16 384; for n = 12,
1
2 |Tn| = 4 095 and 1

2 |Gn| = 2 048.
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Figure 2 and Figure 3 show the reconstruction of the size-dependent splitting rate B and
the invariant measure νB in the two cases (large or high spike) for one typical sample of size
1
2 |Tn| = 32 767. In both cases, the spike is well reconstructed and so are the discontinuities in the

derivative of B. As expected, the spike being localized around 7
2 for B, we detect it around 7

4 for
the invariant measure of the sizes at birth νB . The large spike concentrates approximately 50% of
the mass of νB whereas the large only concentrates 20% of the mass of νB .

Figure 2. Large spike: reconstruction of the trial splitting rate B specified by
(c, j) = (3, 1) over D = [1.5, 4.8] and reconstruction of νB over D/2 based on one
sample (Xu, u ∈ Tn) for n = 15 (i.e. 1

2 |Tn| = 32 767).

Figure 3. High spike : reconstruction of the trial splitting rate B specified by
(c, j) = (9, 4) over D = [1.5, 4.8] and reconstruction of νB over D/2 based on one
sample (Xu, u ∈ Tn) for n = 15 (i.e. 1

2 |Tn| = 32 767).

5. Proofs

5.1. Proof of Theorem 4 (i). Let g : S → R such that |g|1 < ∞. Set ν(g) =
∫
S
g(x)ν(dx) and

g̃ = g − ν(g). Let n ≥ 2. By the usual Chernoff bound argument, for every λ > 0, we have

(21) P
( 1

|Gn|
∑
u∈Gn

g̃(Xu) ≥ δ
)
≤ exp

(
− λ|Gn|δ

)
E
[

exp
(
λ
∑
u∈Gn

g̃(Xu)
)]
.
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Step 1. We have

E
[

exp
(
λ
∑
u∈Gn

g̃(Xu)
)∣∣∣Fn−1

]
= E

[ ∏
u∈Gn−1

exp
(
λ
(
g̃(Xu0) + g̃(Xu1)

))∣∣∣Fn−1

]
=

∏
u∈Gn−1

E
[

exp
(
λ
(
g̃(Xu0) + g̃(Xu1)

))∣∣∣Fn−1

]
thanks to the conditional independence of the (Xu0, Xu1)u∈Gn−1

given Fn−1, as follows from Defi-
nition 1. We rewrite this last term as∏

u∈Gn−1

E
[

exp
(
λ
(
g̃(Xu0) + g̃(Xu1)− 2Qg̃(Xu)

))∣∣Fn−1

]
exp

(
λ2Qg̃(Xu)

)
,

inserting the Fn−1-measurable random variable 2Qg̃(Xu) for u ∈ Gn−1. Moreover, the bifurcating
struture of (Xu)u∈T implies

(22) E
[
g̃(Xu0) + g̃(Xu1)− 2Qg̃(Xu)

∣∣Fn−1

]
= 0, u ∈ Gn−1,

since Q = 1
2 (P0 + P1). We will also need the following bound, proof of which is delayed until

Appendix

Lemma 13. Work under Assumptions 2 and 3. For all r = 0, . . . , n−1 and u ∈ Gn−r−1, we have∣∣2r(Qr g̃(Xu0) + Qr g̃(Xu1)− 2Qr+1g̃(Xu)
)∣∣ ≤ c1|g|∞

and

E
[(

2r
(
Qr g̃(Xu0) + Qr g̃(Xu1)− 2Qr+1g̃(Xu)

))2∣∣∣Fn−r−1

]
≤ c2σ2

r(g),

with c1 = 4 max
{

1 +Rρ,R(1 + ρ)
}

, c2 = 4 max{|Q|D, 4|Q|2D, 4R2(1 + ρ)2} and

(23) σ2
r(g) =

{
|g|22 r = 0,
min

{
|g|2122r, |g|2∞(2ρ)2r

}
r = 1, . . . , n− 1.

(Recall that |Q|D = supx∈S,y∈D Q(x, y) and R, ρ are defined via Assumption 3.)

In view of (22) and Lemma 13 for r = 0, we plan to use the bound

(24) E
[

exp(λZ)
]
≤ exp

( λ2σ2

2(1− λM/3)

)
valid for any λ ∈ (0, 3/M), any random variable Z such that |Z| ≤ M , E[Z] = 0 and E[Z2] ≤ σ2.
Thus, for any λ ∈

(
0, 3/c1|g|∞

)
and any u ∈ Gn−1, with Z = g̃(Xu0) + g̃(Xu1) − 2Qg̃(Xu), we

obtain

E
[

exp
(
λ
(
g̃(Xu0) + g̃(Xu1)− 2Qg̃(Xu)

))∣∣∣Fn−1

]
≤ exp

( λ2c2σ
2
0(g)

2(1− λc1|g|∞/3)

)
.

It follows that

(25) E
[

exp
(
λ
∑
u∈Gn

g̃(Xu)
)∣∣∣Fn−1

]
≤ exp

( λ2c2σ
2
0(g)|Gn−1|

2(1− λc1|g|∞/3)

) ∏
u∈Gn−1

exp
(
λ2Qg̃(Xu)

)
.

