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On congruences for certain sums of E. Lehmer’s type

Shigeru Kanemitsu, Takako Kuzumaki and Jerzy Urbanowicz∗

Abstract. Let n > 1 be an odd natural number and let r (1 < r < n) be a natural number relatively prime to n. Denote by χn

the principal character modulo n. In Section 3 we prove some new congruences for the sums Tr,k(n) =
∑[n

r
]

i=1(
χn(i)

ik
) (mod ns+1)

for s ∈ {0, 1, 2}, for all divisors r of 24 and for some natural numbers k.We obtain 82 new congruences for Tr,k(n), which generalize

those obtained in [Ler05], [Leh38] and [Sun08] if n = p is an odd prime.

Section 4 is an appendix by the second and third named authors. It contains some new congruences for the sums Ur(n) =∑[n
r
]

i=1
χn(i)
n−ri (mod ns+1) for s ∈ {0, 1, 2} and r | 24. The congruences obtained for the sums Ur(n) extend those proved in

[Leh38],[CFZ07] and [CP09] for r ∈ {2, 3, 4, 6} and s = 1. The sums are rational linear combinations of Euler’s quotients and in
the cases when r ∈ {8, 12, 24}1 , also of the numbers 1

nϕ(n)
Bnϕ(n),χ

∏
p|n(1−pnϕ(n)−1), where the generalized Bernoulli numbers

Bnϕ(n),χ are attached to even quadratic characters χ of conductors dividing 242.

Keywords. Congruence, generalized Bernoulli number, special value of L-function, ordinary Bernoulli number, Bernoulli polyno-

mial, Euler number.
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1. Notation and introduction

Let n > 1 be odd and let χ0,n (sometimes abbreviated as χn) be the principal Dirichlet character
modulo n (with χ0.1 designating the constant function χ0.1(x) = 1 for all integers x). For r > 1 prime
to n denote by qr(n) the Euler quotient, i.e.,

qr(n) =
rϕ(n) − 1

n
.

Here and throughout the paper ϕ is the Euler ϕ-function and Bn,χ denotes the n-th generalized
Bernoulli number attached to the Dirichlet character χ modulo n defined by the generating function

n∑
a=1

χ(a)teat

ent − 1
=

∞∑
m=0

Bm,χ
tm

m!
.

Given the discriminant d of a quadratic field, let χd denote its quadratic character (Kronecker
symbol). We shall denote by χd,n the character χd modulo n.

It was proved in [Car59] that the numbers Bi,χd/i are rational integers unless d = −4 or d = ±p,
where p is an odd prime of a special form. If d = −4 and i is odd, then the numbers Ei−1 = −2Bi,χ−4/i
are odd integers, called the Euler numbers. If d = ±p, then the numbers Bi,χd have p in their
denominators and pBi,χd ≡ p− 1(mod pordp(i)+1).

We consider the ordinary Bernoulli numbers Bi (i.e., generalized Bernoulli numbers attached to
the trivial primitive character χ0,1, except when i = 1 for which B1,χ0,1 = 1

2 = −B1) and the so-called
D-numbers defined in [Kle55] and [Ern79] by Di−1 = −3Bi,χ−3/i for i odd, having powers of 3 in

∗Passed away on September 6, 2012.
We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal
The first author was supported by the JSPS, Grant-in-aid for scientific research No.25400032

1Which were omitted in [Leh38], [CFZ07] and [CP09].
2 E. Lehmer proved her congruences in the case when n = p is an odd prime. The congruences proved in [CFZ07]

and [CP09] are for n odd and not divisible by 3. See also [Ler05].
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their denominators. We also consider the rational integers Ai−1 = Bi,χ8/i, Fi−1 = Bi,χ−3χ−4/i and
Gi−1 = Bi,χ−3χ−8/i, if i ≥ 2 even, and Ci−1 = −Bi,χ−8/i and Hi−1 = −Bi,χ−3χ8/i if i ≥ 1 odd.

In this paper we shall consider congruences for the character sums with negative weight

Tr,k(n) =
∑

0<i<n
r

χn(i)

ik

modulo powers ns+1 for n > 1 odd and s ∈ {0, 1, 2} where χn = χ0,n and r (r | 24 and 1 < r < n)
is coprime to n, and k ≥ 1 is subject to the condition k ≤ nsϕ(n). Note that since χn(i) = 0 for
(i, n) > 1, the sum is over (i, n) = 1.

The central role in this paper is played by an identity proved in [SUZ95, p.276,(6)]. Let χ be a
Dirichlet character modulo M , N a positive integral multiple of M , and r(> 1) a positive integer
prime to N . Then for any integer m ≥ 0 we have

(m+ 1)rm
∑

0<i<N
r

χ(i)im = −Bm+1,χr
m +

χ(r)

ϕ(r)

∑
ψ∈G(r)

ψ(−N)Bm+1,χψ(N), (1.1)

where the sum on the right hand side is taken over all Dirichlet characters ψ modulo r. We denote
by G(r) the group of all such characters; then #G(r) = ϕ(r). Here Bn,χ(X) =

∑n
i=0

(
n
i

)
Bn−i,χX

i

denotes the n-th generalized Bernoulli polynomial attached to χ. Since r | 24, the group G(r) has
exponent 2 and all characters modulo r are quadratic.

If the character χ modulo M is induced from a character χ̃ modulo some divisor of M then

Bn,χ = Bn,χ̃
∏
p|M

(1− χ̃(p)pn−1), (1.2)

where the product is taken over all primes p dividing M .
If (i, n) = 1, then by Euler’s theorem we have iϕ(n) ≡ 1(mod n), and more generally, ϕ(ns+1) =

nsϕ(n) and
iϕ(n)n

s ≡ 1 (mod ns+1)

for s ≥ 0.
Given r prime to n and integers s ≥ 0, k ≥ 1 we denote

Sr,k,s(n) =
∑

0<i<n
r

χn(i)in
sϕ(n)−k.

Then we have the congruence

Tr,k(n) ≡ Sr,k,s(n) (mod ns+1), (1.3)

which allows us to study Tr,k(n) through Sr,k,s(n).
In this paper we specialize to the case that r is a divisor of 24. Then the group G(r) ∼= (Z/rZ)∗

has exponent 2, so all the elements ψ are quadratic.
The main results of the paper are congruences for the sums Tr,k(n) modulo ns+1 for s ∈ {0, 1, 2}

proved in Section 3. The congruences will be obtained by applying identity (1.1) to the sums Sr,k,s(n)3.
They extend those proved by M. Lerch [Ler05], E. Lehmer [Leh38] and Z.-H. Sun [Sun08] in the case
when n = p is an odd prime. In principle, the congruences in this particular case have a different form
from those obtained for any natural odd n. Sometimes it is not easy to derive the former congruences
from the latter. We shall do it in the second part of the paper.

3 This identity was earlier successfully exploited in [SUZ95], [SUV99] and [FUW97] to solve some other problems.
See also the book [UW00] devoted to the identity and related problems.
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Two such congruences modulo n2 were earlier obtained, by using (1.1), in [Cai02] for r = 2, k = 1
and in [KUW12] for r = 4, k = 2. In the present paper we find 82 new congruences for the sums
Tr,k(n) (mod ns+1) for s ∈ {0, 1, 2}, r | 24 and k ≥ 1, in particular for k = 1 or 2. Most of our
congruences for Tr,k(n) have not been known earlier even in the particular case when n = p is a
prime. The machinery introduced in [SUZ95] is much more efficient than the methods exploited in
[Ler05], [Leh38] and [Sun08].

In Section 4, which is an appendix by the second and third named authors, we find congruences
for the sums

Ur(n) =
∑

0<i<n
r

χn(i)

n− ri

modulo ns+1 for s ∈ {0, 1, 2} and all r | 24 (1 < r < n) coprime to n. To obtain such congruences
it suffices to use appropriate congruences for the sums Tr,k(n) or, by virtue of (1.3), for the sums
Sr,k,s(n) for k ∈ {1, 2, 3}. The congruences are consequences of those proved in Section 3 and for
s = 1 extend those obtained in [CFZ07],[CP09] for r ∈ {2, 3, 4, 6}. They have the same form as those
proved by E. Lehmer [Leh38] if n = p is an odd prime. The sums are rational linear combinations of
Euler’s quotients and in the cases when r ∈ {8, 12, 24}, omitted in [Leh38], [CFZ07] and [CP09], also
of the numbers 1

nϕ(n)Bnϕ(n),χ
∏
p|n(1−pnϕ(n)−1), where Bnϕ(n),χ are the generalized Bernoulli numbers

attached to even quadratic characters χ of conductors dividing 24. Also some new congruences for
s = 2 with an additional summand − n2

2r3
Bn2ϕ(n)−2

∏
p|n(1− pn2ϕ(n)−3) for all r | 24 are obtained.

2. Some auxiliary formulae

The idea exploited in [Cai02] and [KUW12] to use identity (1.1) to extend classical congruences for
the sums Tr,k(n) seems to be very efficient. This identity allows us to obtain almost automatically
many new congruences. Usually the proofs using (1.1) are much easier, more unified and much shorter
than those applying other methods.

The general scheme of reasoning is uniform. To obtain congruences for the sums Tr,k(n) modulo
ns+1 we first determine, using (1.1), the sums Sr,k,s(n) modulo ns+1. We substitute in (1.1) m =
nsϕ(n)− k and N = M = n, by the definition of Sr,k,s(n). We assume that r | 24 , n > 1 is odd. If
3 6 | r then we have (n, r) = 1. If 3 | r, then we additionally assume that n is not divisible by 3. Note
that, since r | 24, all generalized Bernoulli numbers occurring in Sr,k,s(n) are rational.

Thus, throughout the paper, we write m = nsϕ(n)− k ≥ 0. Consequently, we obtain

Sr,k,s(n) = S1 + S2, (2.4)

where, by (1.2),

S1 = −
Bm+1,χ0,n

m+ 1
= −Bm+1

m+ 1

∏
p|n

(1− pm) (2.5)

and

S2 =
1

ϕ(r)(m+ 1)rm

∑
ψ∈G(r)

ψ(−n)Bm+1,χ0,nψ(n).

Note that χ0,n is even. Thus, if m 6= 0 is even, then Bm+1 = 0, and so S1 = 0. If m = 0, then
1− pm = 0, and so S1 = 0 too. Otherwise, in view of (2.5), we have S1 6= 0. Furthermore,

S2 =
1

ϕ(r)(m+ 1)rm

∑
ψ∈G(r)

ψ(−n)
m+1∑
i=0

(
m+ 1

i

)
Bi,χ0,nψn

m+1−i cf.[SUZ95, p.274,(6)]
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and B0,χ0,nψ = 0 if ψ is not trivial modulo r and

B0,χ0,nχ0,r =
ϕ(rn)

rn

otherwise, and hence (recall that (r, n) = 1)

nm+1

ϕ(r)(m+ 1)rm

∑
ψ∈G(r)

ψ(−n)B0,χ0,nψ =
nmϕ(n)

(m+ 1)rm+1
.

