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ARE THERE APPROXIMATE FAST FOURIER TRANSFORMS ON GRAPHS?

Luc Le Magoarou, Rémi Gribonval
Inria

Centre Inria Rennes - Bretagne Atlantique

ABSTRACT

Signal processing on graphs is a recent research domain that seeks
to extend classical signal processing tools such as the Fourier trans-
form to irregular domains given by a graph. In such a graph setting, a
way to rapidly apply the Fourier transform, i.e. a Fast Fourier Trans-
form (FFT), is lacking. In this paper, we propose to leverage the re-
cently introduced Flexible Approximate MUlti-layer Sparse Trans-
forms (FAµST) in order to compute approximate FFTs on graphs.
The approach is first described, then validated on several types of
classical graphs and finally used for fast filtering, showing good po-
tential.

Index Terms— Graphs signal processing, Fast Fourier Trans-
form, matrix factorization.

1. INTRODUCTION

Graphs are ubiquitous in modern data processing. They are indeed
a very convenient mathematical tool to represent complex relation-
ships that arise naturally when dealing with networked data acqui-
sition settings. Recently, methodological tools have been developed
that generalize classical signal processing techniques to graph sig-
nals, i.e. signals that live on the vertices of a graph instead of a
regular grid, as classically assumed in signal processing. Extensive
surveys on this topic can be found in [1] and [2]. In particular, the
Fourier transform of graph signals can be defined, but no fast algo-
rithm has been discovered yet to apply it for general graphs.

In the following, we consider a graph G = (V, E ,W), where
V and E represent the vertex and edge sets of the graph, and W ∈
Rn×n represents the matrix of edge weights (wij being the weight
of an edge connecting vertices i and j), with n = |V| denoting the
number of vertices. We assume the graph is connected. We denote
by L ∈ Rn×n the combinatorial graph Laplacian matrix, and by
U ∈ Rn×n its eigenvector matrix, with associated eigenvalues in
the diagonal matrix Σ ∈ Rn×n.

A Fourier transform on a graph can be defined as the change of
basis from the trivial node basis to the basis defined by the eigenvec-
tors of L, namely the columns of U (see [1] for a more precise def-
inition). Considering a signal x ∈ Rn on the graph, and its Fourier
transform y ∈ Rn we have:

y = UTx
x = Uy.

The matrix U being dense in general, the change of basis costs
O(n2) arithmetic operations in both ways, if done using this ba-
sic matrix multiplication. However in the case of a regular domain
(which can be viewed as a ring graph), it is possible to do the change
of basis in O(n logn) arithmetic operations, using the Fast Fourier
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Transform (FFT) [3], which is a linear algorithm (i.e. only made of
scalar multiplications and additions) exploiting the factorizability of
U into sparse factors1,

U =

J∏
j=1

Sj . (1)

This factorizability is a necessary and sufficient condition for a fast
linear algorithm to exist [4]. In the case of the classical Fourier trans-
form, U can be factorized into J = log2(n) factors, each having 2n
nonzero entries. Unfortunately, it is as of today unclear if such a fac-
torization can be generalized to more complicated graphs structures.
Relaxing the exact factorization constraint, and considering an ap-
proximate form of (1), one can wonder: Are there approximate Fast
Fourier Transforms on graphs?

We recently proposed the Flexible Approximate MUlti-layer
Sparse Transforms (FAµST) [5], an empirical approach to approxi-
mate matrices by such multi-layer sparse products. It allows to get
computationally efficient approximations for matrices of interest.
The approach is based on non-convex optimization techniques and
amounts to a hierarchical factorization of the matrix to approximate.
It has been applied to dictionary learning [6] and inverse problems
[7], showing a good trade-off between accuracy and computational
complexity.

