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Main Text:

Introduction. The sunlit surface layer of the world's oceans functions as a giant biogeochemical membrane between the atmosphere and the ocean interior (1). This biome includes plankton communities that fix CO 2 and other elements into biological matter, which then enters the food web. This biological matter can be remineralized or exported to the deeper ocean, where it may be sequestered over ecological to geological time scales. Study of this biome has typically focused on either conspicuous phyto-or zoo-plankton at the larger end of the organismal size spectrum, or "microbes" (prokaryotes and viruses) at the smaller end. Here, we studied the taxonomic and ecological diversity of the intermediate size spectrum (from 0.8µm to a few mm), which includes all unicellular eukaryotes (protists) and ranges from the smallest protistan cells to small animals [START_REF] Caron | Marine Protistan Diversity[END_REF]. The ecological biodiversity of marine planktonic protists has been analyzed using Sanger (e.g. [START_REF] López-García | Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton[END_REF](4)(5)) and high-throughput (e.g. (6,[START_REF] Edgcomb | Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness[END_REF]) sequencing of mainly ribosomal DNA (rDNA) gene markers, on relatively small taxonomic and/or geographical scales, unveiling key new groups of phagotrophs (8), parasites (9), and phototrophs (10) . We sequenced 18S rDNA metabarcodes up to local and global saturations from size-fractionated plankton communities sampled systematically across the world tropical and temperate sunlit oceans.

A global metabarcoding approach. To explore patterns of photic-zone eukaryotic plankton biodiversity, we generated ~766 million raw rDNA sequence reads from 334 plankton samples collected during the circum-global Tara Oceans expedition (11). At each of 47 stations, plankton communities were sampled at two water-column depths corresponding to the main hydrographic structures of the photic zone: subsurface mixed-layer waters (SRF) and the Deep Chlorophyll Maximum (DCM) at the top of the thermocline. A low-shear, non-intrusive peristaltic pump and plankton nets of various mesh-sizes were used on board Tara to sample and concentrate appropriate volumes of seawater to theoretically recover complete local eukaryotic biodiversity from four major organismal size fractions: piconano-plankton (0.8-5µm), nano-plankton (5-20µm), micro-plankton (20-180µm), and meso-plankton (180-2000µm) (see [START_REF] Pesant | Tara Oceans Data: A sampling strategy and methodology for the study of marine plankton in their environmental context[END_REF] for detailed Tara Oceans field sampling strategy and protocols).

We extracted total DNA from all samples, PCR amplified the hyper-variable V9 region of the nuclear gene that encodes 18S rRNA (13), and generated an average of 1.73±0.65 million sequence reads (paired-end Illumina) per sample (11). Strict bioinformatic quality control led to a final dataset of 580 million reads, of which ~2.3 million were distinct, hereafter denoted metabarcodes. We then clustered metabarcodes into biologically meaningful OTUs (14), and assigned a eukaryotic taxonomic path to all metabarcodes and OTUs by global similarity analysis with 77,449 reference, Sanger-sequenced V9 rDNA barcodes covering the known diversity of eukaryotes and assembled into an in-house database called V9_PR2 (15). Beyond taxonomic assignation, we inferred basic trophic and symbiotic ecological modes (photo-versus heterotrophy; parasitism, commensalism, mutualism for both hosts and symbionts) to Tara Oceans reads and OTUs, based on their genetic affiliation to large, monophyletic and monofunctional groups of reference barcodes. We finally inferred large-scale ecological patterns of eukaryotic biodiversity across geography, taxonomy, and organismal size-fractions based on rDNA abundance data and community similarity analyses, and compared them to current knowledge extracted from the literature.

The extent of eukaryotic plankton diversity in the photic-zone of the world ocean.

Sequencing of ~1.7 million V9 rDNA reads from each of the 334 size-fractionated plankton samples was sufficient to approach saturation of eukaryotic richness at both local and global scales (Fig. 1A,B). Local richness represented on average 9.7±4% of global richness, the latter approaching saturation at ~2 million eukaryotic metabarcodes or ~110,000 OTUs (16). The global pool of OTUs displayed a good fit to the truncated Preston log-normal distribution (17), which, by extrapolation, suggests a total photic-zone eukaryotic plankton richness of ~150,000 OTUs, of which ~40,000 were not found in our survey (Fig. 1C). Thus we estimate that our survey unveiled ~75% of eukaryotic ribosomal diversity in the globally distributed water masses analysed. The extrapolated ~150,000 total OTUs is much higher than the ~11,200 formally described species of marine eukaryotic plankton (see below), and likely represents a highly conservative, lower boundary estimate of the true number of eukaryotic species in this biome given the relatively limited taxonomic resolution power of the 18S rDNA gene. Our data indicate that eukaryotic taxonomic diversity is higher in smaller organismal size fractions, with a peak in the piconanoplankton (Fig. 1A), highlighting the richness of tiny organisms that are poorly characterized in terms of morpho-taxonomy and physiology [START_REF] Massana | Eukaryotic picoplankton in surface oceans[END_REF]. A first-order, super-group level classification of all Tara Oceans OTUs demonstrated the prevalence, at the biome scale and across the >4 orders of size-magnitude sampled, of protist rDNA biodiversity with respect to that of classical multicellular eukaryotes, i.e., animals, plants, and fungi (Fig. 2A). Protists accounted for >85% of total eukaryotic ribosomal diversity, a ratio that may well hold true for other marine, freshwater, and terrestrial oxygenic ecosystems (19). The latest estimates of total marine eukaryotic biodiversity based on statistical extrapolations from classical taxonomic knowledge predict the existence of 0.5 to 2.2 million species (including all benthic and planktonic systems from reefs to deep-sea vents (20,[START_REF] Appeltans | The magnitude of global marine species diversity[END_REF], but do not take into account the protistan knowledge gap highlighted here. Simple application of our 'animal to other eukaryotes' ratio of ~13% to the robust prediction of the total number of metazoan species from (20) would imply that 16.5 million and 60 million eukaryotic species potentially inhabit the oceans and the Earth, respectively.