S2 =
nm+1

ϕ(r)(m+ 1)rm

∑
ψ∈G(r)

ψ(−n)B0,χ0,nψ

+
1

ϕ(r)(m+ 1)rm

m+1∑
i=1

(
m+ 1

i

)
nm+1−i

∑
ψ∈G(r)

ψ(−n)Bi,χ0,nψ

=
nmϕ(n)

(m+ 1)rm+1

+
1

ϕ(r)(m+ 1)rm

m∑
i=0

(
m+ 1

i+ 1

)
nm−i

∑
ψ∈G(r)

ψ(−n)Bi+1,χ0,nψ.

Consequently,

S2 = Θs +
1

ϕ(r)rm

m∑
i=0

(
m

i

)
nm−iUi(r), (2.6)

where

Θs = Θs(n,m, r) =
nmϕ(n)

(m+ 1)rm+1
(2.7)

and

Ui(r) =
∑

ψ∈G(r)

ψ(−n)
Bi+1,χ0,nψ

i+ 1
. (2.8)
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2.A. Ui(r) for r | 24

Let n > 1 be odd and relatively prime to r. Here and subsequently, we set

B̃i = Bi
∏
p|n

(1− pi−1),

Ãi = (−1)
n2−1

8 Ai
∏
p|n

(1− (−1)
p2−1

8 pi) = (−1)
n2−1

8
Bi+1,χ8

i+ 1

∏
p|n

(1− (−1)
p2−1

8 pi),

C̃i = (−1)
(n−1)(n+5)

8 Ci
∏
p|n

(1− (−1)
(p−1)(p+5)

8 pi)

= (−1)
(n+1)(n+3)

8
Bi+1,χ−8

i+ 1

∏
p|n

(1− (−1)
(p−1)(p+5)

8 pi),

D̃i = (−1)ν(n)Di

∏
p|n

(1− (−1)ν(p)pi) = (−1)ν(n)+1 3Bi+1,χ−3

i+ 1

∏
p|n

(1− (−1)ν(p)pi),

Ẽi = (−1)
n−1
2 Ei

∏
p|n

(1− (−1)
p−1
2 pi) = (−1)

n+1
2

2Bi+1,χ−4

i+ 1

∏
p|n

(1− (−1)
p−1
2 pi),

F̃i = (−1)
n−1
2

+ν(n)Fi
∏
p|n

(1− (−1)
p−1
2

+ν(p)pi)

= (−1)
n−1
2

+ν(n)Bi+1,χ−3χ−4

i+ 1

∏
p|n

(1− (−1)
p−1
2

+ν(p)pi),

G̃i = (−1)
(n−1)(n+5)

8
+ν(n)Gi

∏
p|n

(1− (−1)
(p−1)(p+5)

8
+ν(p)pi)

= (−1)
(n−1)(n+5)

8
+ν(n)Bi+1,χ−3χ−8

i+ 1

∏
p|n

(1− (−1)
(p−1)(p+5)

8
+ν(p)pi),

H̃i = (−1)
n2−1

8
+ν(n)Hi

∏
p|n

(1− (−1)
p2−1

8
+ν(p)pi)

= (−1)
n2+7

8
+ν(n)Bi+1,χ−3χ8

i+ 1

∏
p|n

(1− (−1)
p2−1

8
+ν(p)pi),

where χ−3(n) = (−1)ν(n), ν(n) = 0, resp. 1 if n ≡ 1, resp. −1(mod 3).

In the following, we compute Ui(r) for r = 2, 3, 4, 6, 8, 12 or 24.

1. Case r = 2

Then #G(2) = 1 and G(2) = {χ0,2}. Then, by definition and identity (1.2),

Ui(2) =

{
B̃i+1

i+1 (1− 2i), if i is odd;

0, if i is even.
(2.9)

2. Case r = 3

Then #G(3) = 2 and G(3) = {χ0,3, χ−3}. Then, by definition and identity (1.2),

Ui(3) =

{
B̃i+1

i+1 (1− 3i), if i is odd;
1
3D̃i, if i is even.

(2.10)
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3. Case r = 4

Then #G(4) = 2 and G(4) = {χ0,4, χ−4}. Thus, by definition and the same arguments as in
the case r = 3 (note that both characters χ−3 and χ−4 are odd), in view of (1.2) we obtain

Ui(4) =

{
B̃i+1

i+1 (1− 2i), if i is odd;
1
2Ẽi, if i is even.

(2.11)

4. Case r = 6

Then #G(6) = 2 and G(6) = {χ0,6, χ−3,6}. Consequently, by (1.2) and the same arguments as
in the previous case we obtain

Ui(6) =

{
B̃i+1

i+1 (1− 2i)(1− 3i), if i is odd;
1
3D̃i(1 + 2i), if i is even.

(2.12)

5. Case r = 8

Then #G(8) = 4 and G(8) = {χ0,8, χ−4,8, χ−8, χ8}. Therefore, in view of (1.2),

Ui(8) =

{
B̃i+1

i+1 (1− 2i) + Ãi, if i is odd;
1
2Ẽi + C̃i, if i is even.

(2.13)

6. Case r = 12

Then #G(12) = 4 and G(12) = {χ0,12, χ−3,12, χ−4,12, χ(−3)(−4)}. Consequently, by definition
and (1.2),

Ui(12) =

{
B̃i+1

i+1 (1− 2i)(1− 3i) + F̃i, if i is odd;
1
3D̃i(1 + 2i) + 1

2Ẽi(1 + 3i), if i is even.
(2.14)

7. Case r = 24

Then #G(24) = 8 and
G(24) = {χ0,24, χ−3,24, χ−4,24, χ(−3)(−4),24, χ(−3)(−8), χ(−3)8, χ−8,24, χ8,24}. Consequently, in view
of (1.2),

Ui(24) =

{
B̃i+1

i+1 (1− 2i)(1− 3i) + F̃i + G̃i + Ãi(1 + 3i), if i is odd;
1
3D̃i(1 + 2i) + 1

2Ẽ(1 + 3i) + H̃i + C̃i(1− 3i), if i is even.
(2.15)

2.B. The sums Sr,k,s(n) (mod ns+1) for m > s, r | 24, s ≤ 2

The generalized Bernoulli numbers attached to Dirichlet characters modulo r, with r | 24, are rational
numbers. In what follows we consider congruences for Sr,k,s(n) modulo ns+1 for n > 1 odd and
s ∈ {0, 1, 2}. We assume that n is not divisible by 3 if 3 | r ; then r and ϕ(r) are coprime to n.

It is shown in the previous section that the numbers Ui(r) are linear combinations of the numbers

Ãi, C̃i, D̃i, Ẽi, F̃i, G̃i, H̃i and the quotients
Bi+1

i+ 1
. Denote by Uoddi (r), resp. U eveni (r) the sum Ui(r)

taken over odd, resp. even characters ψ modulo r. Note that Ui(r) = Uoddi (r) + U eveni (r) and
Uoddi (r) = 0, U eveni (r) = 0 if i is odd or even, respectively.

First we recall some divisibility properties of the quotients
Bi+1,χ

i+ 1
for primitive Dirichlet characters

χ of conductors fχ | nr. These quotients, multiplied by some Euler factors, are summands of Ui . We

start with some elementary lemmas on the quotients
Bi+1

i+ 1
of the ordinary Bernoulli numbers. Lemma

2.1 is called the von Staudt and Clausen theorem. Lemma 2.2 due to L. Carlitz is its generalization.
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Lemma 2.1. (See [Wash97, Theorem 5.10] or [IR90, Corollary to Theorem 3, p. 233]). Let k be
an even natural number and let p be a prime number. Then Bk contains p in its denominator if and
only if p− 1 | k and pBk ≡ −1(mod p).

Lemma 2.2. (See [Car2]) If pν(p− 1) | k, ν ≥ 0 then pBk ≡ p− 1 (mod pν+1).

Lemma 2.3. (See [Ern79, Proposition 15.2.4, p. 238].) If p − 1 6 | k then the quotients
Bk
k

are

p-integral.

Since conductors of non-trivial characters occurring in Ui(r) are coprime to n, they are not powers
of a prime divisor of n. In such cases we have a useful lemma:

Lemma 2.4. (See [Ern79, Theorem 1.5].) Let χ be a primitive Dirichlet character with conductor

fχ . If fχ is not a power of a given prime number p, then the quotients
Bn,χ
n

(n ≥ 1) are p-integral.

We set NTU eveni (r) = U eveni (r)− B̃i+1

i+1

∏
p|r(1− pi). By Lemma 2.4 we obtain:

Lemma 2.5. Let r be coprime to p for a given prime number p | n. Then the numbers Uoddi (r) for i
even and the numbers NTU eveni (r) for i odd are p-integral.

Assume that m = nsϕ(n)− k > s for s ∈ {0, 1, 2}. Since for odd n > 1, ϕ(n) is even, m and k are
of the same parity. We divide each of the cases s = 0, 1 or 2 .

Our purpose is to obtain some congruences for the sums Sr,k,s(n) modulo n for s ∈ {0, 1, 2}, and
next using congruence (1.3) to obtain congruences for the sums Tr,k(n). We prove that the latter

sums are congruent modulo ns+1 to linear combinations of the quotients B̃m/m and some of the num-
bers Ãm−1, C̃m, C̃m−2, D̃m, D̃m−2, Ẽm, Ẽm−2, F̃m−1, G̃m−1, H̃m, H̃m−2 if k is even, and of the quotients
B̃m−1/(m−1), B̃m+1/(m+1) and some of the numbers Ãm, Ãm−2, C̃m−1, D̃m−1, Ẽm−1, F̃m, F̃m−2, G̃m,
G̃m−2, H̃m−1 if k is odd4.

We start with the study of the case s = 2. Next, similarly, we derive the remaining congruences
modulo n2 and modulo n. First we show when the numbers Θs (defined in (2.7)) are congruent to 0
modulo ns+1.

Lemma 2.6. Let n > 1 be odd and let 1 < r ≤ n be coprime to n. Assume that m > s and p | n is a
prime. Then the numbers Θs in (2.7) are p-integral and

Θs =
nmϕ(n)

(m+ 1)rm+1
≡ 0 (mod ns+1)

except when s = 1, 3 ‖ n, 3 6 | ϕ(n) and m = 2 5.

