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Abstract

Living organisms in aquatic ecosystems are almost constantly confronted by pathogens.
Nevertheless, very little is known about diseases of marine diatoms, the main primary producers of
the oceans. Only a few examples of marine diatoms infected by zoosporic parasites are published,
yet these studies suggest that diseases may have significant impacts on the ecology of individual
diatom hosts and the composition of communities at both the producer and consumer trophic
levels of food webs. Here we summarize available ecological and morphological data on chytrids,
aphelids, stramenopiles (including oomycetes, labyrinthuloids, and hyphochytrids), parasitic
dinoflagellates, cercozoans and phytomyxids, all of which are known zoosporic parasites of
marine diatoms. Difficulties in identification of host and pathogen species and possible effects of
environmental parameters on the prevalence of zoosporic parasites are discussed. Based on
published data, we conclude that zoosporic parasites are much more abundant in marine
ecosystems than the available literature reports, and that, at present, both the diversity and the
prevalence of such pathogens are underestimated.
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Introduction

Zoosporic parasites are facultative or obligate parasites that produce motile spores as their
infective propagules. In fresh-water ecosystems, zoosporic parasites of diatoms such as
chytrids (Chytridiomycota) cause frequent epidemics, which have been studied periodically
during the past century (Canter, 1951; Sparrow, 1960; Ibelings et al., 2004; Sime-Ngando,
2012; Gsell et al., 2013a,b; Voigt et al., 2013; Carney and Lane, 2014). In such ecosystems
zoosporic parasites play significant roles in controlling population sizes, transferring carbon
from relatively inedible substrata at the producer level to higher trophic levels (Kagami et
al., 2007; Gleason et al., 2008), and in biodiversity and succession (van Donk and
Ringelberg, 1983; van Donk, 1989). In fact, zoosporic parasites are believed to be the major
drivers of plankton succession (van Donk, 1989), and as a consequence, infections may alter
species composition of diatom hosts in freshwater ecosystems (Canter and Lund, 1951).

In marine ecosystems, published reports of fungal and other zoosporic parasites infecting
diatoms have been relatively rare, and thus the ecological roles of these parasites on diatom
host taxa are poorly understood (Powell, 1993; Gleason et al., 2011, 2012). From an
ecological and biogeochemical point of view diatoms are of crucial importance in marine
systems (Allen et al., 2006). Diatoms are among the most cosmopolitan and diverse of
photosynthetic algal groups and contribute about 20-25 % of the total global carbon fixation
(e.g. Round et al., 1990). Depending on seasons, they can be conspicuously abundant and
appear at the bottom of most pelagic and benthic food webs in aquatic ecosystems
(Armbrust, 2009). As in fresh water, marine diatoms should represent an abundant resource
for zoosporic parasites, infections however have been comparatively poorly reported.

Zoosporic parasites are difficult to identify in environmental samples, because of the lack of
morphological characters, and zoospores of diverse taxonomic affiliation all look very much
alike (e.g. Figs 1 and 2). For this reason zoosporic parasites are rarely documented in
ecological studies, but rather are lost within the ecological pool of (pico- or nano-)
flagellates. Thus, these parasites are supposedly much more frequent in marine ecosystems
than the literature reports (Gleason et al., 2012). Simultaneous infection of diatom hosts by
different pathotypes of one genus or by species in different genera is frequent (Hanic et al.,
2009; Peacock et al., 2014), and this further complicates the process of identification.

We describe some examples of chytrids, aphelids, oomycetes, parasitic dinoflagellates,
cercozoans and phytomyxids which are all known to be zoosporic parasites of marine
diatoms. Of course these are not the only parasites of diatoms. Rather, they are a
representative selection of the known zoosporic parasites for which we have some data. This
review focuses on eukaryotic parasites of diatoms, thus viruses and bacteria will not be
considered here. In addition, we compare the methods of infection and life cycles of these
groups of zoosporic parasites and the difficulties in the use of molecular techniques as
identification tools for zoosporic parasites in the marine environment.
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Diatoms, the hosts

Diatoms (Bacillariophyceae) are unicellular photosynthetic algae that range in size from 5 to
200 um. However, some groups commonly form colonies (Round et al., 1990; van den Hoek
et al., 1997). Free living diatoms are covered by a siliceous skeleton (frustule) composed of
SiO, and H,0 (van den Hoek et al., 1997). The structure of the frustule (as seen in the light
microscope) is the main feature used to identify species (e.g. Round et al., 1990).

