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Detection and Classification of Acoustic

Scenes and Events
Dan Stowell*, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange and Mark D.

Plumbley

Abstract

For intelligent systems to make best use of the audio modality, it is important that they can recognise

not just speech and music, which have been researched as specific tasks, but also general sounds in

everyday environments. To stimulate research in this field we conducted a public research challenge:

the IEEE Audio and Acoustic Signal Processing Technical Committee challenge on Detection and

Classification of Acoustic Scenes and Events (DCASE). In this paper we report on the state of the

art in automatically classifying audio scenes, and automatically detecting and classifying audio events.

We survey prior work as well as the state of the art represented by the submissions to the challenge

from various research groups. We also provide detail on the organisation of the challenge, so that our

experience as challenge hosts may be useful to those organising challenges in similar domains. We created

new audio datasets and baseline systems for the challenge: these, as well as some submitted systems,

are publicly available under open licenses, to serve as benchmark for further research in general-purpose

machine listening.

EDICS: 5-CONT

I. INTRODUCTION

Ever since advances in automatic speech recognition (ASR) were consolidated into working industrial

systems [1], the prospect of algorithms that can describe, catalogue and interpret all manner of sounds has

seemed close at hand. Within ASR, researchers continue to advance recognition quality, in challenging
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audio conditions such as distant speech against noisy backgrounds [2]. Elsewhere, advances in Music

Information Retrieval (MIR) have brought us systems that can transcribe the notes and chords in music

[3], or identify the track title and artist from a low-quality sound snippet [4]. However, speech and music

are just two of the many types of sound that can be heard in a typical indoor or outdoor environment.

Increasingly, machines deployed in diverse environments can hear—whether they be mobile phones,

hearing aids or autonomous robots—but can they make sense of what they hear?

Sound is often a useful complement to modalities such as video, carrying information not otherwise

present such as information from speech and birdsong. Sound can also be more convenient to collect,

e.g. on a mobile phone. Information gathered from a semantic audio analysis can be useful for further

processing such as robot navigation, user alerts, or analysing and predicting patterns of events [5]. Beyond

listening devices, the same technologies have applications in cataloguing/searching audio archives, whose

digital collections have grown enormously in recent decades [6]. Audio archives often contain a rich

diversity of speech, music, animal sound, urban soundscapes, ethnographic recordings and more, yet

their accessibility currently lags behind that of text archives.

In order to stimulate research in machine listening for general audio environments, in 2012–2013 we

organised a research challenge under the auspices of the IEEE Audio and Acoustic Signal Processing Tech-

nical Committee: the challenge on Detection and Classification of Acoustic Scenes and Events (DCASE).

This challenge focused on two concrete but relatively general types of task that a general machine listening

system would carry out: recognising the general environment type (the acoustic “scene”), and detecting

and classifying events occurring within a scene.

These tasks which we describe as “machine listening” tasks can also be considered to come under

the umbrella of computational auditory scene analysis (CASA) [7]. This nomenclature refers back to

Bregman’s influential work on human “auditory scene analysis” capabilities [8], and thus CASA is often

taken to imply an approach which aims either to parallel the stages of processing in human audition,

and/or to mimic the observed phenomena of human audition (which may include illusions such as the

“missing fundamental”) [7, Chapter 1]. These human-centric aims do not directly reflect our goal here,

which is to develop systems that can extract semantic information about the environment around them

from audio data.

The purpose of this paper is to give a complete description of the challenge, for two purposes: firstly

to acquaint the reader with the state of the art in machine listening, and secondly to provide guidance

and lessons learnt for the benefit of people running research challenges in future. In the following, we

first give some research background in the topic, and previous challenges that have been conducted in
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neighbouring areas. Then we give detail on the experimental design of the tasks we designed, the approach

to evaluation, and the data which we collected for the tasks. We also consider some practicalities in the

conduct of the challenge. In Section V we give the results of each task in the challenge, results which

were first presented at the IEEE WASPAA 2013 conference [9]. We discuss issues emerging from the

results such as the level of task difficulty, and in particular we compare the “live” and “synthetic” variants

of our event detection challenge. Finally we consider the outlook for machine listening in light of the

challenge: the state of the art, future directions indicated, and the contribution that this challenge has

made. We also reflect on the organisational structure of this and other challenges, in relation to issues

such as reproducibility and sustainability.