Phylogenetic breakdown of photic-zone eukaryotic biodiversity. About one third of eukaryotic ribosomal diversity in our dataset did not match any reference barcode in the extensive V9_PR2 database ('unassigned' category in Fig. 2A). This unassignable diversity represented only a small proportion (2.6%) of total reads, and increased in both richness and abundance in smaller organismal size fractions, suggesting that it may correspond in part to rare and minute taxa that have escaped previous characterization. Some may also correspond to divergent rDNA pseudogenes, known to exist in eukaryotes [START_REF] Márquez | Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora[END_REF][START_REF] Santos | Molecular characterization of nuclear small subunit (18S)-rDNA pseudogenes in a symbiotic dinoflagellate (Symbiodinium, Dinophyta)[END_REF], or sequencing artefacts [START_REF] Decelle | Intracellular Diversity of the V4 and V9 Regions of the 18S rRNA in Marine Protists (Radiolarians) Assessed by High-Throughput Sequencing[END_REF], although both of these would be expected to be present in equal proportion in all size-fractions (details in (16)).

The remaining ~87,000 assignable OTUs were classified into 97 deep-branching lineages covering the full spectrum of catalogued eukaryotic diversity amongst the 7 recognized supergroups and multiple incertae sedis lineages (15) whose origins go back to the primary radiation of eukaryotic life in the Neo-Proterozoic. Although highly represented in the V9_PR2 reference database, several well-known lineages adapted to terrestrial, marine benthic, or anaerobic habitats (e.g. Embryophyta, apicomplexan and trypanosome parasites of land plants and animals, amoeboflagellate Breviatea, several lineages of Amoebozoa, Excavata and Cercozoa) were not detected in our metabarcoding dataset, suggesting the absence of contamination during the PCR and sequencing steps on land, and reducing the number of deep branches of eukaryotic plankton to 85 (Fig. 3).

We then extracted the metabarcodes assigned to morphologically well-known planktonic eukaryotic taxa from our dataset, and compared them with the conventional, 150 year-old morphological view of marine eukaryotic plankton that includes ~11,200 catalogued species divided into three broad categories: ~4,350 species of phytoplankton (microalgae), ~1,350 species of protozooplankton (relatively large, often biomineralized, heterotrophic protists) and ~5,500 species of metazooplankton (holoplanktonic animals) (25)(26)(27). A congruent picture of the distribution of morpho-genetic diversity amongst and within these organismal categories emerged from our dataset (Fig. 2B), but typically 3 to 8 times more rDNA OTUs were found than described morphospecies in the best-known lineages within these categories. This is within the range of the number of cryptic species typically detected in globally-distributed pelagic taxa using molecular data [START_REF] Vargas | Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces[END_REF][START_REF] Halbert | High cryptic diversity across the global range of the migratory planktonic copepods Pleuromamma piseki and P. gracilis[END_REF]. The general congruency between genetic and morphological data in the catalogued compartment of eukaryotic plankton suggests that the protocols used, from plankton sampling to DNA sequencing, recovered the known eukaryotic biodiversity without significant qualitative or quantitative biases. However, OTUs related to morphologically described taxa represented only a minor part of the total eukaryotic plankton ribosomal and phylogenetic diversity. Overall, <1% of OTUs were strictly identical to reference sequences, and OTUs were on average only ~86% similar to any V9 reference sequence (Fig. 3F and ( 16)). This shows that most photic-zone eukaryotic plankton V9 rDNA diversity had not been previously sequenced from cultured strains, single-cell isolates, or even environmental clone library surveys.

The Tara Oceans metabarcode dataset added considerable phylogenetic information to previous protistan rDNA knowledge, with an estimated mean tree length increase of 453%, reaching >100% in 43 lineages (16). Even in the best-referenced groups such as the diatoms (1,232 reference sequences, Fig. 3B), we identified many new rDNA sequences both within known groups and forming new clades (16).

Eleven 'hyper-diverse' lineages each contained >1,000 OTUs, together representing ~88% and ~90% of all OTUs and reads, respectively (Fig. 3C). Amongst these, the only permanently phototrophic taxa were diatoms (Fig. 4A) and about a third of dinoflagellates (Fig. 4B-F), together comprising ~15% and ~13% of hyper-diverse OTUs and reads, respectively [START_REF]Companion website: Figure W8, Figure W9, Figure W10, Figure W14[END_REF]. Most hyper-diverse photic-zone plankton belonged to three super-groups, the Alveolata, Rhizaria, and Excavata, about which we have limited biological or ecological information. The Alveolata, which consist mostly of parasitic (MALVs, Fig. 4F) and phagotrophic (ciliates and most dinoflagellates) taxa, were by far the most diverse super-group, comprising ~42% of all assignable OTUs. The Rhizaria are a group of amoeboid heterotrophic protists with active pseudopods displaying a broad spectrum of ecological behavior from phagotrophy to parasitism and mutualism (symbioses) [START_REF] Burki | [END_REF]. Rhizarian diversity peaked in the Retaria (Fig. 4C,D), a subgroup including giant protists that build complex skeletons of silicate (Polycystinea), strontium sulfate (Acantharia, Fig. 4C), or calcium carbonate (Foraminifera), and thus comprise key microfossils for paleoceanography. Unsuspected rDNA diversity was recorded within the Collodaria (5,636 OTUs), polycystines which are mostly colonial, poorly silicified or naked, and live in obligatory symbiosis with photosynthetic dinoflagellates (Fig. 4D) (32,[START_REF] Probert | Brandtodinium gen. nov. and B . nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians[END_REF]. Arguably the most surprising component of novel biodiversity was the >12,300 OTUs related to reference sequences of diplonemids, an excavate lineage that has only two described genera of flagellate grazers, one of which parasitizes diatoms and crustaceans [START_REF] Der Heyden | Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa[END_REF][START_REF] Schnepf | Light and Electron Microscopical Observations in Rhynchopus coscinodiscivorus spec. nov., a Colorless, Phagotrophic Euglenozoon with Concealed Flagella[END_REF]. Their ribosomal diversity was not only much higher than that observed in classical plankton groups such as foraminifers, ciliates, or diatoms (50-fold, 6-fold, and 3.8-fold higher, respectively), but was also far from richness saturation (Fig. 3E). Eukaryotic rDNA diversity peaked especially in the few lineages that extend across larger size fractions (i.e. metazoans, rhizarians, dinoflagellates, ciliates, diatoms; Fig. 3E). Larger cells or colonies not only provide protection against predation via sizemediated avoidance and/or construction of composite skeletons, but also support for complex and coevolving relationships with often specialized parasites or mutualistic symbionts.