Proof. First we prove that the numbers Θs are p-integral for m ≥ s + 1. It suffices to show that
mordp(n) − ordp(m + 1) ≥ 0. Let us define the function g(x) = x − logp(x + 1), which is increasing
for x ≥ 1. Since logp(m+ 1) ≥ ordp(m+ 1) and ordp(n) ≥ 1 we obtain that

mordp(n)− ordp(m+ 1) ≥ m− logp(m+ 1) = g(m) ≥ g(s+ 1) > 0

because g(3) = 3− logp(5) > 0, g(2) = 2− logp(4) > 0 and g(1) = 1− logp(2) > 0 for any prime p.

4As well as of Euler’s quotients q2(n) or q3(n) if k = 1.
5Then Θ1 = n2ϕ(n)/3r3 and the exceptional n’s have the form n = 3

∏u
i=1 p

ei
i where pi ≡ 2(mod 3) for i = 1, . . . , u.

Moreover k = nϕ(n)− 2 is even. Obviously, if k ≥ 2 and (k − 1, n) = 1, then the congruence Θ1 ≡ 0(mod ns+1) is true
because m+ 1 and n are coprime. We leave it to the reader to verify that the congruence holds if k = 1.
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Let us consider the functions fs(x) = x−s− logp(x+1) for x ≥ 1, which are increasing for x ≥ 16.
Note that the congruence Θs ≡ 0(mod ns+1) for m > s holds if and only if

(m− s)ordp(n) + ordp(ϕ(n))− ordp(m+ 1) > 0

for every p | n.
In view of logp(m + 1) ≥ ordp(m + 1) and ordp(n) ≥ 1 the above follows from the inequality

fs(m) > 0 for m ≥ 3 if s = 1, 2, and for m ≥ 1 if s = 0 because

(m− s)ordp(n)− ordp(m+ 1) ≥ (m− s)− logp(m+ 1) = fs(m)

and fs(m) ≥ f2(3) = 1 − logp(4) > 0 if s = 2, fs(m) ≥ f1(3) = 2 − logp(4) > 0 if s = 1 and
fs(m) ≥ f0(1) = 1− logp(2) > 0 if s = 0 for every p | n. This gives the congruence Θs ≡ 0(mod ns+1)
for s = 0, 2 and m > s and s = 1 and m ≥ 3.

In the case when s = 1 and m = 2 we have f1(2) = 1− logp(3) > 0 if p ≥ 5, and so the congruence
holds for 3 |6 n. We are left with the task of checking when the congruence holds for s = 1, m = 2

and 3 | n. Then it is easily seen that the congruence Θ1 =
n2ϕ(n)

3r3
≡ 0(mod n2) holds if and only if

ord3(ϕ(n)) ≥ 1. This does not hold if and only if s = 1, 3‖n, 3 6 | ϕ(n), m = 2, as claimed. �

2.B.a. The case when s = 2

Assume that m = n2ϕ(n)−k and 1 ≤ k < n2ϕ(n)−2 (m > 2). Then, by Lemma 2.6, Θ2 ≡ 0 (mod n3).
Case (i):

If k ≥ 2 is even, then m + 1 = n2ϕ(n) − k + 1 is odd. Consequently S1 = 0 in (2.4). Thus,
combining (2.4) and (2.6) gives Sr,k,2(n) = Θ2 + S2 ≡ S2(mod n3), and

Sr,k,2(n) ≡ S2 ≡
1

ϕ(r)rm

(
Uoddm (r) +mnU evenm−1(r) (2.16)

+

(
m

2

)
n2Uoddm−2(r) +

(
m

3

)
n3U evenm−3(r)

)
(mod n3)

because for every prime number p | n by Lemma 2.5, the summands Uoddm (r),

(
m

2

)
n2Uoddm−2(r), mnU

even
m−1(r)

and

(
n

3

)
n3U evenm−3(r)7 are p-integral.

Case (ii):
If k ≥ 1 is odd, then m+ 1 is even and S1 6= 0. Moreover, by Lemma 2.6, Θ2 ≡ 0(mod n3). Thus,

by (2.4), (2.5), (2.6), we obtain

Sr,k,2(n) ≡ − B̃m+1

m+ 1
+

1

ϕ(r)rm
(U evenm (r)

+mnUoddm−1(r) +

(
m

2

)
n2U evenm−2(r)

)
(mod n3)

since, by Lemmas 2.4 or 2.5,

(
m

3

)
n3Uoddm−3(r)

8 is p-integral for any p | n and divisible by n3.

6The functions g(x) and fs(x) are increasing since g′(x) = f ′s(x) = 1− 1
(x+1) log p

> 0 for x ≥ 1.
7With m,m− 2 even and m− 1,m− 3 odd.
8With m− 3 even.
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Consequently, if k is odd and r, ϕ(r) are relatively prime to n, we find, by Lemma 2.4, that

Sr,k,2(n) ≡ B̃m+1

m+ 1

−1 +
1

ϕ(r)rm

∏
q|r

(1− qm)

 (2.17)

+
1

ϕ(r)rm

(
NTU evenm (r) +mnUoddm−1(r) +

(
m

2

)
n2U evenm−2(r)

)
(mod n3).

Note that for p | n, by Lemma 2.5, the summands NTU evenm (r),

(
m

2

)
n2U evenm−2(r) and mnUoddm−1(r)

9

are p-integral.
Moreover, if p | n and p − 1 | m + 1 , i.e., p is in the denominator of Bm+1, then by the little

Fermat theorem, we have qm ≡ q−1(mod pordp(m+1)+1) and rm ≡ r−1(mod pordp(m+1)+1) (recall that
r is coprime to n), and

−1 +
1

ϕ(r)rm

∏
q|r

(1− qm) ≡ −1 +
r

ϕ(r)

∏
q|r

(1− q−1) = 0 (mod pordp(m+1)+1).

Hence and from Lemma 2.2, it follows that for p | n the first summand of the right hand side of (2.17)
is p-integral in the case when p− 1 | m+ 1. If p− 1 6 | m+ 1, then the same conclusion follows from
Lemma 2.3.

2.B.b. The case when s = 1

Assume that m = nϕ(n)−k and 1 ≤ k < nϕ(n)− 1 (m > 1). Then, by Lemma 2.6, Θ1 ≡ 0 (mod n2)
if m > 2. If m = 2 and r | 8, then the congruence holds if n is not divisible by 3 or divisible by 9. If
m = 2 and 3‖n, then it is true for 3 | ϕ(n).

Case (i):
If k ≥ 2 is even, then analysis similar to that in the proof of (2.16) shows that

Sr,k,1(n) ≡ 1

ϕ(r)rm
(Uoddm (r) +mnU evenm−1(r) (modn2) (2.18)

if m > 2 or m = 2 and n is not exceptional in the sense of Lemma 2.6 since

(
m

2

)
n2Uoddm−2(r) +(

m

3

)
n3U evenm−3(r) is divisible by n2. If m = 2 and n is exceptional, i.e. 3‖n and 3 6 | ϕ(n), then we

should add to the right hand side of (2.18) the correction Θ1 = n2ϕ(n)/3r3, but we prefer to exclude
the case when m = 2, i.e., k = nϕ(n)− 2.

Case (ii):
If k ≥ 1 is odd, then by Lemma 2.6 we have Θ1 ≡ 0(mod n2) and a similar argument to that in

the proof of (2.17) shows that

Sr,k,1(n) (2.19)

≡ B̃m+1

m+ 1

−1 +
1

ϕ(r)rm

∏
q|r

(1− qm)


+

1

ϕ(r)rm

(
NTU evenm (r) +mnUoddm−1(r) +

(
m

2

)
n2U evenm−2(r)

)
(mod n2).

9With m,m− 2 odd and m− 1 even.
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2.B.c. The case when s = 0

Assume that m = ϕ(n)− k and 1 ≤ k < ϕ(n). Then, by Lemma 2.6, Θ0 ≡ 0 (mod n).

Case (i):
If k ≥ 2 is even, then in the same way as in the proof of (2.18) we obtain

Sr,k,0(n) ≡ 1

ϕ(r)rm

(
Uoddm (r) +mnU evenm−1(r)

)
(mod n). (2.20)

Case (ii):
If k ≥ 1 is odd, then by a similar argument to that in the proof of (2.19) we find

Sr,k,0(n) ≡ B̃m+1

m+ 1

−1 +
1

ϕ(r)rm

∏
q|r

(1− qm)

+
1

ϕ(r)rm
NTU evenm (r) (mod n) (2.21)

because mnUoddm−1(r) +

(
m

2

)
n2U evenm−2(r) is divisible by n, which is an easy con sequence of Lemmas 1

and 5.

3. The main results of the paper

In this section we compute the sums Tr,k(n) (mod ns+1) for s ∈ {0, 1, 2} and all r | 24, using congruence
(1.3) and congruences for the sums Sr,k,s(n), namely congruences (2.16) and (2.17) if s = 2, (2.18)
and (2.19) if s = 1, and (2.20) and (2.21) if s = 0.

We divide each of the three cases s = 0, 1 or 2 into seven subcases: r = 2, 3, 4, 6, 8, 12, 24, obtaining
congruences for Tr,k(n) for 1 ≤ k < nsϕ(n)− s. In the second part of the paper we shall derive from
obtained congruences some congruences in the case when n = p is an odd prime. Some of such
congruences were proved by M. Lerch [Ler05], E. Lehmer [Leh38] and Z.-H. Sun [Sun08], but most of
them were not earlier known.

We substitute formulae (2.9-15) into congruences (2.16), (2.18) and (2.20) if k is even and congru-
ences (2.17), (2.19) and (2.21) if k is odd. Consequently, after some calculations, we obtain Theorems
and Corollaries.

In the theorems below, given any k ≥ 1 and ρ ∈ Z, we write

I(k, ρ) = {n > 1 : 2 6 | n and p 6 | n if p− 1 | k + ρ}10

for example I(1, 1) = {n > 1 : 2, 3 6 | n}, I(3, 1) = I(2, 2) = {n > 1 : 2, 3, 5 6 | n} or I(5, 1) = I(4, 2) =
{n > 1 : 2, 3, 7 6 | n} and

Q2(n) = −2q2(n) + nq22(n)− 2

3
n2q32(n),

Q3(n) = −3

2
q3(n) +

3

4
nq23(n)− 1

2
n2q33(n).

The sums Tr,1(n) presented in Corollaries below are congruent to linear combinations of Euler’s

quotients ÊQr(n) plus some generalized Bernoulli numbers where ÊQ2(n) = Q2(n), ÊQ3(n) =

Q3(n), ÊQ4(n) = 3
2Q2(n), ÊQ6(n) = Q2(n)+Q3(n), ÊQ8(n) = 2Q2(n), ÊQ12(n) = 3

2Q2(n)+Q3(n)

and ÊQ24(n) = 2Q2(n)+Q3(n). For i = 2, 3 set Q′′i (n) = Qi(n)(mod n2) and Q′i(n) = Qi(n) (mod n).