II. BACKGROUND

In this section we will briefly overview the tasks of acoustic scene classification and detection of

sound events within a scene, both of which have been studied in recent literature. We discuss their

relation to other machine listening tasks, and outline standard approaches taken. We will then discuss

recent evaluation campaigns in machine listening, which set the context for our own campaign.

Acoustic scene classification aims to characterize the acoustic environment of an audio stream by

selecting a semantic label for it [10]. It can be considered as a machine-learning task within the widespread

single-label classification paradigm, in which a set of class labels is provided and the system must select

exactly one for any given input [11, Chapter 1]. It therefore has parallels with audio classification tasks

such as music genre recognition [12] or speaker recognition [13], and with classification tasks in other

time-based media such as video. When classifying time-based media, a key issue is how to analyse

temporally-structured data to produce a single label representing the media object overall. There are two

main strategies found in the literature. One is to use a set of low-level features under a “bag-of-frames”

approach, which treats the scene as a single object and aims at representing it as the long-term statistical

distribution of some set of local spectral features. Prevailing among different features for the approach is

the Mel-frequency Cepstral Coefficients (MFCCs) that have been found to perform quite well [10]. Foote

[14] is an early example, comparing MFCC distributions via vector quantisation. Since then, the standard

approach to compare distributions is by constructing a Gaussian Mixture Model (GMM) for each instance

or for each class [10]. The other strategy is to use an intermediate representation prior to classification

that models the scene using a set of higher level features that are usually captured by a vocabulary or

dictionary of “acoustic atoms”. These atoms usually represent acoustic events or streams within the scene

which are not necessarily known a priori and therefore are learned in an unsupervised manner from the
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data. Sparsity or other constraints can be adopted to lead to more discriminative representations that

subsequently ease the classification process. An example is the use of non-negative matrix factorization

(NMF) to extract bases that are subsequently converted into MFCCs for compactness and used to classify

a dataset of train station scenes [15]. Building upon this approach, the authors in [16] used shift-invariant

probabilistic latent component analysis (SIPLCA) with temporal constrains via hidden Markov models

(HMMs) that led to improvement in performance. In [17] a system is proposed that uses the matching

pursuit algorithm to obtain an effective time-frequency feature selection that are afterwards used as

supplement to MFCCs to perform environmental sound classification.

The goal of acoustic event detection is to label temporal regions within an audio recording, resulting

in a symbolic description such that each annotation gives the start time, end time and label for a single

instance of a specific event type. It is related in spirit to automatic music transcription [3], and also

to speaker diarisation, which similarly recovers a structured annotation of time segments but focusses

on speech “turns” rather than individual events [18]. The majority of work in event detection treats the

sound signal as monophonic, with only one event detectable at a time [19], [20]. In general audio scenes,

events may well co-occur, and so polyphonic event detection (allowing for overlapping event regions) is

desirable. However, salient events may occur relatively sparsely and there is value even in monophonic

detection. There has been some work on extending systems to polyphonic detection [21]. Event detection

is perhaps a more demanding task than scene classification, but at the same time heavily intertwined.

For example, information from scene classification can provide supplementary contextual information for

event detection [22]. Many proposed approaches can be found in the literature among which spectrogram

factorization techniques tend to be a regular choice. In [23] a probabilistic latent semantic analysis (PLSA)

system, a closely related approach to NMF, was proposed to detect overlapping sound events. In [20] a

convolutive NMF algorithm applied on a Mel-frequency spectrum was tested on detecting non-overlapping

sound events. Finally, a number of proposed systems focus on the detection and classification of specific

sound events from environmental audio scenes such as speech [24], birdsong [25], musical instrument

and other harmonic sounds [26], pornographic sounds [27] or hazardous events [28].