Step 2. We iterate the procedure in Step 1. Conditioning with respect to Fn−2, we need to control

E
[ ∏
u∈Gn−1

exp
(
λ2Qg̃(Xu)

)∣∣∣Fn−2

]
,
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and more generally, for 1 ≤ r ≤ n− 1:

E
[ ∏
u∈Gn−r

exp
(
λ2rQr g̃(Xu)

)∣∣∣Fn−r−1

]
=

∏
u∈Gn−r−1

E
[

exp
(
λ2r
(
Qr g̃(Xu0) + Qr g̃(Xu1)− 2Qr+1g̃(Xu)

))∣∣∣Fn−r−1

]
× exp

(
λ2r+1Qr+1g̃(Xu)

)
,

the last equality being obtained thanks to the conditional independence of the (Xu0, Xu1)u∈Gn−r−1

given Fn−r−1. We plan to use (24) again: for u ∈ Gn−r−1, we have

E
[
2r
(
Qr g̃(Xu0) + Qr g̃(Xu1)− 2Qr+1g̃(Xu)

)∣∣Fn−r−1

]
= 0

and the conditional variance given Fn−r−1 can be controlled using Lemma 13. Using recursively
(24), for r = 1, . . . , n− 1,

E
[ ∏
u∈Gn−1

exp
(
λ2Qg̃(Xu)

)∣∣∣F0

]
≤
n−1∏
r=1

exp
(λ2c2σ

2
r(g)|Gn−r−1|

2
(
1− λc1|g|∞/3

) ) exp
(
λ2nQng̃(X∅)

)
for λ ∈

(
0, 3/c1|g|∞

)
. By Assumption 3,

exp
(
λ2nQng̃(X∅)

)
≤ exp(λ2nR(2|g|∞)ρn) ≤ exp(λ2R|g|∞)

since ρ < 1/2. In conclusion

E
[ ∏
u∈Gn−1

exp
(
λ2Qg̃(Xu)

)]
≤ exp

(λ2c2
∑n−1
r=1 σ

2
r(g)|Gn−r−1|

2
(
1− λc1|g|∞/3

) )
exp(λ2R|g|∞).

Step 3. Let 1 ≤ ` ≤ n− 1. By definition of σ2
r(g) – recall (23) – and using the fact that (2ρ)2r ≤ 1,

since moreover |Gn−r−1| = 2n−r−1, we successively obtain

n−1∑
r=1

σ2
r(g)2n−r−1 ≤ 2n−1

(
|g|21

∑̀
r=1

2r + |g|2∞
n−1∑
r=`+1

2−r(2ρ)2r
)

≤ 2n
(
|g|212` + |g|2∞2−`

)
≤ |Gn|φn(g)

for an appropriate choice of `, with φn(g) = min1≤`≤n−1

(
|g|212` + |g|2∞2−`

)
. It follows that

(26) E
[ ∏
u∈Gn−1

exp
(
λ2Qg̃(Xu)

)]
≤ exp

( λ2c2|Gn|φn(g)

2
(
1− λc1|g|∞/3

) + λ2R|g|∞
)
.

Step 4. Putting together the estimates (25) and (26) and coming back to (21), we obtain

P
( 1

|Gn|
∑
u∈Gn

g̃(Xu) ≥ δ
)
≤ exp

(
− λ|Gn|δ +

λ2c2|Gn|Σ1,n(g)

2
(
1− λc1|g|∞/3

) + λ2R|g|∞
)

with Σ1,n(g) = |g|22 + φn(g) for n ≥ 2 and Σ1,1(g) = σ2
0(g) = |g|22. Since δ is such that 2R|g|∞ ≤

|Gn|δ/2, we obtain

P
( 1

|Gn|
∑
u∈Gn

g̃(Xu) ≥ δ
)
≤ exp

(
− λ|Gn|

δ

2
+

λ2c2|Gn|Σ1,n(g)

2
(
1− λc1|g|∞/3

)).
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The admissible choice λ = δ/
(

2
3δc1|g|∞ + 2c2Σ1,n(g)

)
yields the result.

5.2. Proof of Theorem 4 (ii). Step 1. Similarly to (21), we plan to use

(27) P
( 1

|Tn|
∑
u∈Tn

g̃(Xu) ≥ δ
)
≤ exp

(
− λ|Tn|δ

)
E
[

exp
(
λ
∑
u∈Tn

g̃(Xu)
)]

for a specific choice of λ > 0. We first need to control

E
[

exp
(
λ
∑
u∈Tn

g̃(Xu)
)∣∣Fn−1

]
=

∏
u∈Tn−1

exp
(
λg̃(Xu)

)
E
[

exp
(
λ
∑
u∈Gn

g̃(Xu)
)∣∣∣Fn−1

]
.

Using (25) to control E
[

exp
(
λ
∑
u∈Gn g̃(Xu)

)∣∣Fn−1

]
, we obtain

E
[

exp
(
λ
∑
u∈Tn

g̃(Xu)
)∣∣∣Fn−1

]
≤ exp

( λ2c2σ
2
0(g)|Gn−1|

2(1− λc1|g|∞/3)

) ∏
u∈Gn−1

exp
(
λ2Qg̃(Xu)

) ∏
u∈Tn−1

exp
(
λg̃(Xu)

)
.

Step 2. We iterate the procedure. At the second step, conditioning w.r.t. Fn−2, we need to control

E
[ ∏
u∈Tn−2

exp
(
λg̃(Xu)

) ∏
u∈Gn−1

exp
(
λg̃(Xu) + 2λQg̃(Xu)

)∣∣∣Fn−2

]
and more generally, at the (r + 1)-th step (for 1 ≤ r ≤ n− 1), we need to control

E
[ ∏
u∈Tn−r−1

exp
(
λg̃(Xu)

) ∏
u∈Gn−r

exp
(
λ

r∑
m=0

2mQmg̃(Xu)
)∣∣∣Fn−r−1

]

=
∏

u∈Tn−r−2

exp
(
λg̃(Xu)

) ∏
u∈Gn−r−1

exp
(
λ

r+1∑
m=0

2mQmg̃(Xu)
)

× E
[

exp
(
λΥr(Xu, Xu0, Xu1)

)∣∣Fn−r−1

]
,

where we set

Υr(Xu, Xu0, Xu1) =

r∑
m=0

2m
(
Qmg̃(Xu0) + Qmg̃(Xu1)− 2Qm+1g̃(Xu)

)
.