Both benthic and planktonic forms of diatoms are common. Numerous planktonic forms are
centric (radial = Coscinodiscophyceae, polar = Mediophyceae). They possess several
distinctive types of cell constructions to assist with flotation in the planktonic realm: (i) the
bladder type (e.g. Coscinodiscus, centric diatom), (ii) the ribbon type (e.g. Streptotheca =
Helicotheca), (iii) the hair type (e.g. Rhizosolenig) and (iv) the branching type (e.g.
Chaetoceros) (van den Hoek et al., 1997). In contrast, benthic diatom populations are usually
composed of pennate species, which are either epipsammic or epipelic (e.g. Daehnick et al.,
1992; Agatz et al., 1999; Mitbavkar and Anil, 2002). In general, benthic microalgal
communities are described as epipelic when motile and epipsammic when attached to sand
grains. Epipsammic diatoms are usually araphid (taxa with cells that lack a raphe system,
e.g. Fragilariales), monoraphid (the raphe is only on one valve; e.g. Achnanthales) or centric
species (Coscinodiscophyceae). Epipelic forms, on the other hand, are biraphid (a raphe is
present on each of both valves, e.qg. Naviculales, Thalassiophysales, Bacillariales,
Surirellales) and move actively through the sediment by means of mucilaginous secretions
from their raphes (Round, 1971). However, the difference between epipsammon and
epipelon is not absolute, as there are epipsammic diatoms that are capable of movement,
though they are generally much slower than epipelic species (Harper, 1969). Furthermore,
many diatom genera have representatives in both of these groups (e.g. Nitzschia, Navicula
and Amphora; Harper, 1969; Agatz et al., 1999).

Diatoms exhibit an astonishingly high physiological plasticity and flexibility, for example, in
terms of photosynthesis (Wilhelm et al., 2006). The underlying mechanisms can be
explained by the evolutionary history of their chloroplasts, which derived from a secondary
endosymbiosis. This means that an eukaryote acquired the ability to conduct photosynthesis
via endosymbiosis of another eukaryotic red alga that already had plastids, which in turn
was derived from an endosymbiotic-incorporated cyanobacterium (Archibald, 2009). The
resulting organisms are chimaeras with major genomic contributions from two or even more
sources (Delwiche, 2007). As a consequence of this genomic mixing, the diatom lineage
with specific and often unique physiological and biochemical properties evolved. The
emerging picture is that the different species of diatoms are characterized by a complex
combination of genes and metabolic pathways acquired from a variety of sources such as red
algae, green algae, chlamydial parasites and other bacteria (Armbrust, 2009). The
consequences of this genetic mixture are reflected in specific biochemical capabilities.
Diatoms, for example, combine an animal-like ability to generate chemical energy from the
breakdown of fat with a plant-like ability to generate metabolic intermediates from this
catabolic reaction (Armbrust, 2009). Additionally, diatoms possess a complete urea cycle
(Armbrust et al., 2004) which serves as a distribution and repackaging hub for inorganic
carbon and nitrogen, connecting carbon metabolism and nitrogen fixation/remobilization

Fungal Ecol. Author manuscript; available in PMC 2017 February 01.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Scholz et al.

Page 4

(Allen et al., 2011). Such a unique combination of metabolic pathways explains the high
degree of physiological plasticity. Numerous other examples of this mix-and-match
compilation of biochemical and physiological characteristics reiterate the fact that diatoms
are neither plant nor animals (Armbrust, 2009).

Zoosporic parasites — who are they?

Zoosporic parasites, as defined in this review, are a heterogeneous group of organisms with
several unifying features such as (but not limited to) size and morphology (small,
unicellular, flagellated propagation stage), parasitic lifestyle, choice of host (diatoms) and
habitat (marine). In contrast, parasites which have non-motile spores, infective amoebae
without cell walls or a plasma membrane, or that feed entirely by direct engulfment, are not
considered to be zoosporic parasites.

Zoosporic parasites infecting diatoms are divided into two major groups: (i) unikonts or
opisthokonts, which includes the chytrids and aphelids and (ii) heterokonts, which includes
the SAR supergroup, i.e. Stramenopiles (parasites know within basal oomycetes,
Hyphochytrea, Labyrinthulomycota, and MAST-3), Alveolates (core dinoflagellates) and the
Rhizaria (Cercozoa, Phytomyxea) (Baldauf, 2008; Adl et al., 2012). Table 1 gives an
overview of the main characteristics of the groups, the parasite species and their hosts. All
parasitic groups discussed in this review produce zoospores, which are often host-specific,
highly infective, extremely virulent propagules (e.g. Gleason et al., 2011; Neuhauser et al.,
2011a,b) and with specialized infection structures.

Zoospores — what are they?

Zoospores are single, individual eukaryotic cells with one nucleus and one to several
mitochondria, and are released by the process of sporogenesis. Most unikonts produce
uniflagellate zoospores with posteriorly directed whiplash flagella, whereas heterokont
species are characterized by biflagellate zoospores (Dick, 2001). The ultrastructure of
zoospores has become a key feature in the taxonomy of the Chytridiomycota (Barr, 1981;
Powell, 1993; Longcore, 1995; Letcher and Powell, 2014), as the morphology of a parasite
is often highly variable when physically associated with its host. This is probably true for all
eukaryotic lineages. Additionally, due to several morphological transitions during the life
histories of the often intracellular, usually holocarpic stages, microscopic identification of
the parasitic species is not straightforward. Shape of zoospores has thus a great taxonomic
value.