The issue of polyphony is pertinent to both of the above tasks, since audio scenes are polyphonic (multi-

source) in general. As with music, it is possible to perform some analysis on the audio signal as a whole

without considering polyphony, though it is likely that some benefit can be obtained from considering the

component sources that make up the signal. Such a component-wise analysis is analogous to the auditory

streaming that occurs in Bregman’s model of human audition [8]. In speech recognition applications it

can often be assumed that there is one dominant source that should be the focus for analysis [24], but
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this is not the case for general audio scenes. One strategy to handle polyphonic signals is to perform

audio source separation, and then to analyse the resulting signals individually [29], [21]. However, note

that the computational equivalent of auditory streaming does not necessarily require a reconstruction

of the individual audio signals—Bregman does not claim that human listeners do this—but could work

with some mid-level representation such as a multisource probabilistic model [30]. Source-separation for

general-purpose audio is still a long way from being a solved problem [31]. For example, the evaluation

used in recent challenges for “speech recognition in multisource environments” did not require submitted

algorithms to perform audio source-separation: evaluation was performed on speech transcription output.

Submitted algorithms generally did not involve a source-separation step, many used spatial or spectral

noise suppression in order to focus on one source rather than separating all sources [32].

In machine listening, public evaluation and benchmarking of systems serves a valuable role. It enables

objective comparison among various proposed systems, and can also be used for studying performance

improvements throughout the years. Many such challenges have been centred on speech. For example,

the DARPA EARS Rich Transcription evaluations (2002–2009) focussed on speaker-diarisation tasks,

applied to broadcast news as well as recordings of meetings [18]. The MIREX challenges (2005–present)

evaluated MIR systems for their performance on specific musical tasks such as melody transcription

or rhythm tracking [33]. The SiSEC challenges (2007–present) focussed on audio source separation

algorithms, both for speech mixtures and for music [31]. The CHiME challenges (2011, 2013) focussed on

speech recognition in noisy multi-source sound environments [2]. None of the aforementioned challenges

directly relates to the general-purpose machine listening tasks we consider here. Some of them use broadly

similar task outlines (e.g. classification, diarisation), but often use domain-specific evaluation measures

(e.g. speech transcription accuracy, audio separation quality). They also attract contributions specialised

to the particular audio domain.

For the present purposes, the most closely-related challenge took place in 2006 and 2007, as part of

the CLEAR evaluations conducted during the CHIL project [34]. Several tasks on audio-only, video-

only or multimodal tracking and event detection were proposed, among them an evaluation on “Acoustic

Event Detection and Classification”. The datasets were recorded during several interactive seminars and

contain events related to seminars (speech, applause, chair moving, etc). From the datasets created for the

evaluations, the “FBK-Irst database of isolated meeting-room acoustic events” has widely been used in

the event detection literature; however, the aforementioned dataset contains only non-overlapping events.

The CLEAR evaluations, although promising and innovative at the time, were discontinued with the end

of the CHIL project.
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One further related challenge in audiovisual research is TRECVID Multimedia Event Detection, where

the focus is on audiovisual, multi-modal event detection in video recordings [35]. Some researchers have

used the audio extracted from the audiovisual TRECVID data in order to evaluate their systems; however

a dataset explicitly developed for audio challenges would offer a much better evaluation framework since

it would be much more varied with respect to audio.

III. THE CHALLENGE

In the present section we describe the evaluation design for our challenge tasks. Before this, we

describe the requirements gathering process that we conducted, and the considerations that fed into our

final designs.

A. Requirements gathering

As described above, the tasks considered in this challenge relate to those explored in previous ex-

perimental studies, and to some degree to those explored in previous evaluation campaigns. There is

therefore a body of literature from which to draw potential task designs. Importantly, however, the task

designs were developed through a period of community discussion, primarily via a public email list.