This representation successively follows from the Fn−r−1-measurability of the random variable∏
u∈Tn−r−1

exp
(
λg̃(Xu)

)
, the identity∏

u∈Gn−r

exp
(
F (Xu)

)
=

∏
u∈Gn−r−1

exp
(
F (Xu0) + F (Xu1)

)
,

the independence of (Xu0, Xu1)u∈Gn−r−1
conditional on Fn−r−1 and finally the introduction of the

term 2
∑r
m=0 2mQm+1g̃(Xu).

We have, for u ∈ Gn−r−1

E
[
Υr(Xu, Xu0, Xu1)

∣∣Fn−r−1

]
= 0,

and we prove in Appendix the following bound
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Lemma 14. For any r = 1, . . . , n− 1, u ∈ Gn−r−1, we have

|Υr(Xu, Xu0, Xu1)| ≤ c3|g|∞

and

E
[
Υr(Xu, Xu0, Xu1)2

∣∣Fn−r−1

]
≤ c4σ2

r(g) <∞

where c3 = 4R(1 + ρ)(1− 2ρ)−1, c4 = 12 max
{
|Q|D, 16|Q|2D, 4R2(1 + ρ)2(1− 2ρ)−2

}
and

(28) σ2
r(g) = |g|22 + min

`≥1

(
|g|2122(`∧r) + |g|2∞(2ρ)2`1{r>`}

)
.

(Recall that |Q|D = supx∈S,y∈D Q(x, y) and R, ρ are defined via Assumption 3.)

In the same way as for Step 2 in the proof of Theorem 4 (i), we apply recursively (24) for
r = 1, . . . , n− 1 to obtain

E
[

exp
(
λ
∑
u∈Tn

g̃(Xu)
)∣∣F0

]
≤
n−1∏
r=0

exp
(c4λ2σ2

r(g)|Gn−r−1|
2(1− c′3λ|g|∞/3)

)
exp

(
λ

n∑
m=0

2mQmg̃(X∅)
)
,

if λ ∈
(
0, 3/c′3|g|∞

)
with c′3 = max{c1, c3} = 4 max{1 + Rρ,R(1 + ρ)(1− 2ρ)−1} and σ2

0(g) = |g|22
in order to include Step 1 (we use c4 ≥ c2 as well). Now, by Assumption 3, this last term can be
bounded by

exp
(
λ

n∑
m=0

2m(R|g̃|∞ρm)
)
≤ exp

(
λ2R(1− 2ρ)−1|g|∞

)
since ρ < 1/2. Since |Gn−r−1| = 2n−r−1, by definition of σ2

r(g) – recall (28) – for any 1 ≤ ` ≤ n−1
and using moreover that (2ρ)` ≤ 1, we obtain

n−1∑
r=0

σ2
r(g)|Gn−r−1|

≤ 2n−1

(
|g|22

n−1∑
r=0

2−r + |g|21
(∑̀
r=1

22r2−r +

n−1∑
r=`+1

22`2−r
)

+ |g|2∞
n−1∑
r=`+1

2−r
)

≤ |Tn|Σ1,n(g),

where Σ1,n(g) is defined in (3). Thus

E
[

exp
(
λ
∑
u∈Tn

g̃(Xu)
)]
≤ exp

( c4λ
2|Tn|Σ1,n(g)

2
(
1− c′3λ|g|∞/3

) + λ2R(1− 2ρ)−1|g|∞
)
.

Step 3. Coming back to (27), for δ > 0 such that 2R(1− 2ρ)−1|g|∞ ≤ |Tn|δ/2, we obtain

P
( 1

|Tn|
∑
u∈Tn

g̃(Xu) ≥ δ
)
≤ exp

(
− λ|Tn|

δ

2
+

c4λ
2|Tn|Σ1,n(g)

2
(
1− c′3λ|g|∞/3

)).
We conclude in the same way as in Step 4 of the proof of Theorem 4 (i).
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5.3. Proof of Theorem 5 (i). The strategy of proof is similar as for Theorem 4. Let g : S3 → R
such that |g|1 <∞ and set g̃ = g− ν(Pg). Let n ≥ 2 (if n = 1, set Σ2,1(g) = |Q(Pg)|∞). Introduce
the notation ∆u = (Xu, Xu0, Xu1) for simplicity. For every λ > 0, the usual Chernoff bound reads

(29) P
( 1

|Gn|
∑
u∈Gn

g̃(∆u) ≥ δ
)
≤ exp(−λ|Gn|δ)E

[
exp

(
λ
∑
u∈Gn

g̃(∆u)
)]
.

Step 1. We first need to control

E
[

exp
(
λ
∑
u∈Gn

g̃(∆u)
)∣∣Fn−1

]
= E

[ ∏
u∈Gn−1

exp
(
λ
(
g̃(∆u0) + g̃(∆u1)

))∣∣∣Fn−1

]
=

∏
u∈Gn−1

E
[

exp
(
λ
(
g̃(∆u0) + g̃(∆u1)

))∣∣∣Fn−1

]
using the conditional independence of the (∆u0,∆u1) for u ∈ Gn−1 given Fn−1. Inserting the term
2Q(Pg̃)(Xu), this last quantity ia also equal to∏

u∈Gn−1

E
[

exp
(
λ
(
g̃(∆u0) + g̃(∆u1)− 2Q(Pg̃)(Xu)

))∣∣∣Fn−1

]
exp

(
λ2Q(Pg̃)(Xu)

)
.