Stramenopiles produce biflagellate zoospores with one anteriorly directed tinsel flagellum
with mastigonemes (characteristic tubular, tripartite hairs) and one posteriorly directed
whiplash flagellum. Dinoflagellates have two flagella, one transversal providing forward
motion and spin, the other, the longitudinal one trailing behind mainly acting as a rudder.
Cercozoa may have a very plastic morphology. When flagellated, they may have one anterior
and one posterior flagellum. The swimming behaviour of these zoospores generally provides
a secure and easy way to classify the parasite. The cell of a zoospore is not surrounded by a
cell wall, rather only by a plasma membrane, thus it is possible for zoospores to change
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shape and in some cases even to show an amoeba-like behaviour by producing pseudopods if
the cytoskeleton structure permits (Gleason and Lilje, 2009).

Infection cycles and feeding modes of zoosporic parasites — a comparison

When a zoospore reaches its host or substratum, it loses its flagella. In the case of fungal
parasites, the zoospore encysts, discharges its flagella and produces a cell wall protecting the
cyst from environmental extremes. This cyst then germinates to produce an infection
structure which penetrates the host cell (Fig 3). Infection structure of a zoosporic parasite
can be a walled infection tube (found e.g. in aphelids and oomycetes, Schweikert and
Schnepf, 1996, 1997a; Hanic et al., 2009), a highly modified pseudopod (e.g. Pirsonia,
Schweikert and Schnepf, 1997b) or another specialized infection structure (e.g. “Rohr and
Stachel” of phytomyxids, Kanyuka et al., 2003). This specialized structure penetrates the
silica shell of a diatom through the girdle region between the theca, sometimes making a
hole. Depending on the species either enzymes or rhizoids are released from the end of the
tube allowing it to digest tissue and to grow through the girdle region into the host cell.
Other species may use mechanical force, for example if the tube has cell walls, growth in
diameter of the tube can wedge open the diatom. Both these mechanisms were first observed
in studies on ultrastructure of marine diatoms infected by oomycetes (Raghukumar, 1980a,b)
and of freshwater diatoms infected by chytrids (Beakes et al., 1992).

Besides differences in the infection techniques, further development also differs
considerably between species and groups of zoosporic parasites (Fig 3). For example, in
Aphelids, after penetration, the parasitoid (= any organism whose mode of life is
intermediate between a parasite and a predator) becomes an intracellular phagotrophic
amoeba, which engulfs the host cytoplasm forming food vacuoles. The parasite continues to
grow and forms an endobiotic plasmodium with a residual body as it totally consumes the
cytoplasm of the host cell. A multinucleate plasmodium is formed with a large central
vacuole and a residual excretion body. The mature plasmodium then divides into a number
of uninucleated cells (Karpov et al., 2014). In contrast, in the heterotrophic nanoflagellate
Pirsonia (hyphochytrids) the pseudopod phagocytises and digests portions of the host diatom
protoplast after penetration, and then differentiates into trophosomes. Nutrients are
transported from the trophosomes back to the auxosome (the zoospore cyst on the surface)
which grows and divides to form more auxosomes which differentiate, separate and
eventually become zoospores (Khn et al., 2004). Drebes et al. (1996) described for the
amoebo-flagellate Cryothecomonas aestivalis (Cercozoa) that after attachment, the zoospore
becomes amoeboid and the entire cell, along with its flagella, squeezes through the diatom
frustule in the girdle region. Once the parasite is inside the cell, organic compounds of the
diatom are digested by pseudopods. The parasite grows, divides several times and each
daughter cell becomes a zoospore. In contrast to the above mentioned parasites, the core
dinoflagellate Paulsenella sp. (Alveolata) differs from most other parasites by being
phagotrophic (not osmotrophic), sucking out the host cytoplasm (Drebes and Schnepf, 1982;
Hansen and Calado, 1999). This mode of endocytosis (“myzocytosis”) implies that the host
plasmalemma is not totally ingested. In a few cases, enough of the host cytoplasm is left to
facilitate regeneration of the host cell, and the host is not ultimately killed as it is by most
other zoosporic parasites.
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The infection cycles and feeding strategies used by parasitic labyrinthulids in relation to
their hosts have not been studied carefully until now and only anecdotal evidence suggests
that these zoosporic parasites feed directly on marine diatoms (e.g. Gaertner, 1979;
Raghukumar, 1980c). While, in general, diatom mucus is well known as an important
substratum for thraustochytrid development (Jepps, 1931), it has been also shown that
labyrinthulids are able to penetrate and enter the cells of some diatoms (Raghukumar, 2004).
However, osmotrophic (extracellular digestion) feeding strategies have also been observed to
occur in Labyrinthula (a parasite of eelgrass, Young, 1943; Muehlstein, 1992), suggesting
variable feeding strategies for these organisms.