Such an approach can be applied to the Fourier matrix U of a
graph, in order to try and give an answer to the question asked in
this paper. This could be of direct practical interest in applications
where the same Fourier matrix has to be applied to a great num-
ber of signals. This situation occurs for example when time-varying
signals defined on a static graph have to be manipulated in the fre-
quency domain (see [8, section VI.A] for an example application of
this type).
Objective and contributions. Here, our goal is to show that U
can be approximated by a FAµST for a wide variety of graphs, thus
defining an approximate FFT for the considered graph. This is done
by modifying the previously proposed multi-layer sparse factoriza-
tion approach [5] to handle the fact that the FAµST has to diagonal-
ize approximately the Laplacian matrix L. We propose in this paper
an approach that allows to get FAµSTs with computational complex-
ities O(nα), 1 < α < 2, approximating well the true Fourier trans-
form of many classical families of graphs as shown in sections 3.1
and 3.2. Moreover, it shows potential for concrete applications such
as fast approximate filtering, as attested in section 3.3.

2. OPTIMIZATION FRAMEWORK
2.1. Algorithm

Our goal is to compute a FAµST Û =
∏J
j=1 Sj that approximates

well the graph Fourier matrix U. One possibility to do so is to di-
rectly factorize U into sparse factors, as is done in [7, Algorithm 1]

1The product being taken from right to left:
∏N
i=1 Ai = AN · · ·A1



in the case of inverse problems. We refer to this approach as unsu-
pervised (approximate) factorization in the remaining of the paper.
However, such a direct factorization does not take into account the
fact that the approximate Fourier matrix Û has to diagonalize ap-
proximately the Laplacian L. We propose next a supervised (approx-
imate) factorization of the Fourier matrix, that considers the diago-
nalization of L. The optimization problem at hand is the following:

minimize
S1,...,SJ ,D

1
4

∥∥L− SJ . . .S1DST1 . . .S
T
J

∥∥2
F

subject to Sj ∈ Sj , ∀j ∈ {1, . . . , J}
D ∈ D,

(2)

where the Sjs are sets of sparse matrices and D is a set of diago-
nal matrices. This problem actually amounts to try and diagonalize
the Laplacian matrix L by a FAµST

∏J
j=1 Sj . It is a non-convex

and non-smooth problem, that can be tackled using a Proximal Al-
ternating Linearized Minimization (PALM) [9] algorithm, with con-
vergence guarantees to a stationary point. Such an algorithm up-
dates alternatively each factor by a projected gradient descent step.
However, the high number of local minima renders the problem very
dependent to initialization.

As first introduced in our previous work [6] for a related prob-
lem, instead of directly tackling the problem (2), we propose to re-
sort to a strategy in which the true Fourier matrix U is factorized
hierarchically. The strategy is to start from the true Fourier matrix
U , T0, and factorize it in two factors: U ≈ T1S1, where T1 is
called the residual and S1 is sparse. The residual is then iteratively
factorized: Ti−1 ≈ TiSi, where ‖Ti‖0 + ‖Si‖0 < ‖Ti−1‖0 in
order to make complexity savings at each step (‖A‖0 being a short-
hand for ‖vec(A)‖0). A global optimization step is inserted be-
tween each 2-factorization in order to stay close to diagonalizing the
Laplacian matrix L. This global optimization handles the following
subproblem (for increasing values of i):

minimize
S1,...,Si,Ti,D

1
4

∥∥L−TiSi . . .S1DST1 . . .S
T
i TT

i

∥∥2
F

subject to Sj ∈ Sj , ∀j ∈ {1, . . . , i}
Ti ∈ Ti, D ∈ D

(3)

The structure of the algorithm is given in Algorithm 1. The main
steps of this algorithm (lines 3 and 4) use PALM, which amounts to
alternate updates of the factors by projected gradient steps. Expres-
sions of the projection operators associated to sets of sparse matrices
are given in [5], as well as expressions of the gradients implicit in
line 3. Expressions of the gradient implicit in line 4 are not given
here for brevity reasons, but easily calculated with basic algebra.For
a broader exposition of PALM and its application to FAµST, see [5].

Algorithm 1 Supervised hierarchical matrix factorization for FFT
on graphs
Input: Fourier matrix U; Laplacian L; eigenvalues Σ; desired

number of factors J ; constraint sets Si and S̃i, i ∈ {1 . . . J−1}.
1: T0 ← U, D← Σ
2: for i = 1 to J − 1 do
3: Factorization of the residual in 2 factors using PALM [9]:

Ti−1 ≈ TiSi
4: Global optimization with PALM to handle (3):

L ≈ TiSi . . .S1DST1 . . .S
T
i TT

i

5: end for
6: SJ ← TJ−1

Output: The estimated factorization: {Sj}Jj=1,D.