This was crucial to ensure that the designs had broad relevance to current research, and did not unfairly

penalise potential participants. An example of the latter is in the choice of evaluation measures for event

detection: there was a debate about which evaluation measures were most appropriate, as well as issues

such as the appropriate level of granularity in framewise evaluation. It was this discussion that led to

the decision to report three different evaluation measures for event detection (see Section III-C3). Other

issues discussed included annotation data formats, the nature of synthetic sequences, and the use of other

existing datasets.

Our motivation was to design challenge tasks to reflect useful general-purpose inferences that could be

made in an everyday audio environment, pertinent to a broad range of machine listening applications. Our

focus was on everyday sounds beyond speech and music, since the latter are already well-studied. We

also wished to design tasks for which performance could be improved without necessarily being overly

reliant on other processing components such as high-quality source separation or ASR. We decided to

design challenge tasks separately for scene classification and for event detection and classification, using

data relating to urban and office environments.

Many applications of machine listening relate to processing embodied in a fixed hardware setup, such

as a mobile phone or a robot. This differs from applications such as audio archive analysis, for which
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a system must be robust to signal modifications induced by variation of microphones and preprocessing

across the dataset [36]. For embodied machine listening, aspects such as the microphone frequency

response will be constant factors rather than random factors. We chose to design our tasks each with a

fixed configuration of recording equipment.

One pertinent question was whether existing data could be used for our evaluation, or whether it would

be important to create new datasets. Previous studies have used relatively small datasets; further, some of

these are not publicly available. Alternatively, online archives such as Freesound hold a large amount of

soundscape data.1 However, these vary widely in recording conditions, recording quality and file format

[6], [37], and so were unsuitable for our experimental aim to evaluate systems run with consistent audio

front-end. Thus it was important to make new recordings. This gave us various advantages: as well as

allowing us to control conditions such as the balance of sound types, it also meant that we were able to

create private testing data unseen by all participants, to ensure that there was no inadvertent overfitting

to the particulars of the task data. Conversely, it meant we could release the public data under a liberal

open-content license, as a resource for the research community even beyond our immediate focus.

Given that everyday sound environments are polyphonic—multiple sound events can occur at the same

time—with varying degrees of density, and given that general audio source separation is still a difficult

problem, it was important to design event detection task(s) so that we could explore the effect of polyphony

on event detection systems. Such systems might be designed with a simplifying monophonic assumption;

with source separation used to feed multiple monophonic analyses; or with full polyphonic inference.

There is little data available to suggest how these different strategies perform as the event density varies.

In order to have experimental control over the event density, we chose two parallel approaches to creating

event detection audio data. In one, we made live recordings of scripted monophonic event sequences in

controlled environments. In the other, we made live recordings of individual events, and synthetically

combined these (along with ambient background recordings) into synthetic mixtures with parametrically

controlled polyphony. We describe these approaches further in Section III-C.

In December 2012 we conducted a survey of potential participants to characterise their preferred

software platforms. This indicated that most participants wished to use Matlab, Python, R or C/C++ to

create their submissions. However, all of these frameworks come in multiple versions across multiple

operating systems, and it can be difficult to ensure that code running on one system will run correctly

on another. To minimise the risk of such issues, we created and published a Linux virtual machine

1http://freesound.org/
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which participants could use during development, and which would also be the environment used to run

the submission evaluations. For this we used VirtualBox software which runs on all common operating

systems, together with a disk image based on Xubuntu 12.10 Linux.2 The disk image was augmented by

adding the public datasets into the home folder, and also by installing Python, R and C/C++, as well as

some common audio-processing toolboxes for each environment. The resulting disk image is available

online from our research repository.3 Due to software licensing constraints we could not include Matlab

in the disk image, and so we handled Matlab-based submissions separately from the virtual machine.

We next describe the finalised design and data collection for the scene classification task, and for the

event detection tasks.

B. Scene classification task (SC)

Acoustic scene classification can be considered as a single-label classification task (see Section II).