Furthermore, molecular surveys in planktonic marine systems have unveiled a large novel
diversity of small protists, of which a large part belongs to basal heterotrophic stramenopiles
(Massana et al., 2014). In the few groups investigated by metabarcoding approaches, MAST
cells were shown to be globally distributed and abundant bacterial grazers, therefore having
a putatively large impact on marine ecosystem functioning (Massana et al., 2014). Regarding
Solenicola setigera, a member of the marine stramenopile clade MAST-3, only few reports
pointing to the questionable parasitic nature of this species, because it has so far only been
found on empty frustules on the diatom Leptocylindrus mediterraneus (Gémez et al., 2011,
Skovgaard, 2014).

Two terms are used to describe the reproductive parts of the undifferentiated vegetative cells
relative to the substrate: epibiotic and endobiotic. Epibiotic parasites remain on the surface
of the host cell. The infection structure releases enzymes inside the host cell that digest the
contents of the host cell. Nutrients for growth of the parasite are transported back to the
parasite on the surface through the infection structure. The infection cycle is completed,
when newly formed zoospores are released and infect another host cell, the infection cycle
starts again. In contrast, endobiotic parasites enter the host cell through the infection
structure and then obtain their nutrients by, (i) digesting the host cytoplasm using specialised
structures and enzymes or, (ii) by altering the metabolism of the host upon infection (Ralph
and Short, 2002). The cycle of endobiotic parasites is completed when the zoospores are
released from the sutures of the valve. Fig 4 presents a schematic overview of the infection
cycle of chytrids and oomycetes as they digest the host diatoms and includes both epi- and
endobiotic types of zoosporic parasites.

Host-pathogen interactions

The primary function of zoospores is to seek new uninfected hosts or un-colonized substrata
(Sparrow, 1960; Gleason and Lilje, 2009). Most zoospores are believed to be chemotactic,
that is, they respond to a chemical cue (or gradient) that guides them towards potential
substrata/hosts (Gleason and Lilje, 2009). In the case of chytrid zoospores, it is thought that
excretion products of diatoms, such as those related to photosynthesis, trigger parasite-host
recognition (Bruning, 1991). It has been shown that zoospores of the marine chytrid
Rhizophydium littoreum exhibit positive concentration-dependent chemotactic responses,
which are elicited by carbohydrates and polysaccharides in the medium (Muehlstein et al.,
1988).
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Attachment of the zoospore to the host cell wall is the next step in infection. At this point, at
least three different responses of the hosts are distinguishable. The first two are: (a) the host
is susceptible to the eukaryotic pathogen, in which case zoospore encystment and
development of a sporangium will follow upon attachment of the zoospore; or (b) the alga is
resistant (with no observable response by the zoospore to the host). In context with the latter
response, active chemical defence of the host against the attack by a pathogen has been
assumed. In fact, marine algae have evolved a variety of defensive mechanisms against
grazers (Pohnert et al., 2004; Pohnert, 2005). Activated defences, which involve the rapid
conversion of defensive precursors into harmful molecules following cell damage, are found
in both macro- and microalgae. In diatoms, recent reports have clearly demonstrated that
chemical defence against grazing also relies on the products of fatty-acid oxidation. Only
seconds after diatom cells (e.g. Asterionellaand Thalassiossira) were mechanically
wounded, an enzymatic mechanism produced fatty acid derived metabolites, resulting in the
release of a,B,y,6-unsaturated aldehydes (e.g. Pohnert, 2000; Pohnert et al., 2007). In recent
years even halogenated toxic substances such as cyanogen bromide have been reported in
benthic diatoms as chemical defences (Vanelslander et al., 2012). In addition, some diatoms
produce toxins such as domoic acid (DA, e.g. Trainer et al., 2012) and beta-methylamino L-
alanine (BMAA, a non-proteinaceous amino acid, Jiang et al., 2014). The domoic acid group
comprises ten potent water-soluble neurotoxins, DA and its isomers, which are responsible
for amnesic shellfish poisoning (ASP, Jeffery et al., 2004). These toxins can be bio-
accumulated in the food web and are especially recognized during harmful algal blooms
(HABs) formed by Pseudonitzschia spp. If and to what extant these defensive mechanisms
of diatoms are involved in the active defence against parasites is still not proven and is part
of actual ongoing studies (Scholz, 2014).

A third response type is the so-called hypersensitive response. The hypersensitive response
(HR) is a form of programmed cell death including a burst of superoxide production and the
expression of specific defence genes. This response option is widely established in terrestrial
plants (e.g. White et al., 2000). Indeed the only case of an HR known so far in an algal
system (albeit only microscopically, without any mechanistic details) is from the diatom
Asterionella formosa infected by Rhizophydium planktonicum (Canter and Jaworski, 1979;
Wolfe, 2000).