2.2. Factorization setting

The usual Fourier transform on a 1D regular grid (corresponding
to a ring graph) can be applied in O(n logn) arithmetic operations
although the Fourier matrix contains n2 non-zero entries. This is
because the Fourier matrix U can be factorized into log2 n factors,
each having 2n non-zero entries. In other words, in the 1D regu-
lar grid case we have U =

∏log2 n
j=1 Sj , with ‖Sj‖0 = 2n. This

factorization corresponds to the usual FFT [3]. In the context of a
hierarchical factorization of the Fourier matrix with exponentially
decreasing sparsity of the residual (as explained in [5]), we can hope
to retrieve this factorization by setting the sparsity of the right factor
to 2n and the sparsity of the residual to n2

2i
at the ith 2-factorization.

This amounts to dividing the residual sparsity by two at each step,
i.,e, a rate of decrease of 2. Such a hierarchical strategy would lead
to the sparsity configuration depicted on Figure 1.

Fig. 1. Ideal factorization configuration in the 1D regular grid case.
The sparsity of each factor is shown.

Here, our objective is to generalize the multi-layer sparse fac-
torization of the Fourier matrix to domains given by an underlying
graph, in order to find approximate FFTs for graph signals. Since in
that case we do not know if a factorization of the Fourier matrix is
possible with factors as sparse as in the 1D regular grid case, we pro-
pose to relax the sparsity assumptions in the three following ways:

• The number of factors J is reduced by a constantC1. This leads to
a higher accuracy in the factorization (more factors leading empir-
ically to higher error [5]), and allows to reduce the factorization
time which is proportional to the number of factors considering
the hierarchical strategy of Algorithm 1.

• The rate of decrease of the residual sparsity is reduced to C2 with
1 < C2 ≤ 2. This amounts to dividing the sparsity of the residual
by a number smaller than two at each step of Algorithm 1, leading
to a better accuracy of factorization.

• The sparsity of each factor is further multiplied by a constant C3

with C3 > 1. Allowing more non-zero entries in the FAµST this
way logically leads to higher accuracy.

The resulting relaxed factorization configuration is summarized in
Figure 2. Such a factorization contains C3.(2n(log2 n − C1) +

n2.C
1+C1−log2 n
2 ) non-zero entries, which is O(n2−log2 C2) for

1 < C2 < 2 and O(n log2 n) for C2 = 2.

Fig. 2. Relaxed factorization configuration for graph settings.



3. EXPERIMENTS

In this section we assess experimentally the performance of the pro-
posed method. We first try and give an answer to the main question
of this paper, and show that we can get FAµSTs with complexity
O(nα) and good accuracy for various graphs. We then compare the
proposed supervised factorization to its unsupervised counterpart on
random sensor graphs. We finally use the approach in a fast filtering
scenario on the Minnesota road graph, showing its applicability.

3.1. Approximate FFT for classical graphs

We perform here an experiment in order to show that it is possible to
define approximate FFTs on a variety of standard families of graphs.
The factorizations are done with different graphs of different sizes,
in order to show that theO(nα) settings that were introduced in sec-
tion 2.2 are indeed appropriate. We consider five classical random
graphs, generated with help of the Graph Signal Processing (GSP)
toolbox [10], and taken with their default parameterization (a de-
tailed description can be found in [10]). Are considered:

• Erdős-Rényi: a random graph with connection probability p =
0.1.

• Community: a random community graph made of
√
n/2 com-

munities of random sizes.
• Random sensor: a random graph where nodes represent sensors

that are placed randomly on the plane.
• Swiss roll: a graph where nodes are placed randomly on the Swiss

roll manifold.
• Random ring: a ring graph with random distances between

nodes.