Alternative designs are possible, such as classification with hierarchical labels [38], unsupervised cluster-

ing of audio scenes, or multi-label “auto-tagging” [39]. However, single-label classification is the design

most commonly seen in prior literature in acoustic scene recognition [14], [10], [15], [16], [17], and also

lends itself to clear evaluation measures. We therefore designed the SC task as a train/test classification

task, of similar design to previous audio classification evaluations [33].

We created datasets across a pre-selected list of scene types, representing an equal balance of in-

door/outdoor scenes in the London area: bus, busystreet, office, openairmarket, park, quietstreet, restau-

rant, supermarket, tube, tubestation. The limitation to the London area was a pragmatic choice, known

to participants. We made sure to sample across a wide range of central and outer London locations, in

order to maximise generalisability given practical constraints. To enable participants to further explore

whether machine recognition could benefit from the stereo field information available to human listeners

[7, Chapter 5], we recorded in binaural stereo format using Soundman OKM II in-ear microphones.

For each scene type, three different recordists (DG, DS, EB) visited a wide variety of locations in

Greater London over a period of months (Summer and Autumn 2012), and in each scene recorded a few

minutes of audio. We ensured that no systematic variations in the recordings covaried with scene type:

all recordings were made in moderate weather conditions, and varying times of day, week and year, and

each recordist recorded each scene type.

2http://virtualbox.org/, http://xubuntu.org/
3http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/32
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We then reviewed the recordings to select 30-second segments that were free of issues such as mobile

phone interference or microphone handling noise (totalling around 50% of the recorded duration), and

collated these segments into two separate datasets: one for public release, and one private set for evaluating

submissions. The duration of 30 seconds is comparable with that of other datasets in this topic, and was

judged to be long enough to contain sufficient information in principle to distinguish the classes. The

segments are stored as 30-second WAV files (16 bit, stereo, 44.1 kHz), with scene labels given in the

filenames. Each dataset contains 10 examples each from 10 scene types, totalling 50 minutes of audio

per dataset. The public dataset is published online under a Creative Commons CC-BY licence.4

For the SC task, systems were evaluated with 5-fold stratified cross validation. Our datasets were

constructed to contain a balance of class labels, and so classification accuracy was an appropriate

evaluation measure [40]. The raw classification (identification) accuracy and standard deviation were

computed for each algorithm, as well as a confusion matrix so that algorithm performance could be

inspected in more detail.

1) Baseline system for scene classification: The “bag-of-frames” MFCC+GMM approach to audio

classification (see Section II) is relatively simple, and has been criticised for the assumptions it incurs [41].

However, it is quite widely applicable in a variety of audio classification tasks. Aucouturier and Pachet

[10] specifically claim that the MFCC+GMM approach is sufficient for recognising urban soundscapes but

not for polyphonic music (due to the importance of temporal structure in music). It has been widely used

for scene classification among other recognition tasks, and has served as a basis for further modifications

[17]. The model is therefore an ideal baseline for the Scene Classification task.

Code for the bag-of-frames model has previously been made available for Matlab.5 However, for

maximum reproducibility we wished to provide simple and readable code in a widely-used programming

language. The Python language is very widely used, freely available on all common platforms, and is

notable for its emphasis on producing code that is readable by others. Hence we created a Python script

embodying the MFCC+GMM classification workflow, publicly available under an open-source licence,6

and designed for simplicity and ease of adaptation [42].

4http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/29
5http://www.jj-aucouturier.info/projects/mir/boflib.zip
6http://code.soundsoftware.ac.uk/projects/smacpy
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C. Event detection tasks (OL, OS)

For the Event Detection tasks, we addressed the problem of detecting acoustic scenes in an office

environment, making use of existing office infrastructure within Queen Mary University of London, and

also providing a continuation of the CLEAR evaluations [43], which also addressed the task of event

detection in an office environment. In order to encourage wide participation, and also to explore the

challenge of polyphonic audio scenes, we designed two subtasks: event detection of non-overlapping

sounds (Event Detection - Office Live) and event detection of overlapping sounds (Event Detection -

Office Synthetic). In both cases, systems are required to detect predominant events in the presence of

background noise.