Beyond this hyper-diverse, largely heterotrophic eukaryotic majority, our dataset also highlighted phylogenetic diversity of poorly known phagotrophic (e.g., 413 OTUs of Katablepharidophyta, 240 OTUs of Telonemia), osmotrophic (e.g., 410 OTUs of Ascomycota, 322 OTUs of Labyrinthulea), and parasitic (e.g., 384 OTUs of gregarine apicomplexans, 160 OTUs of Ascetosporea, 68 OTUs of Ichthyosporea) protist groups. Amongst the 85 major lineages presented in the phylogenetic framework of Fig. 3, less than a third (~25) have been recognized as significant in previous marine plankton biodiversity and ecology studies using morphological and/or molecular data (Fig. 3C and ( 15)). The remaining ~60 branches had either never been observed in marine plankton, or were detected through morphological description of one or a few species and/or the presence of environmental sequences in geographically restricted clone library surveys (15). This understudied diversity represents ~25% of all taxonomically assignable OTUs (>21,500) and covers broad taxonomic and geographic scales, thus representing a wealth of new actors to integrate into future plankton systems biology studies.

Insights into photic-zone eukaryotic plankton ecology.

Functional annotation of taxonomicallyassigned V9 rDNA metabarcodes was used as a first attempt to explore ecological patterns of eukaryotic diversity across broad spatial scales and organismal size-fractions, focusing on fundamental trophic modes (photo-vs. hetero-trophy) and symbiotic interactions (parasitism to mutualism). Heterotroph (protists and metazoans) V9 rDNA metabarcodes were significantly more diverse (63%) and abundant (62%) than phototroph metabarcodes that represented <20% of OTUs and reads across all size-fractions and geographic sites, with an increasing heterotroph to phototroph ratio in the micro-and meso-plankton (Fig. 5A, confirmed in 17 non-size-fractionated samples [START_REF]Companion website: Figure W8, Figure W9, Figure W10, Figure W14[END_REF]). These results challenge the classical, morphological view of plankton diversity, biased by a terrestrial ecology approach, whereby phyto-and metazoo-plankton (the plant/animal paradigm) are thought to comprise ~88% of eukaryotic plankton diversity (Fig. 2B) and heterotrophic protists are typically reduced in food web modeling to a single entity, often idealized as ciliate grazers.

An unsuspected richness and abundance of metabarcodes assigned to monophyletic groups of heterotrophic protists that cannot survive without endosymbiotic microalgae was found in larger size fractions ('photosymbiotic hosts' in Fig. 5A). Their abundance and even diversity were sometimes greater than those of all metazoan metabarcodes, including those from copepods. Most of these cosmopolitan photosymbiotic hosts were found within the hyper-diverse radiolarians Acantharia (1,043 OTUs) and Collodaria (5,636 OTUs, Figs. 3, 4B and 5D), which have often been overlooked in traditional morphological surveys of plankton-net collected material because of their delicate gelatinous and/or easily dissolved structures, but are known to be very abundant from microscope-based and in situ imaging studies [START_REF] Dennett | Video plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the central North Pacific[END_REF][START_REF] Stemmann | Global zoogeography of fragile macrozooplankton in the upper 100-1000 m inferred from the underwater video profiler[END_REF][START_REF] Michaels | Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda: abundance, biomass and vertical flux[END_REF]. All 95 known colonial collodarian species described since the 19th century (39) harbour intracellular symbiotic microalgae and these key players for plankton ecology are protistan analogues of photosymbiotic corals in tropical coastal reef ecosystems with no equivalent in terrestrial ecology. In addition to their contribution to total primary production [START_REF] Dennett | Video plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the central North Pacific[END_REF][START_REF] Michaels | Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda: abundance, biomass and vertical flux[END_REF], these diverse, biologically complex, often biomineralized, and relatively long-lived giant mixotrophic protists stabilize carbon in larger size fractions and likely increase its flux to the ocean interior [START_REF] Michaels | Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda: abundance, biomass and vertical flux[END_REF]. Conversely, the microalgae that are known obligate intracellular partners in open-ocean photosymbioses [START_REF] Probert | Brandtodinium gen. nov. and B . nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians[END_REF][START_REF] Siano | Pelagodinium gen. nov. and P. béii comb. nov., a dinoflagellate symbiont of planktonic foraminifera[END_REF][START_REF] Decelle | An original mode of symbiosis in open ocean plankton[END_REF][START_REF] Shaked | Pelagic photosymbiosis: rDNA assessment of diversity and evolution of dinoflagellate symbionts and planktonic foraminiferal hosts[END_REF] (Fig. 5B) were neither very diverse nor highly abundant, and occurred evenly across organismal size fractions (Fig. 5C). However, their relative contribution was greatest in the meso-plankton category (10%) (Fig. 5C), where the known photosymbionts of pelagic rhizarians were found (together with their hosts Fig. 5B). The stable and systematic abundance of photosymbiotic microalgae across size fractions (a pattern not shown by non-photosymbiotic microalgae, see [START_REF]Companion website: Figure W8, Figure W9, Figure W10, Figure W14[END_REF]) suggests that pelagic photosymbionts maintain free-living and potentially actively growing populations in the piconano-and nano-plankton, representing an accessible pool for recruitment by their heterotrophic hosts. This appears to contrast with photosymbioses in coral reefs and terrestrial systems where symbiotic microalgal populations mainly occur within their multicellular hosts [START_REF] Decelle | New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?[END_REF].