It has to be noted that genetic diversity not only of the host, but also of the pathogen, may be
a key feature in all steps of parasite-host interactions described above. For example, Gsell et
al. (2013c) have demonstrated for the planktonic freshwater diatom Asterionella formosa
and its parasite Zygorhizidium planktonicum, that host genotypes differed in their overall
susceptibility to disease, indicating that they possess different variations in the disease
resistance trait. To which extent the variation in biochemical composition of these host
genotypes becomes important for the choice of the pathogen in the parasite-host recognition
is still unknown.
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Impacts of zoosporic parasites on marine diatom host populations — some
case studies

In most of the cases of infection of marine diatoms by zoosporic parasites no targeted
monitoring experiments have been conducted until recently and for some groups such as
phytomyxid parasites of diatoms our knowledge is restricted to a few isolated reports (e.g.
Schnepf et al., 2000, Table 1). Nonetheless, there have been reports of diatom epidemics
caused by zoosporic parasites, such as the infection of two species of Guinardiaby Pirsonia
and Cryothecomonas in the North Sea (Tillmann et al., 1999). In the latter case, plankton
images were used for identification of Cryothecomonas aestivalis infecting Guinardia
delicatula. These images were collected by Imaging FlowCytobot from 2006 to 2013 at the
Martha’s Vineyard Coastal Observatory (Massachusetts, USA) and were used to identify and
quantify the diatom in environmental samples (Peacock et al., 2014). The results showed
events where infection rates exceed 10 % are recurrent on the New England Shelf and
suggests that the parasites are an important source of host mortality. Furthermore, Peacock et
al. (2014) documented a significant negative relationship between bloom magnitude and
parasite infection rate, supporting the hypothesis that the parasites play a major role in
controlling phytoplankton blooms.

Further examples of the impact of zoosporic parasites on diatom host populations are two
monitoring surveys, using sediment surface samples in combination with Calcofluor White
stain and epifluorescence microscopy for the screening of diatoms infected by oomycetes
and chytrids (Fig 5). The first monitoring was carried out in the German Wadden Sea area
(Scholz et al., 2014, submitted for publication), whereas the second one took place at coastal
areas of north-west Iceland (Scholz, 201). During these surveys several marine diatom
species were found to be infected by such zoosporic parasites at both sites (Table 1). In all
cases, only a small portion of the benthic diatom community was infected during each of the
sampling events (only up to 6.3% and 19.3% of the total benthic diatom communities in
mid-October 2012 and September 2014, respectively, Fig 5H, 1), whereas changes in host
abundances during the sampling periods were mostly accompanied by increasing numbers of
infected diatoms (e.g. Pinnularia sp. in May and June 2015, Fig 6A). The majority of
infections were caused by chytrids (e.g. 93 % of the infected diatom taxa in the coastal areas
of north-west Iceland, Fig 5K). In the case of the WaddenSea chytrid infections,
severalmorphological features gave evidence for the presence of Rhizophydium spp. and
Chytridium spp. (Scholz et al., 2014), whereas the identification of the chytrids recorded in
the coastal areas of north-west Iceland is still in process. Until now, only four species of
chytrids (Rhizophydium littoreum, Thalassochytrium gracilariopsis, Chytridium
polysiphoniae and Dinomyces arenysensis) have been properly identified and partially
characterized from brackish and marine ecosystems, and none of these species had been
described as pathogens of marine diatoms previously (e.g. Lepelletier et al., 2014). In
contrast, the oomycetes Lagenisma coscinodisci and Ectrogella perforans are especially well
known due to earlier studies (e.g. Raghukumar, 1980a,b). In general, representatives of the
oomycetes are common in the marine environment and well known to infect several marine
macroalgal and seagrass species (Sekimoto et al., 2008a,b; Marano et al., 2012; Sullivan et
al., 2013), and planktonic (Drebes, 1966, 1968; Sparrow, 1969; Gotelli, 1971) and benthic
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diatoms (Scholz et al., 2014, submitted for publication; Scholz, 2014). Regarding the impact
of oomycetes on their host population, it was reported, for instance, that an approximate

13 % infection prevalence in a natural population of Coscinodiscuswas caused by L.
coscinodisciin the Weser estuary of northern Germany (Raghukumar, 1996). Wetsteyn and
Peperzak (1991) showed that during 1985-1990 Coscinodiscus concinnus and
Coscinodiscus granii from the Oosterschelde (The Netherlands) were infected by L.
coscinodisci. The highest infection percentages varied between 22.2 and 58.3 % in C.
concinnus and between 7.1 and 41.9 % in C. granii. Furthermore, £. perforans may cause
outbreaks of epidemic proportions in the marine pennate diatom Licmophora (e.g. Gotelli,
1971; Raghukumar, 1996).