For u ∈ Gn−1 we successively have

E
[
g̃(∆u0) + g̃(∆u1)− 2Q(Pg̃)(Xu)

∣∣Fn−1

]
= 0,

|g̃(∆u0) + g̃(∆u1)− 2Q(Pg̃)(Xu)| ≤ 4(1 +Rρ)|g|∞
and

E
[(
g̃(∆u0) + g̃(∆u1)− 2Q(Pg̃)(Xu)

)2∣∣Fn−1

]
≤ 4|Q|D|Pg2|1,

with |Q|D = supx∈S,y∈D Q(x, y) and R, ρ defined via Assumption 3. The first equality is obtained by
conditioning first on Fn then on Fn−1. The last two estimates are obtained in the same line as the
proof of Lemma 13 for r = 0, using in particular Q(Pg2)(x) =

∫
S
Pg2(y)Q(x, y)n(dy) ≤ |Q|D|Pg2|1

since Pg2 vanishes outside D.
Finally, thanks to (24) with Z = g̃(∆u0) + g̃(∆u1)− 2Q(Pg̃)(Xu), we infer

(30) E
[

exp
(
λ
∑
u∈Gn

g̃(∆u)
)∣∣Fn−1

]
≤ exp

( λ24|Q|D|Pg2|1
2(1− λ4(1 +Rρ)|g|∞/3)

) ∏
u∈Gn−1

exp
(
λ2Q(Pg̃)(Xu)

)
for λ ∈

(
0, 3/(4(1 +Rρ)|g|∞)

)
.

Step 2. We wish to control E
[∏

u∈Gn−1
exp

(
λ2Q(Pg̃)(Xu)

)]
. We are back to Step 2 and Step 3 of

the proof of Theorem 4 (i), replacing g̃ by Pg̃, which satisfies ν(Pg̃) = 0. Equation (26) entails

(31) E
[ ∏
u∈Gn−1

exp
(
λ2Q(Pg̃)(Xu)

)]
≤ exp

( λ2c2|Gn|φn(Pg)

2
(
1− λc1|Pg|∞/3

) + λ2R|Pg|∞
)

with φn(Pg) = min1≤`≤n−1

(
|Pg|212` + |Pg|2∞2−`

)
and c1 = 4 max

{
1 + Rρ,R(1 + ρ)

}
, c2 =

4 max{|Q|D, 4|Q|2D, 4R2(1 + ρ)2}.

Step 3. Putting together (30) and (31), we obtain

(32) E
[

exp
(
λ
∑
u∈Gn

g̃(∆u)
)]
≤ exp

( λ2c2|Gn|Σ2,n(g)

2(1− λc1|g|∞/3)
+ λ2R|Pg|∞

)



22 S. VALÈRE BITSEKI PENDA, MARC HOFFMANN AND ADÉLAÏDE OLIVIER

with Σ2,n(g) = |Pg2|1 + φn(Pg) and using moreover |g|∞ ≥ |Pg|∞ and c1 ≥ 4(1 + Rρ). Back to
(29), since 2R|Pg|∞ ≤ |Gn|δ/2 we finally infer

P
( 1

|Gn|
∑
u∈Gn

g(∆u)− ν(Pg) ≥ δ
)
≤ exp

(
− λ|Gn|

δ

2
+

λ2c2|Gn|Σ2,n(g)

2(1− λc1|g|∞/3)

)
.

We conclude in the same way as in Step 4 of the proof of Theorem 4 (i).

5.4. Proof of Theorem 5 (ii). In the same way as before, for every λ > 0,

(33) P
( 1

|Tn−1|
∑

u∈Tn−1

g̃(∆u) ≥ δ
)
≤ e−λ|Tn−1|δ E

[
exp

(
λ
∑

u∈Tn−1

g̃(∆u)
)]
.

Introduce Σ′2,0(g) = |Pg2|1 and

Σ′2,n(g) = |Pg2|1 + inf
`≥1

(
|Pg|212`∧(n−1) + |Pg|2∞2−`1{`<n−1}

)
, for n ≥ 1.

It is not difficult to check that (32) is still valid when replacing Σ2,n by Σ′2,n. We plan to successively
expand the sum over the whole tree Tn−1 into sums over each generation Gm for m = 0, . . . , n− 1,
apply Hölder inequality, apply inequality (32) repeatedly (with Σ′2,m) together with the bound

n−1∑
m=0

|Gm|Σ′2,m(g) ≤ |Tn−1|Σ2,n−1(g).

We thus obtain

E
[

exp
(
λ
∑

u∈Tn−1

g̃(∆u)
)]

=E
[ n−1∏
m=0

exp
(
λ
∑
u∈Gm

g̃(∆u)
)]

≤
(
E
[

exp
(
nλg̃(∆∅)

)] n−1∏
m=1

E
[

exp
(
nλ

∑
u∈Gm

g̃(∆u)
)])1/n

≤
(

exp
(
nλ2|g|∞

) n−1∏
m=1

exp
( (nλ)2c2|Gm|Σ′2,m(g)

2
(
1− (nλ)c1|g|∞/3

) + (nλ)2R|Pg|∞
))1/n

≤ exp
(λ2c2n|Tn−1|Σ2,n−1(g)

2(1− c1(nλ)|g|∞/3)
+ 2λ(nR|Pg|∞ + |g|∞)

)
.

Coming back to (33) and using 2(nR|Pg|∞ + |g|∞) ≤ |Tn−1|δ/2, we obtain

P
( 1

|Tn−1|
∑

u∈Tn−1

g̃(∆u) ≥ δ
)
≤ exp

(
− λ|Tn−1|

δ

2
+
λ2c2n|Tn−1|Σ2,n−1(g)

2(1− (nλ)c1|g|∞/3)

)
.

We conclude in the same way as in Step 4 of the proof of Theorem 4 (i).

5.5. Proof of Theorem 8. Put c(n) = (log |Tn|/|Tn|)1/2 and note that the maximal resolution
J = Jn is such that 2Jn ∼ c(n)−2. Theorem 8 is a consequence of the general theory of wavelet
threshold estimators, see Kerkyacharian and Picard [32]. We first claim that the following moment
bounds and moderate deviation inequalities hold: for every p ≥ 1,

(34) E
[
|ν̂λ,n − νλ|p

]
. c(n)p for every |λ| ≤ Jn

and

(35) P
(
|ν̂λ,n − νλ| ≥ pκc(n)

)
≤ c(n)2p for every |λ| ≤ Jn
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provided κ > 0 is large enough, see Condition (37) below. In turn, we have Conditions (5.1)
and (5.2) of Theorem 5.1 of [32] with Λn = Jn (with the notation of [32]). By Corollary 5.1 and
Theorem 6.1 of [32] we obtain Theorem 8.