On the other end of the spectrum of biological interactions, rDNA metabarcodes affiliated to groups of known parasites were ~90 times more diverse than photosymbionts in the piconanoplankton, where they represented ~59% of total heterotrophic protistan ribosomal richness, and ~53% of abundance (Fig. 4; Fig. 5C), although this latter value may be inflated by a hypothetically higher rDNA copy number in some marine alveolate lineages [START_REF] Massana | Eukaryotic picoplankton in surface oceans[END_REF]. Parasites in this size fraction were mostly (89% of diversity and 88% of abundance, across all stations) within the MALV-I and II Syndiniales [START_REF]Companion website: Figure W8, Figure W9, Figure W10, Figure W14[END_REF], which are known exclusively as parasitoid species that kill their host and release hundreds of small (2 to 10 µm), non-phagotrophic, dinospores (44, 9) that survive for only a few days in the water column [START_REF] Coats | Parasitism of photosynthetic dinoflagellates by three strains of Amoebophyra (Dinophyta): parasite survival, infectivity, generation time, and host specificity[END_REF]. Abundant parasite-assigned metabarcodes in small size fractions (Fig. 5B,C) suggest the existence of a large and diverse pool of free-living parasites in photic-zone piconano-plankton, mirroring phage ecology [START_REF] Wommack | Virioplankton: Viruses in Aquatic Ecosystems[END_REF], and reflecting the extreme diversity and abundance of their known hosts, essentially radiolarians, ciliates, and dinoflagellates (Fig. 3) (9,[START_REF] Skovgaard | Dirty Tricks in the Plankton: Diversity and Role of Marine Parasitic Protists[END_REF][START_REF] Bråte | Radiolaria associated with large diversity of marine alveolates[END_REF][START_REF] Bachvaroff | Molecular diversity of the syndinean genus Euduboscquella based on single-cell PCR analysis[END_REF]. Contrasting with the pattern observed for metabarcodes affiliated to purely phagotrophic taxa, the relative abundance and richness of putative parasite metabarcodes decreased in the nano-and micro-planktonic size fractions, but increased again in the meso-plankton (Fig. 5C), where parasites are most likely in their infectious stage within larger-sized host organisms. This putative in hospite parasites richness, equivalent to only 23% of that in the piconano-plankton, consisted mostly of a variety of alveolate taxa known to infect crustaceans: MALV-IV such as Haematodinium and Syndinium, dinoflagellates such as Blastodinium (Fig. 4E), and apicomplexan gregarines, mainly Cephaloidophoroidea (Fig. 5B) (9,[START_REF] Rueckert | Identification of a divergent environmental DNA sequence clade using the phylogeny of gregarine parasites (Apicomplexa) from crustacean hosts[END_REF][START_REF] Skovgaard | The Parasitic Dinoflagellates Blastodinium spp. Inhabiting the Gut of Marine, Planktonic Copepods: Morphology, Ecology, and Unrecognized Species Diversity[END_REF]. This pattern contrasts with terrestrial systems where most parasites live within their hosts, and are typically transmitted either vertically or through vectors since they generally do not survive outside their hosts [START_REF] Mccallum | Does terrestrial epidemiology apply to marine systems?[END_REF]. In the pelagic realm, free-living parasitic spores, like phages, are protected from dessication, dispersed by water diffusion, and are apparently massively produced, which likely increases horizontal transmission rate.

Community structuring of photic-zone eukaryotic plankton.

Clustering of communities by their compositional similarity revealed the primary influence of organism size (p-value = 10 -3 , r 2 = 0.73) on community structuring, with piconano-plankton displaying stronger cohesiveness than larger organismal size fractions (Fig. 6A). Filtered size fraction-specific communities separated by thousands of kilometers were more similar in composition than they were to communities from other size fractions at the same location. This was emphasized by the fact that ~36% of all OTUs were restricted to a single size category [START_REF]Companion website: Detailed Material and Methods, Database W9, Figure W11[END_REF]. Further analyses within each organismal size fraction indicated that geography plays a role in community structuring, with samples being partially structured according to basin of origin, a pattern that was stronger in larger organismal size fractions (p-value=0.001 in all cases, r 2 = 0.255 for piconano-plankton, 0.371 for nanoplankton, 0.473 for micro-plankton and 0.570 for meso-plankton) (Fig. 6B). Mantel correlograms comparing Bray-Curtis community similarity to geographic distances between all samples indicated significant positive correlations in all organismal size-fractions over the first ~6,000 km, the correlation breaking down at larger geographic distances [START_REF]Companion website: Figure W12, Figure W13, Database W7, Database W8[END_REF]. This positive correlation between community dissimilarity and geographic distance, expected under neutral biodiversity dynamics [START_REF] Holyoak | Metacommunities: Spatial Dynamics and Ecological Communities[END_REF], challenges the classical niche model for photic-zone eukaryotic plankton biogeography [START_REF] Baas | Geobiologie of inleiding tot de milieukunde[END_REF]. The significantly stronger community differentiation by ocean basin in larger organismal size fractions (Fig. 6B) suggests increasing dispersal limitation from piconano-to nano-, micro-, and meso-plankton. Thus, larger-sized eukaryotic plankton communities, containing the highest abundance and diversity of metazoans (Fig. 2A and Fig. 5B), were spatially more heterogeneous in terms of both taxonomic (Fig. 6) and functional (Fig. 5A) composition and abundance. The complex life-cycle and behaviors of metazooplankton, including temporal reproductive and growth cycles and vertical migrations, together with putative rapid adaptive evolution processes to mesoscale oceanographic features [START_REF] Peijnenburg | High evolutionary potential of marine zooplankton[END_REF], may explain the stronger geographic differentiation of meso-planktonic communities. By contrast, eukaryotic communities in the piconano-plankton were richer (Fig. 1A) and more homogeneous in taxonomic composition (Fig. 6), representing a stable compartment across the world's oceans [START_REF] Smetacek | The ocean's veil[END_REF].