1. Case r = 2

10 Note that if k and ρ are of the same parity and n ∈ I(k, ρ), then 3 6 | n.
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Theorem 3.1. Given an odd n > 1 and 1 ≤ k < nsϕ(n)− s, write m = nsϕ(n)− k. Then:
(i) In the case s = 2

T2,k(n) ≡


1

2
(2k+1 − 1)nB̃m +

1

24

(
k + 1

2

)
(2k+3 − 1)n3B̃m−2 (mod n3) for k even,

2k(1− 2m+1)
B̃m+1

m+ 1
− k

8
(2k+2 − 1)n2B̃m−1 (mod n3) for k odd,

in particular, k is even and n ∈ I(k, 2), then

T2,k(n) ≡ 1

2
(2k+1 − 1)nB̃m (mod n3).

(ii) In the case s = 1, (cf. [Sun08] if k is odd and n = p is an odd prime number)

T2,k(n) ≡


1

2
(2k+1 − 1)nB̃m (mod n2) for k even,

2k(1− 2m+1)
B̃m+1

m+ 1
− k

8
(2k+2 − 1)n2B̃m−1 (mod n2) for k odd,

in particular, k is odd and n ∈ I(k, 1), then

T2,k(n) ≡ 2k(1− 2m+1)
B̃m+1

m+ 1
(mod n2).

(iii) In the case s = 0

T2,k(n) ≡


1

2
(2k+1 − 1)nB̃m (mod n) for k even,

2k(1− 2m+1)
B̃m+1

m+ 1
(mod n) for k odd,

in particular, k is even and n ∈ I(k, 0), then T2,k(n) ≡ 0 (mod n).

Proof. If k is even, resp. odd, then it suffices to apply congruence (2.16), (2,18), (2,20) resp. (2.17),
(2.19), (2.21). Substituting (2.9) into these congruences gives the theorem immediately.
�

Corollary 3.2. Let n > 1 be odd. Then:
(i) (cf. [Sun08], [Cai02] and [Leh38] if n = p is an odd prime)

T2,1(n) ≡ Q2(n)− 7

8
n2B̃n2ϕ(n) (mod n3),

T2,1(n) ≡ Q′′2(n) (mod n2) if 3 6 | n,
T2,1(n) ≡ Q′2(n) (mod n).

(ii)

T2,2(n) ≡ 7

2
nB̃n2ϕ(n)−2 +

31

8
n3B̃n2ϕ(n)−4 (mod n3),

T2,2(n) ≡ 7

2
nB̃n2ϕ(n)−2 (mod n3) if 3, 5 6 | n,

T2,2(n) ≡ 7

2
nB̃nϕ(n)−2 (mod n2),

T2,2(n) ≡ 0 (mod n) if 3 6 | n.
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Proof. (i)This is a particular case of Theorems 3.1 for k = 1. Then m + 1 = nsϕ(n) and, by
2ϕ(n) = nq2(n) + 1, we have

2(1− 2m+1)
B̃m+1

m+ 1
= 2(1− (1 + nq2(n))n

s
)
B̃nsϕ(n)

nsϕ(n)

= (Q2(n) + αn3)
nB̃nsϕ(n)

ϕ(n)
≡ Q2(n) (mod ns+1)

because α ∈ Z, s ≤ 2 and

nB̃nsϕ(n)

ϕ(n)
≡ 1 (mod ns+1) (3.22)

Indeed, if p0 | n is a prime, then (p0 − 1)p
(s+1)ordp0 (n)−1
0 | nsϕ(n) and, by Lemma 2.2,

nB̃nsϕ(n)

ϕ(n)
≡ n(p0 − 1)

p0ϕ(n)

∏
p|n,p 6=p0

(1− p−1) = 1 (mod p
(s+1)ordp0 (n)
0 ).

This completes the proof of (3.22) and of Corollary 3.2 (i).
(ii) is an immediate consequence of Theorems 3.1 for k = 2. �

2. Case r = 3

Theorem 3.3. Given an odd n > 1 not divisible by 3 and 1 ≤ k < nsϕ(n)−s, write m = nsϕ(n)−k.
Then:
(i) In the case s = 2

T3,k(n) ≡


3k−1

2
D̃m +

1

6
(3k+1 − 1)nB̃m +

3k−1

2

(
k + 1

2

)
n2D̃m−2 (mod n3) for k even, n ∈ I(k, 2),

3k

2
(1− 3m+1)

B̃m+1

m+ 1
− 3k−1

2
knD̃m−1 −

k

36
(3k+2 − 1)n2B̃m−1 (mod n3) for k odd.

(ii) In the case s = 1

T3,k(n) ≡


3k−1

2
D̃m +

1

6
(3k+1 − 1)nB̃m (mod n2) for k even,

3k

2
(1− 3m+1)

B̃m+1

m+ 1
− 3k−1

2
knD̃m−1 (mod n2) for k odd, n ∈ I(k, 1).

(iii) In the case s = 0, (cf. [Sun08] if n = p is a prime)

T3,k(n) ≡


3k−1

2
D̃m (mod n) for k even, n ∈ I(k, 0),

3k

2
(1− 3m+1)

B̃m+1

m+ 1
(mod n) for k odd.

Proof. For k even, resp. odd we combine formula (2.10) with congruence (2.16),(2.18),(2.20), resp.
(2.17),(2.19),(2.21). Hence the theorem follows at once. �

Corollary 3.4. Let n > 1 be odd and not divisible by 3. Then:
(i) (cf. [Sun08] if n = p is a prime)

T3,1(n) ≡Q3(n)− 1

2
nD̃n2ϕ(n)−2 −

13

18
n2B̃n2ϕ(n)−2 (mod n3),

T3,1(n) ≡Q′′3(n)− 1

2
nD̃nϕ(n)−2 (mod n2),

T3,1(n) ≡Q′3(n) (mod n).
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(ii)

T3,2(n) ≡3

2
D̃n2ϕ(n)−2 +

13

3
nB̃n2ϕ(n)−2 +

9

2
n2D̃n2ϕ(n)−4 (mod n3) if 5 6 | n,

T3,2(n) ≡3

2
D̃nϕ(n)−2 +

13

3
nB̃nϕ(n)−2 (mod n2),

T3,2(n) ≡3

2
D̃ϕ(n)−2 (mod n).

Proof. (i) This is a particular case of Theorems 3.3 for k = 1. Then m + 1 = nsϕ(n) and, by
3ϕ(n) = nq3(n) + 1 and (3.22), we obtain

3

2
(1− 3m+1)

B̃m+1

m+ 1
=

3

2
(1− (1 + nq3(n))n

s
)
B̃nsϕ(n)

nsϕ(n)

≡ (Q3(n) + βn3)
nB̃nsϕ(n)

ϕ(n)
≡ Q3(n) (mod ns+1)

because β ∈ Z and s ≤ 2. The rest of the proof is straightforward.
(ii) This is a particular case of Theorems 3.3 for k = 2. �

3. Case r = 4

Theorem 3.5. Given an odd n > 3 and 1 ≤ k < nsϕ(n)− s, write m = nsϕ(n)− k. Then:
(i) In the case s=2

T4,k(n) ≡



22k−2Ẽm + 2k−2(2k+1 − 1)nB̃m + 22k−2
(
k + 1

2

)
n2Ẽm−2 (mod n3)

k even, n ∈ I(k, 2),

22k−1(1− 2m − 22m+1)
B̃m+1

m+ 1
− 22k−2knẼm−1

−2k−4k(2k+2 − 1)n2B̃m−1 (mod n3) for k odd.

(ii) In the case s = 111 (cf. [Sun08] if k is odd and n = p is an odd prime )

T4,k(n) ≡

22k−2Ẽm + 2k−2(2k+1 − 1)nB̃m (mod n2) for k is even,

22k−1(1− 2m − 22m+1)
B̃m+1

m+ 1
− 22k−2knẼm−1 (mod n2) for k odd, n ∈ I(k, 1).

(iii) (cf. [Sun08] if n = p is an odd prime)

T4,k(n) ≡

22k−2Ẽm (mod n) for k even, n ∈ I(k, 0),

22k−1(1− 2m − 22m+1)
B̃m+1

m+ 1
(mod n) for k odd.

Proof. This is an immediate consequence of (2.16-21). We apply formula (2.11). �

Corollary 3.6. Let n > 3 be odd. Then:
(i) (cf. [Sun08] if n = p is an odd prime)

T4,1(n) ≡3

2
Q2(n)− nẼn2ϕ(n)−2 −

7

8
n2B̃n2ϕ(n)−2 (mod n3),

T4,1(n) ≡3

2
Q′′2(n)− nẼnϕ(n)−2 (mod n2) if 3 6 | n,

T4,1(n) ≡3

2
Q′2(n) (mod n).

11 Theorem 3.12(i) is also true for k = nϕ(n) − 2 if we assume that n is not exceptional in the sense of Lemma 2.6;
for exceptional n we should add the correction Θ1 = 1

192
n2ϕ(n) to the right hand side of the congruence.
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(ii) (cf. [KUW12])

T4,2(n) ≡4Ẽn2ϕ(n)−2 + 7nB̃n2ϕ(n)−2 + 12n2Ẽn2ϕ(n)−4 (mod n3) if 3, 5 6 | n,

T4,2(n) ≡4Ẽnϕ(n)−2 + 7nB̃nϕ(n)−2 (mod n2),

T4,2(n) ≡4Ẽϕ(n)−2 (mod n)12 if 3 6 | n.

Proof. (i) This is a particular case of Theorems 3.5 for k = 1. Then m + 1 = nsϕ(n) and, by
2ϕ(n) = nq2(n) + 1 and (3.22), we have

2(1− 2m − 22m+1)
B̃m+1

m+ 1
= ((1− (1 + nq2(n))n

s
) + (1− (1 + nq2(n))2n

s
))
B̃nsϕ(n)

nsϕ(n)

≡ 1

2
Q2(n) +Q2(n) + γn3)

nB̃nsϕ(n)

ϕ(n)
≡ 3

2
Q2(n) (mod ns+1)

because γ ∈ Z and s ≤ 2. This gives the theorem at once since the rest of the proof is straightforward.
(ii) This is a particular case of Theorems 3.5 in case k = 2. �

4. Case r = 6

Theorem 3.7. Given an odd n > 5 not divisible by 3 and 1 ≤ k < nsϕ(n)−s, write m = nsϕ(n)−k.
Then:
(i) In the case s = 2

T6,k(n) ≡



3k−1

2
(2k + 1)D̃m +

1

12
(2k+1 − 1)(3k+1 − 1)nB̃m

+
3k−1

8

(
k+1
2

)
(2k+2 − 1)n2D̃m−2 (mod n3) for k even, n ∈ I(k, 2),

2k−13k(1− 2m − 3m − 6m)
B̃m+1

m+ 1
− 3k−1

4
(2k+1 + 1)knD̃m−1

− k

144
(2k+2 − 1)(3k+2 − 1)n2B̃m−1 (mod n3) for k odd.