It remains to prove (34) and (35). We plan to apply Theorem 4 (ii) with g = ψλ and δ = δn =
pκc(n). First, we have |ψ1

λ|p ≤ Cp2|λ|(1/2−1/p) for p = 1, 2,∞ by (6), so one readily checks that for

κ ≥ 4
pR(1− 2ρ)−1C∞(log |Tn|)−1,

the condition δn ≥ 4R(1− 2ρ)−1|ψ1
λ|∞|Tn|−1 is satisfied, and this is always true for large enough

n. Furthermore, since 2|λ| ≤ 2Jn ≤ c(n)−2 it is not difficult to check that

Σ1,n(ψ1
λ) = |ψ1

λ|22 + min
1≤`≤n−1

(
|ψ1
λ|212` + |ψ1

λ|2∞2−`
)
≤ C(36)

for some C > 0 and thus κ3Σ1,n(ψλ) ≤ κ3C = C ′ say. Also κ4|ψ1
λ|∞δn ≤ κ4C∞2|λ|/2c(n)pκ ≤

C ′′pκ, where C ′′ > 0 does not depend on n since 2|λ|/2 ≤ c(n)−1. Theorem 4 (ii) yields

P
(
|ν̂λ,n − νλ| ≥ pκc(n)

)
≤ 2 exp

(
− |Tn|p

2κ2c(n)2

C ′ + C ′′pκ

)
≤ c(n)2p

for κ such that

(37) κ ≥ 1
2C
′′ +

√
(C ′′)2 + 4

pC
′

and large enough n. Thus (35) is proved. Straightforward computations show that (34) follows
using E

[
|ν̂λ,n − νλ|p

]
=
∫∞

0
pup−1P

(
|ν̂λ,n − νλ| ≥ u

)
du and (35) again. The proof of Theorem 8 is

complete.

5.6. Preparation for the proof of Theorem 9. For h : S2 → R, define |h|∞,1 =

∫
S

sup
x∈S
|h(x, y)|dy.

For n ≥ 2, set also

(38) Σ3,n(h) = |h|22 + min
1≤`≤n−1

(
|h|212` + |h|2∞,12−`

)
.

Recall that under Assumption 3 with n(dx) = dx, we set fQ(x, y) = ν(x)Q(x, y). Before proving
Theorem 9, we first need the following preliminary estimate

Lemma 15. Work under Assumption 2 with n(dx) = dx and Assumption 3. Let h : D2 → R be
such that |hfQ|1 <∞. For every n ≥ 1 and for any δ ≥ 4|h|∞(Rn+ 1)|T?n|−1, we have

P
( 1

|T?n|
∑
u∈T?n

h(Xu− , Xu)− 〈h, fQ〉 ≥ δ
)
≤ exp

( −n−1|T?n|δ2

κ5Σ3,n(h) + κ2|h|∞δ

)
where T?n = Tn \ {∅} and κ5 = max{|Q|D, |Q|2D}κ1(Q,D).

Proof. We plan to apply Theorem 5 (ii) to g(x, x0, x1) = 1
2

(
h(x, x0) + h(x, x1)

)
. Since Q = 1

2 (P0 +

P1) we readily have Pg(x) =
∫
D
h(x, y)Q(x, y)dy. Moreover, in that case,

1

|Tn−1|
∑

u∈Tn−1

g(Xu, Xu0, Xu1) =
1

|T?n|
∑
u∈T?n

h(Xu− , Xu)

and
∫
S
Pg(x)ν(x)dx =

∫
S×D h(x, y)Q(x, y)ν(x)dxdy = 〈h, fQ〉. We then simply need to estimate

Σ2,n(g) defined by (4). It is not difficult to check that the following estimates hold

|Pg|21 ≤ |Q|2D|h|21, |Pg|2∞ ≤ |Q|2D|h|2∞,1 and |Pg2|1 ≤ |Q|D|h|22
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since (Pg2)(x) ≤
∫
D
h(x, y)2Q(x, y)dy. Thus Σ2,n(g) ≤ max{|Q|D, |Q|2D}Σ3,n(h) and the result

follows. �

5.7. Proof of Theorem 9, upper bound. Step 1. We proceed as for Theorem 8. Putting c(n) =
(n log |T?n|/|T?n|)1/2 and noting that the maximal resolution J = Jn is such that 2dJn ∼ c(n)−2

with d = 2, we only have to prove that for every p ≥ 1,

(39) E
[
|f̂λ,n − fλ|p

]
. c(n)p for every |λ| ≤ Jn

and

(40) P
(
|f̂λ,n − fλ| ≥ pκc(n)

)
≤ c(n)2p for every |λ| ≤ Jn.

We plan to apply Lemma 15 with h(x, y) = ψdλ(x, y) = ψ2
λ(x, y) and δ = δn = pκc(n). With the

notation used in the proof of Theorem 8 one readily checks that for

κ ≥ 4
p (1− 2ρ)−1C∞(Rn+ 1)(log |T?n|)−1

the condition δn ≥ 4|ψ2
λ|∞(Rn + 1)|T?n|−1 is satisfied, and this is always true for large enough n

and

(41) κ ≥ 4
p (1− 2ρ)−1C∞(2R+ 1).