Even though protistan communities were diverse, the proportions of abundant (>1%) and rare (<0.01%) OTUs were more or less constant across communities, as has been observed in coastal waters (6). Only 2 to 17 OTUs (i.e. 0.2 to 8% of total OTUs per and across sample) dominated each community [START_REF]Companion website: Figure W12, Figure W13, Database W7, Database W8[END_REF], suggesting that a small proportion of eukaryotic taxa are key for local plankton ecosystem function. On a worldwide scale, an occurrence vs. abundance analysis of all ~110,000 Tara Oceans OTUs revealed the hyper-dominance of cosmopolitan taxa (Fig. 7A). The 381 (0.35% of the total) cosmopolitan OTUs represented ~68% of the total number of reads in the dataset. Of these, 269 (71%) OTUs had >100,000 reads and accounted for nearly half (48%) of all rDNA reads (Fig. 7A), a pattern reminiscent of hyper-dominance in the largest forest ecosystem on Earth, where only 227 tree species out of an estimated total of 16,000 account for half of all trees in Amazonia [START_REF] Steege | Hyperdominance in the Amazonian tree flora[END_REF]. The cosmopolitan OTUs belonged mainly (314 of 381) to the 11 hyperdiverse eukaryotic planktonic lineages (Fig. 3C), and were essentially phagotrophic (40%) or parasitic (21%), with relatively few (15%) phytoplanktonic taxa (54), 25% of the cosmopolitan OTUs, which represent organisms that are likely amongst the most abundant eukaryotes on Earth, had poor identity (<95%) to reference taxa, and 11 of these OTUs could not even by affiliated to any available reference sequence (Fig. 7B and (54)).

Conclusions and perspectives.

We used rDNA sequence data to explore the taxonomic and ecological structure of total eukaryotic plankton from the photic oceanic biome, and integrated these data with existing morphological knowledge. We found that eukaryotic plankton are more diverse than previously thought, especially heterotrophic protists which may display a wide range of trophic modes [START_REF] Vaulot | Are autotrophs less diverse than heterotrophs in marine picoplankton%[END_REF] and include an unsuspected diversity of parasites and photosymbiotic taxa. Dominance of unicellular heterotrophs in plankton ecosystems likely emerged at the dawn of the radiation of eukaryotic cells, together with arguably their most important innovation: phagocytosis. The onset of eukaryophagy in the Neoproterozoic (61) likely led to adaptive radiation in heterotrophic eukaryotes through specialization of trophic modes and symbioses, opening novel serial biotic ecological niches. The extensive co-diversification of relatively large heterotrophic eukaryotes and their associated parasites supports the idea that biotic interactions, rather than competition for resources and space [START_REF] Smetacek | A watery arms race[END_REF], are the primary forces driving organismal diversification in marine plankton systems. Based on rDNA, heterotrophic protists may be even more diverse than prokaryotes in the planktonic ecosystem [START_REF] Sunagawa | Structure and function of the global ocean microbiome[END_REF]. Given that organisms in highly diverse and abundant groups such as the alveolates and rhizarians can have genomes more complex than those of humans [START_REF] Oliver | The mode and tempo of genome size evolution in eukaryotes[END_REF], eukaryotic plankton may contain a vast reservoir unknown marine planktonic genes [START_REF] Abida | Bioprospecting marine plankton[END_REF]. Insights are developing into how heterotrophic protists contribute to a multi-layered and integrated ecosystem. The protistan parasites and mutualistic symbionts increase connectivity and complexity of pelagic food webs [START_REF] Lima-Mendez | Top-down determinants of ocean plankton community structure[END_REF][START_REF] Lafferty | Parasites dominate food web links[END_REF] while contributing to the carbon quota of their larger, longer-lived, often biomineralized, symbiotic hosts, which themselves contribute to carbon export when they die. Decoding the ecological and evolutionary rules governing plankton diversity remains essential for understanding how the critical ocean biomes contribute to the functioning of the Earth system.

Materials & Methods.

V9-18S rDNA for eukaryotic metabarcoding

We used universal eukaryotic primers [START_REF] Amaral-Zettler | A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes[END_REF] to PCR amplify (25 cycles in triplicate) the V9-18S rDNA genes from all Tara Oceans samples. This barcode presents a combination of advantages for addressing general questions of eukaryotic biodiversity over extensive taxonomic and ecological scales: (i) it is universally conserved in length (130±4bp) and simple in secondary structure, thus allowing relatively unbiased PCR amplification across eukaryotic lineages followed by Illumina sequencing, (ii) it includes both stable and highly-variable nucleotide positions over evolutionary time frames, allowing discrimination of taxa over a significant phylogenetic depth, (iii) it is extensively represented in public reference databases across the eukaryotic tree of life, allowing taxonomic assignment amongst all known eukaryotic lineages (13).