Influence of environmental factors on the zoosporic parasites prevalence

In general, when conditions are favourable for growth, the asexual life cycles of many
zoosporic true fungi, phytomyxids and oomycetes are completed relatively rapidly, resulting
in the release of a large number of zoospores into the aqueous environment (also known as
zoosporulation) and is an R-strategy ecologically. According to Sparrow (1960), population
densities can increase or decrease drastically with changing environmental conditions.
Variation in the biotic and abiotic environment can have effects on both, species-level host-
parasite interactions but also on host genotype-specific susceptibility to disease (Gsell et al.,
2013). According to Lazzaro and Little (2009) the level of host susceptibility to disease
often depends on the various environmental parameters, but coevolutionary processes are
likely important coplayers. These interrelationships between host, parasite and their
environment were first formulated in the disease triangle concept by McNew (1960).

Temperature is one of the most important environmental variables. It is an all-pervasive
parameter, affecting metabolism, growth, reproduction and survival of species (e.g.
Kingsolver, 2009). Particularly, the specific temperature effects on host-parasite interactions
are diverse. Depending on parasite physiology, lower temperatures can increase parasite
infectivity (e.g. Schoebel et al., 2011), decrease disease severity (Mitchel et al., 2005) or
block infections completely (e.g. Ibelings et al., 2011). For example, in fresh water, Bruning
(1991) showed in his experiments that increased temperatures decreased the number of
chytrid zoospores produced per sporangium, both under limiting and saturating light
conditions for the host. Rising temperatures, also had a strong, negative effect on infective
lifetime of the zoospores. The results of the monitoring the marine environment in the
temperate Wadden Sea area showed a general increase of infections with decreasing
temperatures (Fig 5F), whereas the data obtained from the monitoring of the northern
Icelandic sub-arctic intertidal flat demonstrated that the highest infection rates were obtained
at temperatures under 10 °C (Fig 5G). Regarding the individual case studies from the
northern Icelandic coastal area, it was shown that the highest abundances of Pinnularia sp.
and Achnanthes sp. were recorded in a temperature range between 0.5 and 10 °C (Fig 6).
Higher or lower temperatures from this optimum led to decreasing cell numbers in both
species (Fig 6B, C). Furthermore, the cell numbers of the parasite of Pinnularia sp. showed a
similar temperature optimum as its host, despite the fact that Pinnularia was also active at
temperatures above 10 °C. In contrast, the temperature optimum of the parasitic chytrid of
Achnanthes sp. was much narrower, ranging between 2.1 and 5.6 °C (Fig 6A, C). In the case
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of the marine planktonic diatom Guinardia delicatula, the infecting stages of
Cryothecomonas aestivalis were abundant only when water temperature was above 4 °C,
while the host itself was observed during all seasons (Peacock et al., 2014).

In the species-specific cases presented in this review, the potential diatom host had the
ability to grow under environmental conditions, which were not favourable for the zoosporic
parasite. For example, Gsell et al. (2013c) found that the temperature tolerance range of the
tested parasite was narrower than that of its host Asterionella formosa, providing the host
with a “cold” and “hot” thermal refuge of very low or no infection. If host genotypes show
different performance ranking orders under abiotic stress than under parasite pressure, then
selection in the temperature refuge may also favour a different set of host genotypes (Gsell
etal., 2013c). To assume simply that the occurrence of zoosporic parasites follows that of
their hosts, does not fully explain the circumstances under which these parasites multiply
quickly enough to become epidemic in the field. For marine phytoplankton communities, it
has been shown that significant genetic changes occur only in highly seasonal coastal waters
but not in the more constant oceanic waters (Brand, 1989). In general, more genetically
diverse host populations were shown to be more resistant to disease than genetically poor
ones (Altermatt and Ebert, 2008; Whitehorn et al., 2011), as higher host diversity hinders the
adaptation of the parasite (De Bruin et al., 2008; Gsell et al., 2012, 2013c). As the global
climate changes, and variations in other environmental factors continue (for example periods
of lower water temperatures may be shortened or disappear in some regions in the future), it
can be assumed that parasite effects on species may increase (such as Guinardia delicatula),
whereas other parasite-host interrelationships may disappear or change fundamentally (e.g.
Ibelings et al., 2011).