(ii) In the case s = 1

T6,k(n) ≡



3k−1

2
(2k + 1)D̃m +

1

12
(2k+1 − 1)(3k+1 − 1)nB̃m (mod n2) for k even,

2k−13k(1− 2m − 3m − 6m)
B̃m+1

m+ 1

−3k−1

4
(2k+1 + 1)knD̃m−1 (mod n2) for k odd , n ∈ I(k, 1).

(iii) In the case s = 0 (cf. [Sun08] if n = p is an odd prime)

T6,k(n) ≡


3k−1

2
(2k + 1)D̃m (mod n) for k even, n ∈ I(k, 0),

2k−13k(1− 2m − 3m − 6m)
B̃m+1

m+ 1
(mod n) for k odd.

Proof. This is an immediate consequence of congruences (2.16),(2.18),(2.20) if k is even or (2.17),(2.19),(2.21)
if k is odd and formula (2.12). �
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Corollary 3.8. Let n > 5 be odd and not divisible by 3. Then:
(i)

T6,1(n) ≡Q2(n) +Q3(n)− 5

4
nD̃n2ϕ6(n)−2 −

91

72
n2B̃n2ϕ(n)−2 (mod n3),

T6,1(n) ≡Q′′2(n) +Q′′3(n)− 5

4
nD̃nϕ(n)−2 (mod n2),

T6,1(n) ≡Q′2(n) +Q′3(n) (mod n).

(ii)

T6,2(n) ≡15

2
D̃n2ϕ(n)−2 +

91

6
nB̃n2ϕ(n)−2 +

153

8
n2D̃n2ϕ(n)−4 (mod n3),

T6,2(n) ≡15

2
D̃nϕ(n)−2 +

91

6
nB̃nϕ(n)−2 (mod n2),

T6,2(n) ≡15

2
D̃ϕ(n)−2 (mod n).

Proof. (i) This is a particular case of Theorems 3.7 for k = 1. Then m+ 1 = nsϕ(n) and, in view of
2ϕ(n) = nq2(n) + 1, 3ϕ(n) = nq3(n) + 1 and (3.22), we find that

3(1− 2m − 3m − 6m)
B̃m+1

m+ 1
=

1

2
(3(1− (1 + nq2(n))n

s
) + 2(1− (1 + nq3(n))n

s
)

+ (1− (1 + nq2(n)n
s
(1 + nq3(n))n

s
))
B̃nsϕ(n)

nsϕ(n)

≡ 1

2
(
3

2
Q2(n) +

4

3
Q3(n) +

1

2
Q2(n) +

2

3
Q3(n) + λn3)

nB̃nsϕ(n)

ϕ(n)

≡ Q2(n) +Q3(n) (mod ns+1)

because λ ∈ Z and s ≤ 2. This gives the theorem.
(ii) The theorem follows easily from Theorems 3.7 for k = 2. �

5. Case r = 8

Theorem 3.9. Given an odd n > 7 and 1 ≤ k < nsϕ(n)− s13, write m = nsϕ(n)− k. Then:
(i) In the case s = 2

T8,k(n) ≡23k−3Ẽm + 23k−2C̃m + 22k−3(2k+1 − 1)nB̃m − 23k−2knÃm−1

+ 23k−3
(
k + 1

2

)
n2Ẽm−2 + 23k−2

(
k + 1

2

)
n2C̃m−2

(mod n3) for k even, n ∈ I(k, 2),

T8,k(n) ≡23k−2(1− 2m − 23m+2)
B̃m+1

m+ 1
+ 23k−2Ãm − 23k−3knẼm−1

− 23k−2knC̃m−1 − 22k−5kn2(2k+2 − 1)B̃m−1 + 23k−2
(
k + 1

2

)
n2Ãm−2

(mod n3) for k odd.

13Theorem 3.9 (ii) is also true for k = nϕ(n) − 2 if we assume that n is not exceptional in the sense of Lemma 2.6;
for exceptional n we should add the correction Θ1 = 1

1536
n2ϕ(n) to the right hand side of the congruence.
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(ii) In the case s = 1

T8,k(n) ≡



23k−3Ẽm + 23k−2C̃m + 22k−3(2k+1 − 1)nB̃m

−23k−2knÃm−1 (mod n2) for k is even,

23k−2(1− 2m − 2m+2)
B̃m+1

m+ 1
+ 23k−2Ãm

−23k−3knẼm−1 − 23k−2knC̃m−1 (mod n2) for k odd, n ∈ I(k, 1).

(iii) In the case s = 0

T8,k(n) ≡

23k−3Ẽm + 23k−2C̃m (mod n) for k even, n ∈ I(k, 0),

23k−2(1− 2m − 23m+2)
B̃m+1

m+ 1
+ 23k−2Ãm (mod n) for k odd.

Proof. This follows from congruence (2.16),(2.18),(2.20), resp. (2.17),(2.19),(2.21) for k even, resp.
odd and formula (2.13). �

Corollary 3.10. Let n > 7 be odd. Then:
(i)

T8,1(n) ≡2Q2(n) + 2Ãn2ϕ(n)−1 − nẼn2ϕ(n)−2 − 2nC̃n2ϕ(n)−2

− 7

8
n2B̃n2ϕ(n)−2 + 2n2Ãn2ϕ(n)−3 (mod n3),

T8,1(n) ≡2Q′′2(n) + 2Ãnϕ(n)−1 − nẼnϕ(n)−2 − 2nC̃nϕ(n)−2 (mod n2) if 3 6 | n,

T8,1(n) ≡2Q′2(n) + 2Ãϕ(n)−1 (mod n).

(ii)

T8,2(n) ≡8Ẽn2ϕ(n)−2 + 16C̃n2ϕ(n)−2 + 14nB̃n2ϕ(n)−2 − 32nÃn2ϕ(n)−3

+ 24n2Ẽn2ϕ(n)−4 + 48n2C̃n2ϕ(n)−4 (mod n3) if 3, 5 6 | n,

T8,2(n) ≡8Ẽnϕ(n)−2 + 16C̃nϕ(n)−2 + 14nB̃nϕ(n)−2 − 32nÃnϕ(n)−3 (mod n2),

T8,2(n) ≡8Ẽϕ(n)−2 + 16C̃ϕ(n)−2 (mod n) if 3 6 | n.

Proof. (i) This is a particular case of Theorems 3.9 for k = 1. Then m + 1 = nsϕ(n) and, by virtue
of 2ϕ(n) = nq2(n) + 1 and (3.22), we obtain

2(1− 2m − 23m+2)
B̃m+1

m+ 1
= (2− (1 + nq2(n))n

s − (1 + nq2(n))3n
s
)
B̃nsϕ(n)

nsϕ(n)

≡ (
1

2
Q2(n) +

3

2
Q2(n) + ξn3)

nB̃nsϕ(n)

ϕ(n)

≡ 2Q2(n) (mod ns+1)

because ξ ∈ Z and s ≤ 2. This gives the theorem at once. (ii) It is trivial. �

6. Case r = 12

Theorem 3.11. Given an odd n > 11 not divisible by 3 and 1 ≤ k < nsϕ(n) − s, write m =
nsϕ(n)− k. Then:
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(i) In the case s = 2

T12,k(n) ≡2k−23k−1(2k + 1)D̃m + 22k−3(3k + 1)Ẽm

+
2k−3

3
(2k+1 − 1)(3k+1 − 1)nB̃m − 22k−23kknF̃m−1

+ 2k−43k−1
(
k + 1

2

)
(2k+2 + 1)n2D̃m−2

+
22k−3

9

(
k + 1

2

)
(3k+2 + 1)n2Ẽm−2 (mod n3) for k even, n ∈ I(k, 2),

T12,k(n) ≡22k−23k(1− 2m − 3m + 6m − 4 · 12m)
B̃m+1

m+ 1
+ 22k−23kF̃m

− 2k−33k−1(2k+1 + 1)knD̃m−1 −
22k−3

3
(3k+1 + 1)knẼm−1

− 2k−5

9
(2k+2 − 1)(3k+2 − 1)kn2B̃m−1

+ 22k−23k
(
k + 1

2

)
n2F̃m−2 (mod n3) for k odd.

(ii) In the case s = 1

T12,k(n)

≡



2k−23k−1(2k + 1)D̃m + 22k−3(3k + 1)Ẽm

+
2k−1

3
(2k+1 − 1)(3k+1 − 1)nB̃m − 22k−23kknF̃m−1 (mod n2) for k even,

22k−23k(1− 2m − 3m + 6m − 4 · 12m)
B̃m+1

m+ 1
+ 22k−23kF̃m

−2k−33k−1(2k+1 + 1)knD̃m−1 −
22k−3

3
(3k+1 + 1)knẼm−1 (mod n2) for k odd, n ∈ I(k, 1).

(iii) In the case s = 0

T12,k(n) ≡


2k−23k−1(2k + 1)D̃m + 22k−3(3k + 1)Ẽm (mod n) for k even, n ∈ I(k, 1),

22k−23k(1− 2m − 3m + 6m − 4 · 12m)
B̃m+1

m+ 1
+22k−23kF̃m (mod n) for k odd.

Proof. Apply congruences (2.16),(2.18),(2.20), resp. (2.17),(2.19),(2.21) and formula (2.14). �

Corollary 3.12. Let n > 11 be odd not divisible by 3. Then:
(i)

T12,1(n) ≡3

2
Q2(n) +Q3(n) + 3F̃n2ϕ(n)−1 −

5

4
nD̃n2ϕ(n)−2 −

5

3
nẼn2ϕ(n)−2

− 91

72
n2B̃n2ϕ(n)−2 + 3n2F̃n2ϕ(n)−3 (mod n3),

T12,1(n) ≡3

2
Q′′2(n) +Q3(n)′′ + 3F̃nϕ(n)−1 −

5

4
nD̃nϕ(n)−2 −

5

3
nẼnϕ(n)−2 (mod n2),

T12,1(n) ≡3

2
Q′2(n) +Q′3(n) + 3F̃ϕ(n)−1 (mod n).
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(ii)

T12,2(n) ≡15D̃n2ϕ(n)−2 + 20Ẽn2ϕ(n)−2 +
91

3
nB̃n2ϕ(n)−2 − 72nF̃n2ϕ(n)−3

+
153

4
D̃n2ϕ(n)−4 +

164

3
n2Ẽn2ϕ(n)−4 (mod n3)for5 6| n,

T12,2(n) ≡15D̃nϕ(n)−2 + 20Ẽnϕ(n)−2 +
91

3
nB̃nϕ(n)−2 − 72nF̃nϕ(n)−3 (mod n2),

T12,2(n) ≡15D̃ϕ(n)−2 + 20Ẽϕ(n)−2 (mod n).