Examples of considered graphs are shown in Figure 3.
The experiment amounts to apply Algorithm 1 on these graphs

with a fixed setting: C1 = 3, C2 = 1.67 (α = 1.26) and C3 =
1.4 , with a varying number of nodes n ∈ {64, 128, 256, 512}.
The results in terms of relative error with respect to the factorized
Laplacian are shown on Figure 4. It can be seen on this figure
that for all different kind of graphs, the achieved error does not
seem to depend on the graph dimension. The Relative Complex-
ity (RC=

∑J
j=1 ‖Sj‖0 /n

2) of the computed FAµSTs decreases
when the dimension increases, it follows indeed a O(n−0.74) be-
haviour for C2 = 1.67. More specifically with our setting we have
RC= 0.59 for n = 64, RC= 0.37 for n = 128, RC= 0.23 for
n = 256 and RC= 0.14 for n = 512. This means that we can
factorize the Fourier matrices corresponding to various graphs, with
FAµSTs having O(nα) complexities with α < 2. In other words,
the greater the dimension, the higher the complexity savings for the
same error, and approximate FFTs can be defined for these graphs.

However, we can see differences in approximation quality be-
tween the considered graphs. Indeed , the relative error with respect
to the Laplacian is about 10−5 for the Swiss roll and the random ring
graph, and about 10−1 for the Erdős-Rényi graph. Such differences
may indicate properties of graphs favorable to Fast Fourier Trans-
forms. It seems indeed that graphs with more structure (typically the
random ring, related to non-uniform FFT [11]) have Fourier matri-
ces that can be better approximated by FAµSTs than unstructured
graphs (typically Erdős-Rényi).

3.2. Supervised vs unsupervised factorization

The objective of this subsection is to compare Algorithm 1 with
an unsupervised factorization, in order to show the benefits of super-
vision. For this experiment, a random sensor graph with n = 1024

Community graph Random sensor graph

Swiss roll graph Random ring graph

Fig. 3. Example of different graphs with n = 256 nodes (except the
random ring that has n = 128 nodes).
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Fig. 4. Factorization error for graphs of different dimensions n ∈
{64, 128, 256, 512}. The mean over 10 independent trials is shown.

nodes is used. The Fourier matrix U is factorized using either Al-
gorithm 1 or the unsupervised method that is described in details in
[5]. The factorization parameters are set in the following way:

• C1 = 3
• C2 ∈ {1.43, 1.67, 2} (it corresponds to FAµSTs of complexity
{O(n1.48),O(n1.26),O(n log2 n)})

• C3 ∈ {1.3, 1.4, 1.5}.

Our goal in this experiment is to compare the supervised and
unsupervised factorizations, for different relative complexities, and
using the following performance measures:

• Approximation of U: we evaluate the closeness between the
original Fourier matrix U and its FAµST approximation Û with
the quantity

∥∥Û −U
∥∥2
F
/
∥∥U∥∥2

F
(this quantity is proportional to

the cost function of the unsupervised factorization).
• Diagonalization of L: we evaluate how close to diagonal would

the Laplacian L be in the basis defined by the columns of Û if Û

was orthogonal, by the quantity
∥∥diag(ÛTLÛ)

∥∥2
F
/
∥∥ÛTLÛ

∥∥2
F

.
• Approximation of L: we evaluate the closeness between the

graph Laplacian L and its factorization by the quantity
∥∥L −

ÛD̂ÛT
∥∥2
F
/
∥∥L∥∥2

F
(we consider that D̂ = Σ in the unsupervised

case, and this quantity is proportional to the cost function of the
supervised factorization).

• Orthogonality of Û: we evaluate how close to orthogonal Û is
with the quantity

∥∥diag(ÛÛT )
∥∥2
F
/
∥∥ÛÛT

∥∥2
F

.