Biodiversity analyses

Our bioinformatic pipeline included quality-check (phred score filtering, elimination of reads without perfect forward and reverse primers, chimera removal) and conservative filtering (removal of metabarcodes present in less than 3 reads and 2 distinct samples). The ~2.3 million metabarcodes (distinct reads) were clustered using an agglomerative, unsupervised single-linkage clustering algorithm, allowing OTUs to reach their natural limits while avoiding arbitrary global clustering thresholds (13,14). This clustering limited overestimation of biodiversity due to errors in PCR amplification or DNA sequencing as well as intragenomic polymorphism of rDNA gene copies (13). Tara Oceans metabarcodes and OTUs were taxonomically assigned by comparison to the 77,449 reference barcodes included in our V9_PR2 database (15). This database derives from the Protist Ribosomal Reference (PR2) database (69) but focuses on the V9 region of the gene and includes the following re-organizations: (i) extension of the number of ranks for groups with finer taxonomy (e.g. animals), (ii) expert curation of the taxonomy and re-naming in novel environmental groups and dinoflagellates, (iii) resolution of all taxonomic conflicts and inclusion of environmental sequences only if they provide additional phylogenetic information, (iv) annotation of basic trophic/symbiotic modes for all reference barcodes assigned to the genus level (see [START_REF]Companion website: Detailed Material and Methods, Database W9, Figure W11[END_REF] and (15) for details). The V9_PR2 reference barcodes represent 24,435 species and 13,432 genera from all known major lineages of the tree of eukaryotic life (15). Metabarcodes with ≥80% identity to a reference V9 rDNA barcode were considered assignable. Below this threshold it is not possible to discriminate between eukaryotic supergroups given the short length of V9 rDNA sequences and the relatively fast rate accumulation of substitution mutations in the DNA. In addition to assignment at the finest-possible taxonomic resolution, all assignable metabarcodes were classified into a reference taxonomic framework consisting of 97 major monophyletic groups comprising all known high-rank eukaryotic diversity. This framework, primarily based on a synthesis of protistan biodiversity (19), also included all key, but still unnamed planktonic clades revealed by previous environmental rDNA clone library surveys (70) (e.g. MALV 'marine alveolates', MAST 'marine stramenopiles', MOCH 'marine ochrophytes', RAD 'radiolarians' (15). Details of molecular and bioinformatics methods are available on a companion web site at http://taraoceans.sb-roscoff.fr/EukDiv/ (53). We compiled our data into two databases including the taxonomy, abundance, and size-fraction/biogeography information associated to each metabarcode and OTU [START_REF]Companion website: Database W4, Database W5[END_REF].

Ecological inferences

From our Tara Oceans metabarcoding dataset, we inferred patterns of eukaryotic plankton functional ecology. Based on a literature survey, all reference barcodes assigned to at least the genus level that recruited Tara Oceans metabarcodes were associated to basic trophic and symbiotic modes of the organism they come from (15), and used for a taxo-functional annotation of our entire metabarcoding dataset with the same set of rules used for taxonomic assignation [START_REF]Companion website: Detailed Material and Methods, Database W9, Figure W11[END_REF]. False positive were minimized by (i) assigning ecological modes to all individual reference barcodes in V9_PR2, (ii) inferring ecological modes to metabarcodes related to mono-modal reference barcode(s) (otherwise transfer them to a 'NA -non applicable' category), and (iii) exploring broad and complex trophic and symbiotic modes that involve fundamental reorganization of the cell structure and metabolism, emerged relatively rarely in the evolutionary history of eukaryotes, and most often concern all known species within monophyletic and ancient groups (see (15) for details). In case of photo-versus hetero-trophy, >75% of the major, deepbranching eukaryotic lineages considered (Fig. 3) are 'mono-modal' and recruit ~87% and ~69% of all Tara Oceans V9 rDNA reads and OTUs, respectively. For parasitism, ~91% of Tara Oceans metabarcodes are falling within monophyletic and major groups containing exclusively parasitic species (essentially within the major MALVs groups). Although biases could arise in functional annotation of metabarcodes relatively distant from reference barcodes in the few complex poly-modal groups (e.g. the dinoflagellates that can be phototrophic, heterotrophic, parasitic, or photosymbiotic), a conservative analysis of the trophic and symbiotic ecological patterns presented in Fig. 3, using a ≥99% assignation threshold, shows that these are stable across organismal size fractions and space independently of the similarity cutoff (80% or 99%), demonstrating their robustness across evolutionary times [START_REF]Companion website: Figure W8, Figure W9, Figure W10, Figure W14[END_REF].

Note that rDNA gene copy number varies from one to thousands in single eukaryotic genomes [START_REF] Godhe | Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR[END_REF][START_REF] Zhu | Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene[END_REF], precluding direct translation of rDNA read number into abundance of individual organisms. However, the number of rDNA copies per genome correlates positively to the size [START_REF] Zhu | Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene[END_REF] and particularly to the biovolume (72) of the eukaryotic cell it represents. We compiled published data from the last ca. 20 years, confirming the positive correlation between eukaryotic cell size and rDNA copy number across a wide taxonomic and organismal size range (see [START_REF]Companion website: Text W2, Figure W3[END_REF], note however the ~1 order of magnitude of cell size variation for a given of rDNA copy number.

To verify whether our molecular ecology protocol preserved this empirical correlation, light microscopy counts of phytoplankton belonging to different eukaryotic supergroups (coccolithophores, diatoms, dinoflagellates) were performed from 9 Tara Oceans stations from the Indian, Atlantic, and Southern Oceans, transformed into biomass and biovolume data and then compared with the relative number of V9 rDNA reads found for the identified taxa in the same samples [START_REF]Companion website: Text W2, Figure W3[END_REF]. Results confirmed the correlation between biovolume and V9 rDNA abundance data (r 2 =0.97, p-value=1.e-16;), although we cannot rule out the possibility that some eukaryotic taxa may not follow the general trend.