Proof. (i) This is a particular case of Theorems 3.11 for k = 1. Then m+ 1 = nsϕ(n) and, by virtue
of 2ϕ(n) = nq2(n) + 1, 3ϕ(n) = nq3(n) + 1 and (3.22), we have

3(1− 2m − 3m + 6m − 4 · 12m)
B̃m+1

m+ 1

=

(
3

2
(1− (1 + nq2(n))n

s
) + (1− (1 + nq3(n))n

s
)

− 1

2
(1− (1 + nq2(n))2n

s
(1− (1 + nq3(n))n

s
)

+ (1− (1 + nq2(n))2n
s
(1 + nq3(n))n

s
)
) B̃nsϕ(n)
nsϕ(n)

≡
(

3

4
Q2(n) +

2

3
Q3(n)− 1

4
Q2(n)− 1

3
Q3(n) +Q2(n) +

2

3
Q3(n) + ηn3

)
nB̃nsϕ(n)

ϕ(n)

≡ 3

2
Q2(n) +Q3(n) (mod ns+1)

because η ∈ Z and s ≤ 2. The rest of the proof is straightforward. �

7. Case r = 24

Theorem 3.13. Given an odd n > 23 not divisible by 3 and 1 ≤ k < nsϕ(n) − s, write m =
nsϕ(n)− k. Then:
(i) In the case s = 2

T24,k(n) ≡22k−33k−1(2k + 1)D̃m + 23k−4(3k + 1)Ẽm + 23k−33kH̃m

+ 23k−3(3k − 1)C̃m +
22k−4

3
(2k+1 − 1)(3k+1 − 1)nB̃m − 23k−33kknF̃m−1

− 23k−33kknG̃m−1 −
23k−3

3
(3k+1 + 1)knÃm−1

+ 23k−53k−1
(
k + 1

2

)
(2k+2 + 1)n2D̃m−2 +

23k−4

9

(
k + 1

2

)
(3k+2 + 1)n2Ẽm−2

+ 23k−33k
(
k + 1

2

)
n2H̃m−2 +

23k−3

9

(
k + 1

2

)
(3k+2 − 1)n2C̃m−2

(mod n3) for k even n ∈ I(k, 2),
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T24,k(n) ≡23k−33k(1− 2m − 3m + 6m − 8 · 24m)
B̃m+1

m+ 1
+ 23k−33kF̃m

+ 23k−33kG̃m + 23k−3(3k + 1)Ãm − 22k−43k−1(2k+1 + 1)knD̃m−1

− 23k−4

3
(3k+1 + 1)knẼm−1 − 23k−33kknH̃m−1 −

23k−3

3
(3k+1 − 1)knC̃m−1

− 23k−6

9
(2k+2 − 1)(3k+2 − 1)kn2B̃m−1 − 23k−33k

(
k + 1

2

)
n2F̃m−2

+ 23k−33k
(
k + 1

2

)
n2G̃m−2 +

23k−3

9

(
k + 1

2

)
(3k+2 + 1)n2Ãm−2

(mod n3) for k odd.

(ii) In the case s = 1

T24,k(n) ≡22k−33k−1(2k + 1)D̃m + 23k−4(3k + 1)Ẽm + 23k−33kH̃m

+ 23k−3(3k − 1)C̃m +
22k−4

3
(2k+1 − 1)(3k+1 − 1)nB̃m − 23k−33kknF̃m−1

− 23k−33kknG̃m−1 −
23k−3

3
(3k+1 + 1)knÃm−1 (mod n2) for k even,

T24,k(n) ≡23k−33k(1− 2m − 3m + 6m − 8 · 24m)
B̃m+1

m+ 1
+ 23k−33kF̃m + 23k−33kG̃m

+ 23k−3(3k + 1)Ãm − 22k−43k−1(2k+1 + 1)knD̃m−1 −
23k−4

3
(3k+1 + 1)knẼm−1

− 23k−33kknH̃m−1 −
23k−3

3
(3k+1 − 1)knC̃m−1 (mod n2) for k odd, n ∈ I(k, 1).

(iii) In the case s = 0

T24,k(n) ≡


22k−33k−1(2k + 1)D̃m + 23k−4(3k + 1)Ẽm

+23k−33kH̃m + 23k−3(3k − 1)C̃m (mod n) for k even n ∈ I(k, 0),

23k−3(1− 2m − 3m + 6m − 8 · 24m) B̃m+1

m+1 + 23k−33kF̃m

+23k−33kG̃m + 23k−3(3k + 1)Ãm (mod n) for k odd.

Proof. This follows from congruences (2.16),(2.18),(2.20), resp. (2.17),(2.19),(2.21) if k is even, resp.
odd with the use of (2.15). �

Corollary 3.14. Let n > 23 be odd and not divisible by 3. Then:
(i)

T24,1(n) ≡2Q2(n) +Q3(n) + 3F̃n2ϕ(n)−1 + 3G̃n2ϕ(n)−1 + 4Ãn2ϕ(n)−1 −
5

4
nD̃n2ϕ(n)−2

− 5

3
nẼn2ϕ(n)−2 − 3nH̃n2ϕ(n)−2 −

8

3
nC̃n2ϕ(n)−2 −

91

72
n2B̃n2ϕ(n)−2

+ 3n2F̃n2ϕ(n)−3 + 3n2G̃n2ϕ(n)−3 +
28

9
n2Ãn2ϕ(n)−3 (mod n3),

T24,1(n) ≡2Q′′2(n) +Q′′3(n) + 3F̃nϕ(n)−1 + 3G̃nϕ(n)−1 + 4Ãnϕ(n)−1

− 5

4
nD̃nϕ(n)−2 −

5

3
nẼnϕ(n)−2 − 3nH̃nϕ(n)−2 −

8

3
nC̃nϕ(n)−2 (mod n2),

T24,1(n) ≡2Q′2(n) +Q′3(n) + 3F̃ϕ(n)−1 + 3G̃ϕ(n)−1 + 4Ãϕ(n)−1 (mod n).
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(ii)

T24,2(n) ≡30D̃n2ϕ(n)−2 + 40Ẽn2ϕ(n)−2 + 72H̃n2ϕ(n)−2 + 64C̃n2ϕ(n)−2

+
182

3
nB̃n2ϕ(n)−2 − 36nF̃n2ϕ(n)−3 − 144nG̃n2ϕ(n)−3

− 448

3
nÃn2ϕ(n)−3 +

153

2
n2D̃n2ϕ(n)−4 +

328

3
n2Ẽn2ϕ(n)−4

+ 216n2H̃n2ϕ(n)−4 +
640

3
n2C̃n2ϕ(n)−4 (mod n3) if 5 6 | n,

T24,2(n) ≡30D̃nϕ(n)−2 + 40Ẽnϕ(n)−2 + 72H̃nϕ(n)−2 + 64C̃nϕ(n)−2

+
182

3
nB̃nϕ(n)−2 − 36nF̃nϕ(n)−3 − 144nG̃nϕ(n)−3

− 448

3
nÃnϕ(n)−3 (mod n2),

T24,2(n) ≡30D̃ϕ(n)−2 + 40Ẽϕ(n)−2 + 72H̃ϕ(n)−2 + 64C̃ϕ(n)−2 (mod n).

Proof. (i) This is a particular case of Theorems 3.13 for k = 1. Then m+ 1 = nsϕ(n) and, in view of
2ϕ(n) = nq2(n) + 1, 3ϕ(n) = nq3(n) + 1 and (3.22), we have

3(1− 2m − 3m + 6m − 8 · 24m)
B̃m+1

m+ 1

=

(
3

2
(1− (1 + nq2(n))n

s
) + (1− (1 + nq3(n))n

s
)

− 1

2
(1− (1 + nq2(n))n

s
(1− (1 + nq3(n))n

s
)

+ (1− (1 + nq2(n))3n
s
(1 + nq3(n))n

s
)
) B̃nsϕ(n)
nsϕ(n)

≡
(

3

4
Q2(n) +

2

3
Q3(n)− 1

4
Q2(n)− 1

3
Q3(n) +

3

2
Q2(n) +

2

3
Q3(n) + ωn3

)
nB̃nsϕ(n)

ϕ(n)

≡ 2Q2(n) +Q3(n) (mod ns+1)

because ω ∈ Z and s ≤ 2. This proves the theorem. (ii) It is trivial. �

4. Further congruences of E. Lehmer’s type (by T. Kuzumaki and
J. Urbanowicz)

In Theorem 4.1 below we find some congruences for Ur(n) modulo ns+1 for s ∈ {0, 1, 2} in each of
the seven cases r = 2, 3, 4, 6, 8, 12 or 24. Some of these congruences for s ∈ {0, 1} and r ∈ {2, 3, 4, 6}
were proved in [CFZ07] and [CP09]. The remaining ones are new. Three of them for s = 1 and
r ∈ {8, 12, 24} were omitted both in [Leh38] and in [CFZ07], [CP09].

Write ρi(r) = 1 − δordi(r),0 (i = 2, 3) where, as usual, δX,Y denotes the Kronecker delta function.
Given odd n > r, we set

EQr(n) =α2(r)q2(r) + α3(r)q3(r) + β2(r)nq
2
2(n) + β3(r)nq

2
3(n) (4.23)

+ γ2(r)n
2q32(n) + γ3(r)n

2q33(n),



Kanemitsu, Kuzumaki and Urbanowicz, On congruences for certain sums of E. Lehmer’s type 21Kanemitsu, Kuzumaki and Urbanowicz, On congruences for certain sums of E. Lehmer’s type 21

where

αi(r) = ρi(r)

(
ordi(r)

r
+

1

iϕ(r)
− ρ5−i(r)

6ϕ(r)

)
,

βi(r) = ρi(r)

(
−ord2(r)

2r
− 1

2iϕ(r)
+
ρ5−i(r)

12ϕ(r)

)
,

γi(r) = ρi(r)

(
ordi(r)

3r
+

1

3iϕ(r)
− ρ5−i(r)

18ϕ(r)

)
and

Br(n) = − n2

2r3
B̃n2ϕ(n)−2.