The results of those factorization are given in Figure 5. Several com-
ments are in order. First of all, as expected, the approximation of U



is better in the unsupervised case, compared to the supervised case,
since it is the objective of the unsupervised factorization. Similarly,
the approximation of L is better in the supervised case. Second,
the diagonalization of L is performed similarly by the two methods,
except for low relative complexities where the supervised method
seems better. Third, Û is closer to orthogonal using the supervised
factorization method, for any relative complexity. In conclusion,
the supervised method yields approximate fast Fourier transforms
Û that exhibit better properties in terms of orthogonality, approxi-
mation of the Laplacian and diagonalization of the Laplacian. On the
other hand, they approximate the original Fourier matrix U less well
than the FAµSTs computed using the unsupervised method, but this
criterion seems less relevant than the others that measure properties
that are intrinsically expected of the graph Fourier transform.
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Û

T
∥ ∥

2 F
/
∥ ∥

L
∥ ∥

2 F

Relative Complexity (RC)
0 0.05 0.1 0.15 0.2

0.8

0.85

0.9

0.95

1
Orthogonality of Û
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Fig. 5. Factorization results on the random sensor graph with
n = 1024 nodes. The supervised and unsupervised factorizations
methods are compared.

3.3. Fast filtering on the Minnesota road graph
The objective of this subsection is to use the FAµSTs computed

by Algorithm 1 for fast filtering on the Minnesota road graph, in
order to show the applicability of our approach. This experiment
should be taken as a proof of concept, showing that filtering signals
on graphs using a FAµST Û instead of the true Fourier matrix U
makes sense.
Signal model. For this experiment, a low-pass signal x is gener-
ated randomly in the graph frequency domain: the components of its
spectrum are independent and follow a normal distribution of stan-
dard deviation θ = exp(−f), where f is the frequency (eigenvalues
of the Laplacian). This reference signal is then corrupted by a white
Gaussian noise n v N (0, σ). This gives a noisy signal x̃ = x + n.
Filtering. The corrupted signal is low-pass filtered by a filter of
frequency response h(f) = 1/(1+ γf) with γ = 3. The filtering is
done using either the true Fourier transform matrix U, or a FAµST
approximation Û computed using Algorithm 1 and the factorization
setting presented in section 2.2 with C1 = 3, C2 = 1.43 and C3 =

1.5. In this configuration, Û exhibits a relative complexity of 0.13
(it is approximately eight times faster than U).
Results. SNR results are given for different noise levels σ and in av-
erage over several realizations in Table 1. Filtering using a FAµST

as an approximate Fast Fourier Transform on graph is shown to be
almost as good as classical filtering using the actual Fourier matrix
(less than one decibel of difference), although it is way more com-
putationally efficient (eight times). An example of filtering is shown
in Figure 6.

σ = 0.3 σ = 0.4 σ = 0.5 σ = 0.6

Noisy 1.82 -0.69 -2.67 -4.26
Filtered with U 5.15 4.54 3.88 3.20
Filtered with Û 4.05 3.62 3.11 2.56

Table 1. Filtering results on the Minnesota road graph. Results are
SNRs in decibels and in average over one hundred independently
drawn signals for each noise level.
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Fig. 6. Example of filtering on the Minnesota road graph. Classical
filtering using U and filtering using a FAµST Û are shown.

4. DISCUSSION AND CONCLUSION

In this paper, we showed that many graphs admit an approxi-
mate fast Fourier transform, by hierarchically factorizing the Fourier
matrix U corresponding to a graph while keeping an attach to the
diagonalization of the graph Laplacian L. Such an approach was re-
ferred to as supervised factorization of U. It was validated on several
random graphs, compared to its unsupervised counterpart and tested
on a fast graph signal filtering task with promising results.

Such an approach is well suited to situations where the graph
is fixed, and the Fourier transform has to be applied rapidly a great
number of times. This is to amortize the factorization cost. Such a
situation corresponds for example to real-time monitoring of graph
signals, where a threshold on the high-frequency components of the
signal is set to detect anomalies, as is done in [8, section VI.A].

In future work, and in order to reduce the computation time, one
could imagine to directly diagonalize the graph Laplacian without
even requiring the true Fourier matrix as input. This would amount
initialize T0 and D differently in Algorithm 1. Indeed, the initial-
izations proposed in this paper (T0 ← U, D ← Σ) require an
exact diagonalization of the graph Laplacian prior to the hierarchical
factorization. Such an initialization is computationally demanding
and makes sense only in situations where some offline time can be
dedicated to the computation of the approximate FFT.
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