Furthermore, since |ψdλ|p ≤ Cp2
d|λ|(1/2−1/p) for p = 1, 2,∞ and 2d|λ| ≤ 2dJn ≤ c(n)−2 we can

easily check

Σ3,n(ψdλ) = |ψdλ|22 + min
1≤`≤n−1

(
|ψdλ|212` + |ψdλ|2∞,12−`

)
≤ C

for some C > 0, and thus κ5Σ3,n(g) ≤ κ5C = C ′ say. Also, κ2|ψdλ|∞δn ≤ κ2C∞2d|λ|/2c(n)pκ ≤
C ′′pκ, where C ′′ does not depend on n. Applying Lemma 15, we derive

P
(
|f̂λ,n − fλ| ≥ pκc(n)

)
≤ 2 exp

(
− n−1|Tn−1|p2κ2c(n)2

C ′ + C ′′pκ

)
≤ c(n)2p

as soon as κ satisfies (41) and (37) (with appropriate changes for C ′ and C ′′). Thus (40) is proved
and (39) follows likewise. By [32] (Corollary 5.1 and Theorem 6.1), we obtain

(42) E
([
‖f̂n − fQ‖pLp(D2)

])1/p

.
(n log |Tn|
|Tn|

)α2(s,p,π)

as soon as ‖fQ‖Bsπ,∞(D2) is finite, as follows from fQ(x, y) = Q(x, y)ν(x) and the fact that ‖ν‖Bsπ,∞(D)

is finite too. The last statement can be readily seen from the representation ν(x) =
∫
S
ν(y)Q(y, x)dy

and the definition of Besov spaces in terms of moduli of continuity, see e.g. Meyer [35] or Härdle
et al. [30], using moreover that π ≥ 1.

Step 2. Since Q(x, y) = fQ(x, y)/ν(x) and Q̂n(x, y) = f̂n(x, y)/max{ν̂n(x), $}, we readily have

|Q̂n(x, y)− Q(x, y)|p . 1
$p

(
|f̂n(x, y)− fQ(x, y)|p +

|fQ|p∞
m(ν)p |max{ν̂n(x), $} − ν(x)|p

)
,

where the supremum for fQ can be restricted over D2. Since m(ν) ≥ $, we have |max{ν̂n(x), $}−
ν(x)| ≤ |ν̂n(x)− ν(x)| for x ∈ D, therefore

‖Q̂n − Q‖pLp(D2) .
1
$p

(
‖f̂n − fQ‖pLp(D2) +

|fQ|p∞
m(ν)p ‖ν − νn‖

p
Lp(D)

)
holds as well. We conclude by applying successively the estimate (42) and Theorem 8.
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5.8. Proof of Theorem 9, lower bound. We only give a brief sketch: the proof follows classical
lower bounds techniques, bounding appropriate statistical distances along hypercubes, see [25, 30]
and more specifically [15, 31, 34] for specific techniques involving Markov chains. We separate the
so-called dense and sparse case.

The dense case ε2 > 0. Let ψλ : D2 → R a family of (compactly supported) wavelets adapted
to the domain D and satisfying Assumption 7. For j such that |Tn|−1/2 . 2−j(s+1), consider the
family

Qε,j(x, y) = |D2|−11D2(x, y) + γ|Tn|−1/2
∑
λ∈Λj

ελψ
2
λ(x, y)

where ε ∈ {−1, 1}Λj and γ > 0 is a tuning parameter (independent of n). Since |ψ2
λ|∞ ≤ C∞2|λ| =

C∞2j and since the number of overlapping terms in the sum is bounded (by some fixed integer
N), we have

γ|Tn|−1/2
∣∣ ∑
λ∈Λj

ελψ
2
λ(x, y)

∣∣ ≤ γ|Tn|−1/2NC∞2j . γ.

This term can be made smaller than |D2|−1 by picking γ sufficiently small. Hence Qε,j(x, y) ≥ 0
and since

∫
ψλ = 0, the family Qε,j(x, y) are all admissible mean transitions with common invariant

measure ν(dx) = 1D(x)dx and belong to a common ball in Bsπ,∞(D2). For λ ∈ Λj , define Tλ :

{−1, 1}Λj → {−1, 1}|Λj | by Tλ(ελ) = −ελ and Tλ(εµ) = εµ if µ 6= λ. The lower bound in the dense
case is then a consequence of the following inequality

(43) lim sup
n

max
ε∈{−1,1}Λj ,λ∈Λj

‖Pnε,j − PnTλ(ε),j‖TV < 1,

where Pnε,j is the law of (Xu)u∈Tn specified by the T-transition Pε,j = Qε,j ⊗ Qε,j and the initial
condition L(X∅) = ν.

We briefly show how to obtain (43). By Pinsker’s inequality, it is sufficient to prove that

Enε,j
[

log
dPnε,j

dPn
Tλ(ε),j

]
can be made arbitrarily small uniformly in n (but fixed). We have

Enε,j
[
− log

dPnTλ(ε),j

dPnε,j

]
= −

∑
u∈Tn

Enε,j
[

log
PTλ(ε),j(Xu, Xu0, Xu1)

Pε,j(Xu, Xu0, Xu1)

]
= −

∑
u∈T?n+1

Enε,j
[

log
QTλ(ε),j(Xu− , Xu)

Qε,j(Xu− , Xu)

]
= −|T?n+1|

∫
D2

log
(QTλ(ε),j(x, y)

Qε,j(x, y)

)
Qε,j(x, y)ν(dx)dy

≤ |T?n+1|
∫
D2

(QTλ(ε),j(x, y)

Qε,j(x, y)
− 1
)2

Qε,j(x, y)ν(dx)dy

using − log(1 + z) ≤ z2 − z valid for z ≥ −1/2 and the fact that ν(dx) is an invariant measure for
both QTλ(ε),j and Qε,j . Noting that

QTλ(ε),j(x, y) = Qε,j(x, y)− 2γ|Tn|−1/2ελψ
2
λ(x, y),

we derive ∣∣∣QTλ(ε),j(x, y)

Qε,j(x, y)
− 1
∣∣∣ ≤ 2γ|Tn|−1/2C∞2j

1− γ|Tn|−1/2NC∞2j
. γ|Tn|−1/2
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hence the squared term within the integral is of order γ2|Tn|−1 so that, by picking γ sufficiently

small, our claim about Enε,j
[

log
dPnε,j

dPn
Tλ(ε),j

]
is proved and (43) follows.