Set EQ′r(n) = α2(r)q2(r)+α3(r)q3(r) and EQ′′r = α2(r)q2(r)+α3(r)q3(r)+β2(r)nq
2
2(n)+β3(r)nq

2
3(n).

Obviously, we have EQr(n) ≡ EQ′r(n) (mod n) and EQr(n) ≡ EQ′′r(n) (mod n2). Note that Br(n) ≡
0 (mod n), and Br(n) ≡ 0 (mod n2) if n is not divisible by 3.

It was shown in Section 3 that the sums Tr,1(n) are congruent to linear combinations of Euler’s

quotients ÊQr(n) plus some generalized Bernoulli numbers. In view of Proposition 4.2 below we have

EQr(n) = −1
r ÊQr(n).

Theorem 4.1. Assume that s ∈ {0, 1, 2} and r | 24. Let n > r be odd and not divisible by 3 if s = 1
or 3 | r. Then, in the above notation:

Ur(n) ≡



EQr(n) +Br(n) (mod ns+1) for r ≤ 6,

EQr(n) +Br(n)− 1

4
Ãnsϕ(n)−1 (mod ns+1) for r = 8,

EQr(n) +Br(n)− 1

4
F̃nsϕ(n)−1 (mod ns+1) for r = 12,

EQr(n) +Br(n)− 1

6
Ãnsϕ(n)−1 −

1

8
F̃nsϕ(n)−1 −

1

8
G̃nsϕ(n)−1 (mod ns+1) for r = 24.

Here EQr(n) ≡ EQ′r(n) (mod n), EQr(n) ≡ EQ′′(n) (mod n2), Br(n) ≡ 0 (mod n) if n is not
divisible by 3 and Br(n) ≡ 0 (mod n).

4.A. Some useful observations

We deduce Theorem 4.1 from Propositions 4.2,4.3 and congruences for the sums Tr,k(n) given in
Section 3. First we find some useful congruences modulo powers of n between the sums Ur(n) and
some linear combinations of Tr,1(n), Tr,2(n) and Tr,3(n).

Proposition 4.2. (cf. [Leh38].) Assume that n > 1 is odd and r (1 < r < n) is coprime to n. Then:

Ur(n) ≡


−1

r
Tr,1(n)− n

r2
Tr,2(n)− n2

r3
Tr,3(n) (mod n3),

−1

r
Tr,1(n)− n

r2
Tr,2(n) (mod n2),

−1

r
Tr,1(n) (mod n).

Proof. Obviously, (n, i) = 1 if and only if (n− ri, n) = 1. Consequently,

Ur(n) ≡
∑

0<i<n
r

χn(i)(n− ri)nsϕ(n)−1

=
∑

0<i<n
r

χn(i)

nsϕ(n)−1∑
j=0

(
nsϕ(n)− 1

j

)
nj(−ri)nsϕ(n)−1−j (mod ns+1)
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and hence, since rn
sϕ(n)−j ≡ r−j(mod ns+1) and

(
nsϕ(n)− 1

2

)
n2 ≡ n2 (mod n3),

Ur(n) ≡


−1

r
Sr,1,2(n)− n

r2
Sr,2,2(n)− n2

r3
Sr,3,2(n) (mod n3),

−1

r
Sr,1,1(n)− n

r2
Sr,2,1(n) (mod n2),

−1

r
Sr,1,0(n) (mod n).

Now Proposition 4.2 follows from (1.1) at once. �
In Section 3 some formulae for ÊQr(n) are determined. Since, by Proposition 4.1, we have

EQr(n) = −1
r ÊQr(n), the formulae imply corresponding formulae for EQr(n). In the next proposi-

tion, we present the formulae in a slightly different form.

Proposition 4.3. In the above notation, if r | 24, then (4.23) holds.

Proof. Following (2.17) and Proposition 4.2 we know that

EQr(n) = −1

r
ÊQr(n) ≡ − B̃m+1

r(m+ 1)

−1 +
1

ϕ(r)rm

∏
q|r

(1− qm)

 (mod ns+1)

where m = nsϕ(n)− 1. Consequently,

EQr(n) ≡ XB̃m+1

rm+1(m+ 1)
(mod ns+1) (4.24)

where

X = rm − 1

ϕ(r)

∏
q|r

(1− qm).

Thus, in view of (4.24) and (3.22), to obtain (4.23) it suffices to determine X (mod ns+4).
Indeed, we have

X =
1

r
(rϕ(n))n

s − 1

ϕ(r)

(
1− ρ2(r)

2
(2ϕ(n))n

s

)(
1− ρ3(r)

3
(3ϕ(n))n

s

)
,

and by virtue of iϕ(n) = 1 + nqi(n) (i = 2, 3)

X =
1

r
(1 + nq2(n))ord2(r)n

s
(1 + nq3(n))ord3(r)n

s − 1

ϕ(r)
+
ρ2(r)

2ϕ(r)
(1 + nq2(n))n

s

+
ρ3(r)

3ϕ(r)
(1 + nq3(n))n

s − ρ2(r)ρ3(r)

6ϕ(r)
(1 + nq2(n))n

s
(1 + nq3(n))n

s
.

Thus,

X ≡ 1

r
+

1

r

∑
i=2,3

(
ns+1ordi(r)qi(n)− 1

2
ns+1ordi(r)nq

2
i (n) +

1

3
ns+1ordi(r)n

2q3i (n)

)

− 1

ϕ(r)
+
∑
i=2,3

ρi(r)

iϕ(r)

(
1 + ns+1qi(n)− 1

2
ns+1nq2i (n) +

1

3
ns+1n2q3i (n)

)

− ρ2(r)ρ3(r)

6ϕ(r)
− ρ2(r)ρ3(r)

6ϕ(r)

∑
i=2,3

(
ns+1qi(n)− 1

2
ns+1nq2i (n) +

1

3
ns+1n2q3i (n)

)
(mod ns+4),
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and so,

X ≡Y +
1

r
ns+1

∑
i=2,3

(
ordi(r)qi(n)− 1

2
ordi(r)nq

2
i (n) +

1

3
ordi(r)n

2q3i (n)

)

+
∑
i=2,3

ρi(r)

iϕ(r)
ns+1

(
qi(n)− 1

2
nq2i (n) +

1

3
n2q3i (n)

)

− ρ2(r)ρ3(r)

6ϕ(r)
ns+1

∑
i=2,3

(
qi(n)− 1

2
nq2i (n) +

1

3
n2q3i (n)

)
(mod ns+4),

where

Y =
1

r
− 1

ϕ(r)
+
ρ2(r)

2ϕ(r)
+
ρ3(r)

3ϕ(r)
− ρ2(r)ρ3(r)

6ϕ(r)
.

An easy verification shows that Y = 0. To check it we consider the cases. If ρ2(r) = 0 and ρ3(r) = 1;
then r = 3 and obviously Y = 0. If ρ2(r) = 1 and ρ3(r) = 0; then r = 2, 4, 8 and we have

Y =
1

r
− 1

2ϕ(r)
= 0 since r = 2ϕ(r) for these r. Finally, if ρ2(r) = ρ3(r) = 1; then r = 6, 12, 24 and

Y =
1

r
− 1

3ϕ(r)
= 0 since r = 3ϕ(r) in these cases. This completes the proof of Proposition 4.3.

�

4.B. Proof of Theorem 4.1

The proof of Theorem 4.1 falls naturally into seven cases r = 2, 3, 4, 6, 8, 12 or 24. In view of Propo-
sition 4.2, in each of the cases, it suffices to determine:

(i) the sums Tr,1(n) (mod ns+1) for s ∈ {0, 1, 2}, which are determined in (i) of Corollaries 3.2, 3.4,
3.6, 3.8, 3.10, 3.12 or 3.14;

(ii) the congruences for nTr,2(n) (mod ns+1) for s ∈ {1, 2}, which follow immediately from parts
(ii) of Corollaries 3.2, 3.4, 3.6, 3.8, 3.10, 3.12 or 3.14;

(iii) the congruences for n2Tr,3(n) (mod n3), which follow easily from parts (i) of Theorems 3.1, 3.3,
3.5, 3.7, 3.9, 3.11 or 3.13 for k = 314.

Set Q′i(n) ≡ Qi(n) (mod n) and Q′′i (n) ≡ Qi(n) (mod n2) (i = 2, 3). We consider the cases:

1. If r = 2, Theorem 4.1 is a consequence of Proposition 4.2, Theorems 3.1 and Corollary 3.2; then
for n > 1 odd and s = 2 we have

T2,1(n) ≡Q2(n)− 7

8
n2B̃n2ϕ(n)−2 (mod n3),

nT2,2(n) ≡7

2
n2B̃n2ϕ(n)−2 (mod n3),

n2T2,3(n) ≡− 3n2B̃n2ϕ(n)−2 (mod n3).

The first of these congruences is the same as that Section 3 and the second one is an immediate
consequence of that in Section 3. The third congruence follows immediately from Theorem 3.1 for
k = 3; then

n2T2,3(n) ≡
6n2B̃n2ϕ(n)−2

n2ϕ(n)− 2
(mod n3).

14More precisely, we need to determine Tr,1(n), nTr,2(n), n2Tr,3(n)(mod n3) if s = 2, Tr,1(n), nTr,2(n) (mod n2) if
s = 1 and Tr,1(n) (mod n) if s = 0.
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On the other hand,

n2B̃n2ϕ(n)−2

n2ϕ(n)− 2
≡ −1

2
n2B̃n2ϕ(n)−2 (mod n3), (4.25)

which completes the proof in this case. For s = 1

T2,1(n) ≡Q′′2(n)− 7

8
n2B̃nϕ(n)−2 (mod n2),

nT2,2(n) ≡7

2
n2B̃nϕ(n)−2 (mod n2).

If we assume that 3 6 | n, then B̃nϕ(n)−2 is p-integral for any p | n and so

T2,1(n) ≡ Q′′2(n) (mod n2), nT2,2(n) ≡ 0 (mod n2)

as claimed. If s = 0 T2,1(n) ≡ Q′2(n) (mod n).

2. If r = 3, Theorem 4.1 is an immediate consequence of Proposition 4.2, Theorems 3.3 and Corollary
3.4; then for odd n > 1, 3 6 | n and s = 2 we have

T3,1(n) ≡ Q3(n)− 1

2
nD̃n2ϕ(n)−2 −

13

18
n2B̃n2ϕ(n)−2 (mod n3),

nT3,2(n) ≡ 3

2
nD̃n2ϕ(n)−2 +

13

3
n2B̃n2ϕ(n)−2 (mod n3),

n2T3,3(n) ≡ −6n2B̃n2ϕ(n)−2 (mod n3).