Methodological difficulties and recent technological advances

Culture-independent molecular methods based on the amplification, cloning and sequencing
of small-subunit (SSU) rRNA genes are a powerful tool to study the diversity of prokaryotic
and eukaryotic microorganisms for which morphological features are not conspicuous
(Gomez et al., 2011). Traditionally, species description has been based on morphology of
host and parasite, which has been extended by discoveries in rDNA sequencing over recent
years (Powell and Letcher, 2014; Chambouvet et al., 2015). Zoosporic parasites can show
considerable morphological differences caused by nutrient availability or environmental
conditions (Hasija and Miller, 1971; Chen and Chien, 1996). Also many species might have
been described previously, but their taxonomy has never been resolved or updated to fit our
current taxonomic concepts. While DNA barcodes for terrestrial oomycetes are available and
widely used (e.g. Robideau et al., 2011), DNA barcodes for most other zoosporic parasites
are — despite considerable effort (e.g. Robideau et al., 2011; Schoch et al., 2012; Guillou et
al., 2013; Duarte et al., 2015) - missing or not conclusive, and the existing ones rarely allow
identification, even to the level of genus (Del Campo et al., 2013; Chambouvet et al., 2015).
Further difficulties of DNA-based methods are primer bias within mixed samples going hand
in hand with the troublesome establishment and maintenance of “pure’ dual cultures of host
and zoosporic parasite (Chambouvet et al., 2015). Also the genetic diversity within each
group of parasites in this review is not known. However, this intra-specific diversity can be
considerable in parasites, as shown for e.g. in phytomyxids (Neuhauser et al., 2014) and
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Plasmodium (Nishimoto et al., 2008). In contrast, single cell genomic approaches do exist
which allow scientists to circumvent cultivation problems. For example the studies of Ishida
et al. (2015) and Ishii et al. (2015) present a PCR-based method to directly analyze genomic
DNA of parasites on single infected diatom colonies. This approach could also be used for
identifying parasites of marine diatoms and get a better picture of the diversity of diatom-
associated parasites in future investigations. However, recent advances in next generation
sequencing (NGS) technologies promise to revolutionize the study of such parasites, by
providing a comprehensive view of the genome structure and the unexplored reservoir of
novel metabolic pathways by studying selected parasite-host pairs in laboratory culture and
field experiments (Gerphagnon et al., 2015).

Although, as we have shown, individual examples of the impacts of zoosporic parasites on
marine diatoms do exist, research into this subject remains limited at present and further
studies are urgently needed to determine the importance of zoosporic parasites in the life
cycle of marine diatoms (Worden et al., 2015). Current high throughput sequencing
approaches have revealed an unappreciated diversity and abundance of eukaryote parasites
in the sunlit, open ocean (De Vargas et al., 2015). Many of those parasites may impact
diatom populations, so similar large scale, targeted approaches to sampling during diatom
blooms will result in increased knowledge about these parasites. With possible simultaneous
infections by different species within diatom blooms in the field, it is difficult to obtain data
on prevalence with current research techniques. Since infection by zoosporic parasites may
not always significantly affect population size of hosts or microbial succession in general, it
is important to apply and develop new qualitative and quantitative techniques to study host-
parasite interactions. A range of new techniques based on automated sampling and cell
sorting (e.g. Lima-Mendez et al., 2015), single cell genomics, and a growing set of reference
genomes and transcriptomes (Keeling et al., 2014) will allow informed research into the
interactions of zoosporic parasites and their hosts at the genetic level of the organism.
Because such methods are becoming more and more available and affordable, it will be
possible to account for rapidly changing environmental parameters such as temperature and
salinity, day length, nutrient concentrations, tidal cycles, and velocities, as well as grazing
activities (e.g. Worden et al., 2015). Additionally, anthropogenic impacts (such as ocean
acidification, eutrophication, hypoxia, and over-fishing, etc.) should be considered as
potential stressors. Also, in some cases these factors may mask the impacts of the parasite on
the overall diatom community composition in the environment. The potential promised by
new analytical methods combined with an increasing affordability, and an increased search-
ability and public availability of all sorts of ‘omics’ data (e.g. such as metagenomics,
transcriptomic, proteomic, and metabolomics), will allow researchers to answer specific
questions and to rapidly identify “new” and “old” zoosporic parasites and their interactions
with their hosts.

Conclusions and future prospects

D Species of zoosporic parasites from at least seven different phyla have been
observed to infect marine diatom hosts (Table 1). There are probably many
more species awaiting discovery. Thus we expect that a large number of
species with different infection strategies are potential parasites of diatoms.
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2 Some diatoms are considered to be relatively inedible, yet zoosporic parasites
appear to have no difficulty accessing and digesting the living cytoplasm inside
their silica cell walls, indicating an important role of these parasites for energy
transfer within marine food webs (Fig 4).

€] Zoosporic parasites very likely significantly impact population sizes and
species composition of diatom hosts in marine ecosystems through parasitism
(Figs 5 and 6).

4 The effect of climate change on the interactions of parasites and host diatom

populations is not known.

(5) More research on diatom-parasite relationships is needed and should be of high
priority for research funding, especially with accelerating global climate
change.

(6) Very little is known about the interactions between these parasites and their

hosts. This area of research remains a black box to be opened.
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Fig 1.