The sparse case ε2 ≤ 0. We now consider the family

Qλ,j(x, y) = |D2|−11D2(x, y) + γ
( log |Tn|
|Tn|

)1/2
ελψ

2
λ(x, y)

with ελ ∈ {−1,+1} and λ ∈ Λj , with j such that
( log |Tn|
|Tn|

)1/2
. 2−j(s+1−2/π). The lower bound

then follows from the representation

log
dPnλ,j
dPnν

= Unλ − ωλ log 2j

where Pnλ,j and Pnν denote the law of (Xu)u∈Tn specified by the T-transitions Qλ,j ⊗Qλ,j and ν⊗ ν
respectively (and the initial condition L(X∅) = ν); the ω’s are such that supn maxλ∈Λj ωλ < 1,

and Unλ are random variables such that Pnλ,j
(
Unλ ≥ −C1

)
≥ C2 > 0 for some C1, C2 > 0. We omit

the details, see e.g. [15, 31, 34].

5.9. Proof of Theorem 10.

Proof of Theorem 10, upper bound. We closely follow Theorem 9 with c(n) = (n log |Tn−1|/|Tn−1|)1/2

and J = Jn such that 2dJn ∼ c(n)−2 with d = 3 now. With δ = δn = pκc(n), for κ ≥
4
p (1− 2ρ)−1C∞(2R+ 1), we have δn ≥ 4|ψ3

λ|∞(Rn+ 1)|T?n|−1.

Furthermore, since |ψdλ|p ≤ Cp2
d|λ|(1/2−1/p) for p = 1, 2,∞ and 2d|λ| ≤ 2dJn ≤ c(n)−2 it is not

difficult to check that

Σ2,n(ψλ) ≤ max
{
|P|D,1|Q|D, |P|2D,1

}
Σ1,n(ψλ) ≤ C

thanks to Assumption 6 and (36), and thus κ1Σ2,n(g) ≤ κ1C = C ′. We also have κ2|ψdλ|∞δn ≤
κ2C∞2|λ|d/2c(n)pκ ≤ C ′′pκ, where C ′′ does not depend on n. Noting that fλ = 〈fP, ψdλ〉 =∫
Pψdλdν, we apply Theorem 5 (ii) to g = ψλ and derive

P
(
|f̂λ,n − fλ| ≥ pκc(n)

)
≤ 2 exp

(
− n−1|Tn−1|p2κ2c(n)2

C ′ + C ′′pκ

)
≤ c(n)2p

for every |λ| ≤ Jn as soon as κ is large enough and the estimate

E
([
‖f̂n − fP‖pLp(D3)

])1/p

.
(n log |Tn|
|Tn|

)α3(s,p,π)

follows thanks to the theory of [32]. The end of the proof follows Step 2 of the proof of Theorem 9
line by line, substituting fQ by fP. �

Proof of Theorem 10, lower bound. This is a slight modification of the proof of Theorem 9, lower
bound. For the dense case ε3 > 0, we consider an hypercube of the form

Pε,j(x, y, z) = |D3|−11D3(x, y, z) + γ|Tn|−1/2
∑
λ∈Λj

ελψ
3
λ(x, y, z)

where ε ∈ {−1, 1}Λj with j such that |Tn|−1/2 . 2−j(s+3/2) and γ > 0 a tuning parameter, while
for the sparse case ε3 ≤ 0, we consider the family

Pλ,j(x, y, z) = |D3|−11D3(x, y, z) + γ
( log |Tn|
|Tn|

)1/2
ελψ

3
λ(x, y, z)
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with ελ ∈ {−1,+1}, λ ∈ Λj , and j such that
( log |Tn|
|Tn|

)1/2
. 2−j(s+3(1/2−1/π)). The proof then goes

along a classical line. �

5.10. Proof of Theorem 11.

Proof of Theorem 11, upper bound. Set v̂n(x) = 1
|Tn|

∑
u∈Tn 1{x/2≤Xu≤x} and vν(x) =

∫ x
x/2

νB(y)dy.

By Propositions 2 and 4 in Doumic et al. [26], one can easily check that supx∈D νB(x) < ∞ and
infx∈D vν(x) > 0 with some uniformity in B by Lemma 2 and 3 in [26]. For x ∈ D, we have∣∣B̂n(x)−B(x)

∣∣p . 1
$p

∣∣ν̂n(x)− νB(x)
∣∣p +

supx∈D νB(x)p

infx∈D vν(x)p
∣∣max{v̂n(x), $} − vν(x)

∣∣p
.
∣∣ν̂n(x)− νB(x)

∣∣p +
∣∣v̂n(x)− vν(x)

∣∣p.
By Theorem 4 (ii) with g = 1{x/2≤·≤x}, one readily checks

E
[
|v̂n(x)− vν(x)|p

]
=

∫ ∞
0

pup−1P
(
|v̂n(x)− vν(x)| ≥ u

)
du . |Tn|−p/2

and this term is negligible. Finally, it suffices to note that ‖νB‖Bsπ,∞(D) is finite as soon as

‖B‖Bsπ,∞(D) is finite. This follows from

νB(x) =

∫
S

νB(y)QB(y, x)dy =
B(2x)

τx

∫ 2x

0

νB(y) exp
(
−
∫ x

y/2

B(2z)

τz
dz
)
dy.

We conclude by applying Theorem 8. �

Proof of Theorem 11, lower bound. This is again a slight modification of the proof of Theorem 9,
lower bound. For the dense case ε1 > 0, we consider an hypercube of the form

Bε,j(x) = B0(x) + γ|Tn|−1/2
∑
λj

εkψ
1
λ(x)

where ε ∈ {−1, 1}Λj with j such that |Tn|−1/2 . 2−j(s+1/2) and γ > 0 a tuning parameter. By
picking B0 and γ in an appropriate way, we have that B0 and Bε,j belong to a common ball in
Bsπ,∞(D) and also belong to C(r, L). The associated T-transition PBε,j defined in (17) admits as
mean transition

QBε,j (x, dy) =
Bε,j(2y)

τy
exp

(
−
∫ y

x/2

Bε,j(2z)

τz
dz
)
1{y≥x/2}dy

which has a unique invariant measure νBε,j . Establishing (43) is similar to the proof of Theorem 9,
lower bound, using the explicit representation for QBε,j with a slight modification due to the fact
that the invariant measures νBε,j and νBTλ(ε),j

do not necessarily coincide. We omit the details.