Fig. 1: Photic-zone eukaryotic plankton ribosomal diversity. A. V9 rDNA OTUs rarefaction curves and overall diversity (Shannon index, inset) for each plankton organismal size fraction. Proximity to saturation is indicated by weak slopes at the end of each rarefaction curve (e.g. 1.2/100,000 means 1.2 novel metabarcodes obtained every 100,000 rDNA reads sequenced). B. Saturation slope versus number of V9 rDNA reads for all of the 334 samples (dots) analyzed herein; a slope of 0.02 indicates that 2 novel barcodes can be recovered if 100 new reads are sequenced. Samples are colored according to size-fraction. C. Global OTU-abundance distribution and fit to the Preston log-normal model. Most OTUs in our dataset were represented by 3 to 16 reads, while fewer OTUs presented less or more abundances. Quasi-Poisson fit to octaves (red curve) and maximized likelihood to log 2 abundances (blue curve) approximations were used to fit the OTU-abundance distribution to the Preston log-normal model. Overall, the global (A) and local (B) saturation values indicate that our extensive sampling effort -in terms of spatio-temporal coverage and sequencing depth-uncovered the majority of eukaryotic ribosomal diversity within the photic layer of the world tropical to temperate oceans. Calculation of the Preston Veil, which infers the number of OTUs that we missed (or were veiled) during our sampling (~40,000), confirmed that we captured most of protistan richness, thus allowing extraction of holistic and general patterns of eukaryotic plankton biodiversity from our dataset. Fig. 2: Unknown and known components of eukaryotic plankton biodiversity. A. Phylogenetic breakdown of the entire metabarcoding dataset at the eukaryotic supergroup level. All Tara Oceans V9 rDNA reads and OTUs were classified amongst the 7 recognized eukaryotic supergroups plus the known but unclassified deep-branching lineages (Incerta sedis). The treemaps display the relative abundance (upper part) and richness (lower part) of the different eukaryotic supergroups in each organismal size fraction. Note that ~5% of barcodes were assigned to prokaryotes, essentially in the "pico-nano" fraction, witnessing the universality of the eukaryotic primers used. Barcodes are "unassigned' when sequence similarity to a reference sequence is <80%, and "undetermined" when eukaryotic supergroups could not be discriminated (at similarity >80%). B. Ribosomal DNA diversity associated with the morphologically known and catalogued part of eukaryotic plankton. The total number of morphologically described species in the literature (red bars, based on (25)(26)(27)) and the corresponding total number of Tara Oceans V9 rDNA OTUs (blue bars) are indicated for each of the 35 classical lineages of eukaryotic phyto-, protozoo-, and metazoo-plankton. The 5 classical groups that were found to be significantly more diverse than previously thought (from 38 to 113-fold more OTUs than morphospecies) are highlighted. Note that in the classical, morphological view, phyto-and metazoo-plankton comprise ~88% of total eukaryotic plankton diversity. Rhizaria; an acantharian Lithoptera sp. with endosymbiotic haptophyte cells from the genus Phaeocystis (in red, arrow head, scale bar 50µm (41)). D. Rhizaria; inside a colonial network of Collodaria, a cell surrounded by several captive dinoflagellate symbionts of the genus Brandtodinium (arrow head, scale bar 50µm [START_REF] Probert | Brandtodinium gen. nov. and B . nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians[END_REF]). E. Opisthokonta; a copepod whose gut is colonized by the parasitic dinoflagellate Blastodinium (red area are nuclei, arrow head, scale bar 100µm (51)). F. Alveolata; a cross-sectioned, dinoflagellate cell infected by the parasitoid alveolate Amoebophrya (MALV II). Each blue spot (arrow head) is the nucleus of future free-living dinospores; their flagella are visible in green inside the mastigocoel cavity (arrow) (scale bar 5µm). The cellular membranes were stained with DiOC6 (green), DNA and nuclei with Hoechst (blue) (the dinoflagellate theca in B was also stained by this dye), chlorophyll autofluorescence is shown in red (excepted for E), an unspecific fluorescent painting of the cell surface (cyan) was used to reveal cell shape for A and F. All specimens come from Tara Oceans samples preserved for confocal laser scanning fluorescent microscopy. Images were 3D reconstructed with Imaris (Bitplane). A. Richness (OTU number) and abundance (read number) of rDNA metabarcodes assigned to various trophic taxo-groups across plankton organismal size fractions and stations. Note that the nano-size fraction contained too scarce data to be used in this biogeographical analysis (for all sizefractions data, see [START_REF]Companion website: Figure W8, Figure W9, Figure W10, Figure W14[END_REF]. B. Relative abundance of major eukaryotic taxa across Tara Oceans stations for: (i) phytoplankton and all eukaryotes in piconano-plankton (above the map); (ii) all eukaryotes and symbiotic, sensu lato, protists in meso-plankton (below the map). Note the pattern of inverted relative abundance between between collodarian colonies (Fig. 4) and copepods in respectively the oligotrophic and eu/mesotrophic systems. The dinoflagellates Brandtodinium and Pelagodinium are endophotosymbionts in Collodaria [START_REF] Probert | Brandtodinium gen. nov. and B . nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians[END_REF] and Foraminifera [START_REF] Siano | Pelagodinium gen. nov. and P. béii comb. nov., a dinoflagellate symbiont of planktonic foraminifera[END_REF][START_REF] Shaked | Pelagic photosymbiosis: rDNA assessment of diversity and evolution of dinoflagellate symbionts and planktonic foraminiferal hosts[END_REF], respectively. C. Richness and abundance of parasitic and photosymbiotic (microalgae) protists across organismal size fractions. The relative contribution (%) of parasites to total heterotrophic protists, and photosymbionts to total phytoplankton, are indicated above each symbol. A. Grouping of local communities according to taxonomic compositional similarity (Bray-Curtis distances) using Non-linear Multi-Dimensional Scaling. Each symbol represents one sample or eukaryotic community, corresponding to a particular depth (shape) and organismal size fraction (color). B. Same as in A., but the different plankton organismal size-fractions were analyzed independently and communities are distinguished by depth (shape) and ocean basins' origin (color). An increasing geographic community differentiation along increasing organismal size-fractions is visible and confirmed by Mantel test (p-value = 10 -3 , R m =0.36, 0.49, 0.50, 0.51 for the highest, piconano-to meso-plankton correlations in Mantel correlograms; see also [START_REF]Companion website: Figure W12, Figure W13, Database W7, Database W8[END_REF]). In addition, samples from the piconano-plankton only were discriminated by depth (Surface vs. DCM; p-value=0.001, r 2 =0.2). The higher diversity and abundance of eukaryotic phototrophs in this fraction (Fig. 5A) may explain overall community structuring by light, and thus depth. Supplementary Materials: Table S1, list of samples analyzed.