1) Recorded Dataset (OL): After a consultation period with members of the acoustic signal processing

community, for the Event Detection - Office Live (OL) task we created recordings of office scenes,

consisting of the following 16 classes: door knock, door slam, speech, laughter, clearing throat, coughing,

drawer, printer, keyboard click, mouse click, object (pen, pencil, marker) on table surface, switch, keys

(put on table), phone ringing, short alert (beep) sound, page turning.

Recordings were made in a number of office environments at Queen Mary University of London, using

rooms of different size and with varying noise level or number of people in the room. We created three

datasets: a training, a development, and a test dataset. Training recordings consisted of instantiations

of individual events for every class. The development (validation) and test datasets consist of roughly

1min long recordings of scripted every-day audio events. Scripts were created by random ordering of

event types; we recruited a variety of participants to perform the scripts. For each script, multiple takes

were used, and we selected the best take as the one having the least amount of unscripted background

interference. Overall, the OL training dataset includes 24 recordings of individual sounds per class; the

development dataset includes 3 recordings of scripted sequences; and the test set consists of 11 scripted

recordings (the recording environments in the development and test datasets are non- overlapping).

Regarding equipment, recordings were made using a Soundfield microphone system, model SPS422B,

able to capture 4-channel sound in B-format. The 4-channel recordings were converted to stereo (using the

common “Blumlein pair” configuration). B-format recordings were stored along with the stereo recordings,

with scope for future challenges to be extended to full B-format and take into account spatial information.

Given the inherent ambiguity in the annotation process (especially for annotating offsets), we created

two sets of annotations. Annotators were trained to use Sonic Visualiser7 to use a combination of listening

7http://sonicvisualiser.org/
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and inspecting waveforms/spectrograms to refine the onsets and offsets of each sound event. We then

examined the two annotations per recording for consistency, and performed evaluations using an average

of both annotations. The OL training dataset8 and the development dataset9, both consisting of B-format

recordings, stereo recordings, and annotations, were released under a Creative Commons license.

2) Synthetic Dataset (OS): We also decided that this challenge presented a good opportunity to study

the relevance of considering artificial scenes built from a set of isolated events different from those of the

training corpus. Though we admit that it is important to evaluate machine listening systems using real

audio recordings, the potential gains from using artificial scenes as part of evaluation are numerous: ease

of annotation, ability to generate many scenes with similar properties in order to gain better statistical

significance, control of the complexity in terms of events overlap, strength of the background, etc. This

will potentially help the designers of machine listening systems to better understand the behavior of those

systems.

As in other domains, using synthetic data may lead to biased conclusions. It is for example well

known that Independent Component Analysis (ICA) approaches in microphone arrays perform really

well in separating the different sources within an additive non-convolutive mixtures because the input

signal follows directly the mixture model assumed by those approaches. Special care was therefore taken

in order to minimize the amount of artificial regularity induced by the generating system that could

provide unrealistic benefits to some evaluated machine listening systems.

The scene synthesizer we considered here is able to create a large set of acoustic scenes from many

recorded instances of individual events. The synthetic scenes are generated by randomly selecting, for

each occurrence of each event we wish to include, one representative excerpt from the natural scenes, then

mixing all those samples over a natural texture-like background with no distinctive sound events. The

distribution of events in the scene is also random, following high-level directives that specify the desired

density of events. The average Signal to Noise Ratio (SNR) of events over the background texture is also

specified and is the same for all event types, unlike in the OL scenes. This is a deliberate decision taken

to avoid issues with the annotation of potentially non perceptible events drowned in the background. In

order to avoid issues with artificial spatialization, the recordings of individual events were mixed down

to mono as an initial step.