Again the first congruence is the same as that in Section 3 and the second one is an easy consequence
of that in that section. The third congruence follows from Theorem 3.3 (i) for k = 3 and (4.25); then

n2T3,3(n) ≡
12n2B̃n2ϕ(n)−2

n2ϕ(n)− 2
(mod n3).

For s = 1

T3,1(n) ≡ Q′′3(n)− 1

2
nD̃nϕ(n)−2 (mod n2), nT2,2(n) ≡ 3

2
nD̃nϕ(n)−2 (mod n2).

Likewise, if s = 0 , T3,1(n) ≡ Q′3(n) (mod n).

3. If r = 4, Theorem 4.1 follows from Proposition 4.2 and Theorems 3.5 and Corollary 3.6; then for
n > 3 odd and s = 2 we have

T4,1(n) ≡ 3

2
Q2(n)− nẼn2ϕ(n)−2 −

7

8
n2B̃n2ϕ(n)−2 (mod n3),

nT4,2(n) ≡ 4nẼn2ϕ(n)−2 + 7n2B̃n2ϕ(n)−2 (mod n3),

n2T4,3(n) ≡ −27

2
n2B̃n2ϕ(n)−2 (mod n3).

The first congruence is the same as that in Section 3 and the second one is an immediate consequence
of that in that section. The third congruence follows immediately from Theorem 3.5 for k = 3 and
(4.25); then

n2T4,3(n) ≡
27n2B̃n2ϕ(n)−2

n2ϕ(n)− 2
(mod n3).
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For s = 1

T4,1(n) ≡ 3

2
Q′′2(n)− nẼnϕ(n)−2 −

7

8
n2B̃nϕ(n)−2 (mod n2),

nT4,2(n) ≡ 4nẼnϕ(n)−2 + 7n2B̃nϕ(n)−2 (mod n2)

and so

T4,1(n) ≡ 3

2
Q′′2(n)− nẼnϕ(n)−2 (mod n2), nT4,2(n) ≡ 4nẼnϕ(n)−2 (mod n2)

if 3 6 | n. If s = 0 T4,1(n) ≡ 3
2Q
′
2(n) (mod n).

4. If r = 6, Theorem 4.1 is an immediate consequence of Proposition 4.2, Theorems 3.7 and Corollary
3.8; then for odd n > 5, 3 6 | n and s = 2 we have

T6,1(n) ≡ Q2(n) +Q3(n)− 5

4
nD̃n2ϕ(n)−2 −

91

72
n2B̃n2ϕ(n)−2 (mod n3),

nT6,2(n) ≡ 15

2
nD̃n2ϕ(n)−2 +

91

6
n2B̃n2ϕ(n)−2 (mod n3),

n2T6,3(n) ≡ −45n2B̃n2ϕ(n)−2 (mod n3).

The first congruence is the same as that in Section 3 and the second one is an immediate conse-
quence of that in that section. The third congruence follows from (4.25) and the congruence

n2T6,3(n) ≡
90n2B̃n2ϕ(n)−2

n2ϕ(n)− 2
(mod n3).

For s = 1

T6,1(n) ≡Q′′2(n) +Q′′3(n)− 5

4
nD̃nϕ(n)−2 (mod n2),

nT6,2(n) ≡15

2
nD̃nϕ(n)−2 (mod n2).

If s = 0 T6,1(n) ≡ Q′2(n) +Q′3(n) (mod n).

5. If r = 8, Theorem 4.1 follows from Proposition 4.2, Theorems 3.9 and Corollary 3.10 ; then for
n > 7 odd and s = 2 we have

T8,1(n) ≡2Q2(n) + 2Ãn2ϕ(n)−1 − nẼn2ϕ(n)−2 − 2nC̃n2ϕ(n)−2

− 7

8
n2B̃n2ϕ(n)−2 + 2n2Ãn2ϕ(n)−3 (mod n3),

nT8,2(n) ≡8nẼn2ϕ(n)−2 + 16nC̃n2ϕ(n)−2 + 14n2B̃n2ϕ(n)−2 − 32n2Ãn2ϕ(n)−3 (mod n3),

n2T8,3(n) ≡− 111

2
n2B̃n2ϕ(n)−2 + 128n2Ãn2ϕ(n)−3 (mod n3).

The first congruence is the same as that in Section 3, the second one follows from that in Section 3
and the third one is an immediate consequence of Theorem 3.9 for k = 3 and (4.25); then

n2T8,3(n) ≡
111n2B̃n2ϕ(n)−2

n2ϕ(n)− 2
+ 128n2Ãn2ϕ(n)−3 (mod n3).

For s = 1

T8,1(n) ≡2Q′′2(n) + 2Ãnϕ(n)−1 − nẼnϕ(n)−2 − 2nC̃nϕ(n)−2 −
7

8
n2B̃nϕ(n)−2 (mod n2),

nT8,2(n) ≡8nẼnϕ(n)−2 + 16nC̃nϕ(n)−2 + 14n2B̃nϕ(n)−2 (mod n2)
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and so

T8,1(n) ≡2Q′′2(n) + 2Ãnϕ(n)−1 − nẼnϕ(n)−2 − 2nC̃nϕ(n)−2 (mod n2),

nT8,2(n) ≡8nẼnϕ(n)−2 + 16nC̃nϕ(n)−2 (mod n2)

if 3 6 | n. If s = 0, T8,1(n) ≡ 2Q′2(n) + 2Ãϕ(n)−1 (mod n).

6. If r = 12, Theorem 4.1 follows at once from Proposition 4.2, Theorems 3.11 and Corollary 3.12;
then for n > 11 odd and s = 2 we have

T12,1(n) ≡3

2
Q2(n) +Q3(n) + 3F̃n2ϕ(n)−1 −

5

4
nD̃n2ϕ(n)−2 −

5

3
nẼn2ϕ(n)−2

− 91

72
n2B̃n2ϕ(n)−2 + 3n2F̃n2ϕ(n)−3 (mod n3),

nT12,2(n) ≡15nD̃n2ϕ(n)−2 + 20nẼn2ϕ(n)−2 +
91

3
n2B̃n2ϕ(n)−2 − 72n2F̃n2ϕ(n)−3 (mod n3),

n2T12,3(n) ≡− 363

2
n2B̃n2ϕ(n)−2 + 432n2F̃n2ϕ(n)−3 (mod n3).

The first congruence is the same as that in Section 3, the second one is implied by that in that section
and the third one follows from Theorem 3.11 for k = 3 and (4.25); then

n2T12,3(n) ≡
363n2B̃n2ϕ(n)−2

n2ϕ(n)− 2
+ 432n2F̃n2ϕ(n)−3 (mod n3).

For s = 1

T12,1(n) ≡3

2
Q′′2(n) +Q′′3(n) + 3F̃nϕ(n)−1 −

5

4
nD̃nϕ(n)−2 −

5

3
nẼnϕ(n)−2 (mod n2),

nT12,2(n) ≡15nD̃nϕ(n)−2 + 20nẼnϕ(n)−2 (mod n2).

If s = 0, T12,1(n) ≡ 3
2Q
′
2(n) +Q′3(n) + 3F̃ϕ(n)−1 (mod n).

7. If r = 24, Theorem 4.1 follows from Proposition 4.2, Theorems 3.13 and Corollary 3.14; then for
n > 23 odd and s = 2 we have

T24,1(n) ≡2Q2(n) +Q3(n) + 3F̃n2ϕ(n)−1 + 3G̃n2ϕ(n)−1 + 4Ãn2ϕ(n)−1

− 5

4
nD̃n2ϕ(n)−2 −

5

3
nẼn2ϕ(n)−2 − 3nH̃n2ϕ(n)−2 −

8

3
nC̃n2ϕ(n)−2

− 91

72
n2B̃n2ϕ(n)−2 + 3n2F̃n2ϕ(n)−3 + 3n2G̃n2ϕ(n)−3 +

28

9
n2Ãn2ϕ(n)−3 (mod n3),

nT24,2(n) ≡30nD̃n2ϕ(n)−2 + 40nẼn2ϕ(n)−2 + 72nH̃n2ϕ(n)−2 + 64nC̃n2ϕ(n)−2

+
182

3
n2B̃n2ϕ(n)−2 − 36n2F̃n2ϕ(n)−3 − 144n2G̃n2ϕ(n)−3

− 448

3
n2Ãn2ϕ(n)−3 (mod n3),

n2T24,3(n) ≡− 1455

2
n2B̃n2ϕ(n)−2 + 1728n2F̃n2ϕ(n)−3

+ 1728n2G̃n2ϕ(n)−3 + 1792n2Ãn2ϕ(n)−3 (mod n3).

Again the first congruence is the same as that in Section 3, the second one follows immediately from
that in that section and the third one follows from Theorem 3.13 for k = 3 and(4.25); then

n2T24,3(n) ≡−
1455n2B̃n2ϕ(n)−2

n2ϕ(n)− 2
+ 1728n2F̃n2ϕ(n)−3

+ 1728n2G̃n2ϕ(n)−3 + 1792n2Ãn2ϕ(n)−3 (mod n3).
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For s = 1

T24,1(n) ≡2Q′′2(n) +Q′′3(n) + 3F̃nϕ(n)−1 + 3G̃nϕ(n)−1 + 4Ãnϕ(n)−1

− 5

4
nD̃nϕ(n)−2 −

5

3
nẼnϕ(n)−2 − 3nH̃nϕ(n)−2 −

8

3
nC̃nϕ(n)−2 (mod n2),

nT24,2(n) ≡30nD̃nϕ(n)−2 + 40nẼnϕ(n)−2 + 72nH̃nϕ(n)−2 + 64nC̃nϕ(n)−2 (mod n2).

For s = 0,
T24,1(n) ≡ 2Q′2(n) +Q′3(n) + 3F̃ϕ(n)−1 + 3G̃ϕ(n)−1 + 4Ãϕ(n)−1 (mod n).

This completes the proof of Theorem 4.1.

5. Concluding remarks

Let p ≥ 3 be a prime number and let r be a natural number such that 1 < r < p. Assume that
s ∈ {0, 1, 2} and r | 24. In the next part of the paper we are going to prove some new congruences

for the sums Tr,k(p) =
∑[ p

r
]

i=1(1/i
k) modulo ps+1 for k ≥ 1, in particular for k = 1 or 2 in all the cases.

Similarly we would like to derive some new congruences for the sums Ur(p) =
∑[ p

r
]

i=1
1

p−ri modulo ps+1.
We shall use the congruences proved in the present paper in the case when n = p is an odd prime as
well as Kummer’s congruences for the generalized Bernoulli numbers.
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