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 3 Fig. 3: Phylogenetic distribution of the assignable component of eukaryotic plankton ribosomal diversity. A. Schematic phylogeny of the 85 deep-branching eukaryotic lineages represented in our globaloceans metabarcoding dataset, with broad ecological traits based on current knowledge: red = parasitic; green = photoautotrophic; blue = osmo/saprotrophic; black = mostly hetero/phagotrophic lineages. Lineages known only from environmental sequence data were colored in black by default. For simplicity, 3 branches (*) artificially group a few distinct lineages (details in (15). B. Number of reference V9 rDNA barcodes used to annotate the metabarcoding dataset (grey = with known taxonomy at the genus and/or species level; light blue = from previous 18S rDNA environmental clone libraries). C. Tara Oceans V9 rDNA OTU richness; the dark-blue thicker bars indicate the 11 hyper-diverse lineages containing >1,000 OTUs. Yellow circles highlight the 25 lineages that have been recognized as significant in previous marine plankton biodiversity and ecology studies using morphological and/or molecular data (see also (15)). D. Eukaryotic plankton abundance expressed as numbers of rDNA reads (the red bars indicate the 9 most abundant lineages with >5 million reads). E. Proportion of rDNA reads per organismal size fraction, with light blue = piconano-; green = nano-; yellow = micro-; red = meso-plankton. F. Percentage of reads and OTUs with [80-85%], [85-90%], [90-95%], [95-<100%], [100%] sequence similarity to a reference sequence. G. Slope of OTU rarefaction curves. H. Mean geographic occupancy (average number of stations in which OTUs were observed, weighted by OTU abundance).
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 4 Fig. 4: Illustration of key eukaryotic plankton lineages. A. Stramenopila; a phototrophic diatom Chaetoceros bulbosus, with its chloroplasts in red (scale bar 10µm). B. Alveolata; a heterotrophic dinoflagellate Dinophysis caudata harboring kleptoplasts (in red, arrow head, scale bar 20µm (75)). C.Rhizaria; an acantharian Lithoptera sp. with endosymbiotic haptophyte cells from the genus Phaeocystis (in red, arrow head, scale bar 50µm (41)). D. Rhizaria; inside a colonial network of Collodaria, a cell surrounded by several captive dinoflagellate symbionts of the genus Brandtodinium (arrow head, scale bar 50µm[START_REF] Probert | Brandtodinium gen. nov. and B . nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians[END_REF]). E. Opisthokonta; a copepod whose gut is colonized by the parasitic dinoflagellate Blastodinium (red area are nuclei, arrow head, scale bar 100µm (51)). F. Alveolata; a cross-sectioned, dinoflagellate cell infected by the parasitoid alveolate Amoebophrya (MALV II). Each blue spot (arrow head) is the nucleus of future free-living dinospores; their flagella are visible in green inside the mastigocoel cavity (arrow) (scale bar 5µm). The cellular membranes were stained with DiOC6 (green), DNA and nuclei with Hoechst (blue) (the dinoflagellate theca in B was also stained by this dye), chlorophyll autofluorescence is shown in red (excepted for E), an unspecific fluorescent painting of the cell surface (cyan) was used to reveal cell shape for A and F. All specimens come from Tara Oceans samples preserved for confocal laser scanning fluorescent microscopy. Images were 3D reconstructed with Imaris (Bitplane).
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 5 Fig.5: Metabarcoding inference of trophic and symbiotic ecological diversity of photic-zone eukaryotic plankton. A. Richness (OTU number) and abundance (read number) of rDNA metabarcodes assigned to various trophic taxo-groups across plankton organismal size fractions and stations. Note that the nano-size fraction contained too scarce data to be used in this biogeographical analysis (for all sizefractions data, see[START_REF]Companion website: Figure W8, Figure W9, Figure W10, Figure W14[END_REF]. B. Relative abundance of major eukaryotic taxa across Tara Oceans stations for: (i) phytoplankton and all eukaryotes in piconano-plankton (above the map); (ii) all eukaryotes and symbiotic, sensu lato, protists in meso-plankton (below the map). Note the pattern of inverted relative abundance
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 6 Figure 6: Community structuring of eukaryotic plankton across temperate and tropical sunlit oceans.A. Grouping of local communities according to taxonomic compositional similarity (Bray-Curtis distances) using Non-linear Multi-Dimensional Scaling. Each symbol represents one sample or eukaryotic community, corresponding to a particular depth (shape) and organismal size fraction (color). B. Same as in A., but the different plankton organismal size-fractions were analyzed independently and communities are distinguished by depth (shape) and ocean basins' origin (color). An increasing geographic community differentiation along increasing organismal size-fractions is visible and confirmed by Mantel test (p-value = 10 -3 , R m =0.36, 0.49, 0.50, 0.51 for the highest, piconano-to meso-plankton correlations in Mantel correlograms; see also[START_REF]Companion website: Figure W12, Figure W13, Database W7, Database W8[END_REF]). In addition, samples from the piconano-plankton only were discriminated by depth (Surface vs. DCM; p-value=0.001, r 2 =0.2). The higher diversity and abundance of eukaryotic phototrophs in this fraction (Fig.5A) may explain overall community structuring by light, and thus depth.

Figure 7 .

 7 Figure 7. Cosmopolitanism and abundance of eukaryotic marine plankton. A. Occurrence/Abundance (x/y axis) plot including the ~110,000 Tara Oceans V9 rDNA OTUs. OTUs are colored according to their identity with reference sequence, and a fitted curve indicates the median OTU size value for each OTU geographic occurrence value. The red rectangle encloses the cosmopolitan and hyper-dominant (>10 5 reads) OTUs. B. Similarity to reference barcode and taxonomic purity (a measure of taxonomic assignment consistency defined as the % of reads within an OTU assigned to the same taxon; see (13)) of the 381 cosmopolitan OTUs, along their abundance (y axis).
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