For the sparse case ε1 ≤ 0, we consider the family

Bλ,j(x) = B0(x) + γ
( log |Tn|
|Tn|

)1/2
ελψ

1
λ(x)

with ελ ∈ {−1,+1}, λ ∈ Λj , with j such that
( log |Tn|
|Tn|

)1/2
. 2−j(s+1/2−1/π). The proof is then

similar. �
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6. Appendix

6.1. Proof of Lemma 13. The case r = 0. By Assumption 3,∣∣g̃(Xu0) + g̃(Xu1)− 2Qg̃(Xu)
∣∣ ≤ 2

(
|g̃|∞ +R|g̃|∞ρ

)
≤ 4(1 +Rρ)|g|∞.

This proves the first estimate in the case r = 0. For u ∈ Gn−1,

E
[(
g̃(Xu0) + g̃(Xu1)− 2Qg̃(Xu)

)2|Fn−1

]
= E

[(
g(Xu0) + g(Xu1)− 2Qg(Xu)

)2|Fn−1

]
≤ E

[(
g(Xu0) + g(Xu1)

)2|Fn−1

]
≤ 2
(
P0g

2(Xu) + P1g
2(Xu)

)
= 4Qg2(Xu)

and for x ∈ S, by Assumption 2,

Qg2(x) =

∫
S

g(y)2Q(x, y)n(dy) ≤ |Q|D|g|22

since g vanishes outside D. Thus

(44) E
[(
g̃(Xu0) + g̃(Xu1)− 2Qg̃(Xu)

)2|Fn−1

]
≤ 4|Q|D|g|22

hence the result for r = 0.

The case r ≥ 1. On the one hand, by Assumption 3,∣∣2r(Qr g̃(Xu0) + Qr g̃(Xu1)− 2Qr+1g̃(Xu)
)∣∣ ≤ 2r

(
2R|g̃|∞(ρr + ρr+1)

)
≤ 4R(1 + ρ)|g|∞(2ρ)r.(45)

On the other hand, since

|Qg(x)| ≤
∫
S

|g(y)|Q(x, y)n(dy) ≤ |Q|D|g|1,

we also have

2r
∣∣Qrg̃(Xu0) + Qrg̃(Xu1)− 2Qr+1g̃(Xu)

∣∣ = 2r
∣∣Qrg(Xu0) + Qrg(Xu1)− 2Qr+1g(Xu)

∣∣
≤ 2r4|Q|D|g|1.(46)

Putting together these two estimates yields the result for the case r ≥ 1.

6.2. Proof of Lemma 14. By Assumption 3,

|Υr(Xu, Xu0, Xu1)| ≤ 2

r∑
m=0

2mR|g̃|∞ρm(1 + ρ) ≤ 4R|g|∞(1 + ρ)(1− 2ρ)−1

since ρ < 1/2. This proves the first bound. For the second bound we balance the estimates (45)
and (46) obtained in the proof of Lemma 13. Let ` ≥ 1. For u ∈ Gn−r−1, we have

|Υr(Xu, Xu0, Xu1)| ≤ I + II + III,

with

I =
∣∣g̃(Xu0) + g̃(Xu1)− Qg̃(Xu)

∣∣,
II =

`∧r∑
m=1

2m
∣∣Qmg̃(Xu0) + Qmg̃(Xu1)− 2Qm+1g̃(Xu)

∣∣,
III =

r∑
m=`∧r+1

2m
∣∣Qmg̃(Xu0) + Qmg̃(Xu1)− 2Qm+1g̃(Xu)

∣∣,
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with III = 0 if ` > r. For u ∈ Gn−r−1, by (44), we successively have

E[I2|Fn−r−1] ≤ 4|Q|D|g|22,

II ≤ 4|Q|D|g|1
`∧r∑
m=1

2m ≤ 8|Q|D|g|12`∧r

by (46), while for ` ≤ r,

III ≤ 4R(1 + ρ)|g|∞
r∑

m=`+1

(2ρ)m ≤ 4R(1 + ρ)(1− 2ρ)−1|g|∞(2ρ)`+1

by (45). The result follows.
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Lattre de Tassigny 75775 Paris Cedex 16, France.

E-mail address: olivier@ceremade.dauphine.fr


	1. Introduction
	1.1. Bifurcating Markov chains
	1.2. Objectives
	1.3. Main results and organisation of the paper

	2. Deviations inequalities for empirical means
	3. Statistical estimation
	3.1. Atomic decompositions and wavelets
	3.2. Estimation of the invariant density 
	3.3. Estimation of the density of the mean transition Q
	3.4. Estimation of the density of the T-transition P

	4. Applications
	4.1. Estimation of the size-dependent splitting rate in a growth-fragmentation model
	4.2. Bifurcating autoregressive process
	4.3. Numerical illustration

	5. Proofs
	5.1. Proof of Theorem 4(i)
	5.2. Proof of Theorem 4(ii)
	5.3. Proof of Theorem 5(i)
	5.4. Proof of Theorem 5(ii)
	5.5. Proof of Theorem 8
	5.6. Preparation for the proof of Theorem 9
	5.7. Proof of Theorem 9, upper bound
	5.8. Proof of Theorem 9, lower bound
	5.9. Proof of Theorem 10
	5.10. Proof of Theorem 11

	6. Appendix
	6.1. Proof of Lemma 13
	6.2. Proof of Lemma 14

	References