Ep?ibiotic pathogens infecting marine diatoms in sediment samples collected from the
Skagastrond area (station near the stream, northern Iceland, Scholz and Einarsson, 2015) and
culture material. Pathogens were visualised using Calcofluor White stain in combination
with transmission light and fluorescence excitation (UV-light, 330-380 nm). (A) Light and
(B) fluorescence microscopic picture of an epibiotic pathogen in Amphora ovalis. (C-F)
Further epibiotic pathogens. Bar: 100 pm.
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Fig 2.

E)?amples of endobiotic pathogens infecting marine diatoms. (A-B) Endogen infection of
Pleurosigma sp. by an unidentified pathogen. (A) The cell is still alive, but the infection has
started and (B) shows presumably a resting spore; (C-D) Pseudo-nitzschia seriata infected
by Ectrogellasp. (Oomycota; Lugol-fixed sample; Pictures: Dr. Claire Gachon, Scottish
Association for Marine Science). (E) Pseudo-nitzschia sp. infected by an unidentified
oomycete; (F-G) Cocinodiscus sp. infected by Lagenisma sp. both views are identical, in (F)
transmitted light microscopy and in (G) epifluorescence microscopy of a CFW sample (UV.
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light, 330-380 nm). (H) Chaetoceros sp. infected by an unidentified oomycete. With
exception of (C-D), pathogens were visualised using Calcofluor White in combination with
usual light and fluorescence excitation. (A-B, E-H) were found in sediment samples
collected from the Skagastrond area (station near the stream, northern Iceland in 2014 and
2015), whereas samples for (C-D) were taken on 30 Sep 08, off the Isle of Ewe, on the West
Coast of Scotland. If not otherwise mentioned, bars = 10 pm.
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Aphelidae Dinophyta Hypochytrea Cercozoa Phytomyxea

Pseudaphelidium drebesii Paulsenella vonstoschii Pirsonia sp. Cryothecomonas aestivalis Phagomyxa sp.
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Fig 3.
Examples of infection and feeding modes of some of the zoosporic parasites described in the
review. Abbreviations: V: vacuole.
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Comparison of chytrid and oomycete infections of marine benthic diatoms detected in
sediment samples collected from the Solthérn tidal flat in 2012 (southern North Sea,
Germany, (A, B)) and a subarctic environment in the Hutnaflooi near Skagastrond in 2014
(station near the stream, north-west Iceland, (C)). Displayed are the abiotic data of both
sampling sides in comparison sediment features (D, E) and surface temperatures, salinity
and dissolved organic nitrogen of the overlaying water (F, G) as well as the total diatom
abundances and infection rates in the surface sediment samples collected from June to
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October 2012 (H) and 2014 (1), respectively. In addition total numbers of infections from the
different sites are also given (J, K). The percentage of infected cells was calculated by
dividing the number of infected cells by the total number of host cells. The mean number of
chytrids and oomycetes per cell (host) in the diatom population was also calculated, by
dividing the total number of parasites attached to algal cells by the total number of host
cells, to normalize the cell density among treatments. This value is referred to as the mean
intensity of infection (Holfeld, 2000), reflecting the number of pathogens that succeed in
attaching to their host. For identification of eukaryotic parasites the studies of Schenk
(1858), Zopf (1884), Sparrow (1960), Johnson and Sparrow (1961), Drebes (1966), Karling
(1977) and Letcher and Powell (2012) were used. The diatom identification literature used is
listed in Scholz et al. (2014) and Scholz and Einarsson (2015). Sediment samples were
collected at bi-weekly intervals at the temperate tidal flat, whereas the sampling in the
Skagastrond area was conducted in monthly intervals. In each case, surface samples of
sediment were obtained by inserting 8.5-cm diameter plastic Petri dishes into the sediment
to a depth of 1 cm. The sediment samples were prepared as described in Scholz et al. (2014),
using ultrasonic pulses of 3 3 2 seconds and density gradient centrifugation of the samples in
Ludox-TM (70%). Finally, 150 ul of 10% KOH solution and 150 pl of 0.2% Calcofluor
White were added to 1 ml samples in Uterméhl glass counting chambers and diluted to a
final volume of 5 ml (incubated for 10 min at room temperature). Abbreviations: DIN:
dissolved organic nitrogen; MG: median grain size; WC: water content; OC: organic matter
content.
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Fig 6.

Cagse studies of two marine benthic diatoms ((B) Pinnularia sp., (C) Achnanthes sp.) infected
by an unknown chytrid, including abiotic data (A, sediment surface temperature and
salinity). Data were recorded during the monitoring in the Hul naflodi (Skagastrénd, station
at the harbour, northern Iceland) from May 2014 to June 2015, including means + SD for
replicate countings (diatom n = 3; pathogen n = 10). Species identification and the
calculation of infection rates were conducted as described in Fig. 5. (D—E) Pictures of the
infected cells were obtained by epifluorescence/light microscopy (in combination with
Calcofluor White) and usual light microscopy.
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