The resulting development and testing datasets consist of 12 synthetic mono sequences with varying

8http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/28
9http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/30
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durations, with accompanying ground-truth annotations. Three subsets were generated with increasing

levels of complexity in terms of event density: 4 recordings have a ‘low’ event density10 of 1.11, 4

recordings have a ‘medium’ event density of 1.27, and 4 recordings have a ‘high’ event density of 1.81.

Three SNR levels of events over the background texture were used: -6dB, 0dB, and 6dB.

3) Metrics: Following consultation with acoustic signal processing researchers, three types of evalu-

ations were used for the OL and OS event detection tasks, namely frame-based, event-based, and class-

wise event-based evaluations. Frame-based evaluation was performed using a 10ms step and metrics were

averaged over the duration of the recording. The main metric used for the frame-based evaluation was

the acoustic event error rate (AEER) used in the CLEAR evaluations [43]:

AEER =
D + I + S

N
(1)

where N is the number of events to detect for that specific frame, D is the number of deletions (missing

events), I is the number of insertions (extra events), and S is the number of event substitutions, defined as

S = min{D, I}. Additional metrics include the Precision, Recall, and F-measure (P-R-F). By denoting

as r, e, and c the number of ground truth, estimated and correct events for a given 10ms frame, the

aforementioned metrics are defined as:

P =
c

e
, R =

c

r
, F =

2PR

P + R
. (2)

For the event-based metrics, two types of evaluations took place, an onset-only and an onset-offset-

based evaluation. For the onset-only evaluation, each event was considered to be correctly detected if the

onset was within a 100ms tolerance. This tolerance value was agreed during the community discussion

via the challenge mailing list. It was argued that having a tolerance smaller than 100ms would lead

to poor results particularly in the case of ill-defined onsets and offsets for non-percussive events For

the onset-offset evaluation, each event was correctly detected if its onset was within a 100ms tolerance

and its offset was within 50% range of the ground truth event’s offset w.r.t. the duration of the event.

Duplicate events were counted as false alarms. The AEER and P-R-F metrics for both the onset-only

and the onset-offset cases were utilised.

Finally, in order to ensure that repetitive events did not dominate the evaluation of an algorithm, class-

wise event-based evaluations were also performed. Compared with the event-based evaluation, the AEER

10The average event density is calculated using 10ms steps, using only time frames where events are present. For the OL set,

the event density for each recording is by definition 1, because by design events did not overlap.
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and P-R-F metrics are computed for each class separately within a recording and then averaged across

classes. For example, the class-wise F-measure is defined as:

F ′ =
1

K

∑
k

Fk (3)

where Fk is the F-measure for events of class k. Matlab code for the metrics can be found online.11

4) Baseline System: We created a baseline system for both event detection tasks based on the non-

negative matrix factorization (NMF) framework. NMF has been shown to be useful for modelling the

underlying spectral characteristics of sources hidden in an acoustic scene [23], and can also support

overlapping events, making it suitable for both the OL and OS tasks. We chose to design a supervised

method for event detection, using a pre-trained dictionary of acoustic events [42].

The baseline method is based on NMF using the Kullback-Leibler divergence as a cost function [44].

As a time-frequency representation, we used the constant-Q transform with a log-frequency resolution

of 60 bins per octave [45]. The training data is normalized to unity variance and NMF is used to learn

a set of N bases for each class. The numbers of bases tested is 5, 8, 10, 12, 15, 20 and 20i, the latter

corresponding to learning individually one basis per training sample, for all 20 samples. Putting together

the sets for all classes, we built a fixed dictionary of bases used subsequently to factorize the normalized

input test data.

Formally, if we denote as V̂ ∈ RΩ×T the constant-Q spectrogram of a test recording (Ω: number of

log-frequency bins; T : number of time frames), W ∈ RΩ×N the pre-extracted dictionary and H ∈ RN×T ,

the NMF model attempts to approximate V as a product of W and H . In the supervised case (when

W is known and kept fixed), this involves simply estimating H iteratively until convergence using the

following multiplicative update, ensuring a non-increasing divergence between V̂ and WH [44]:

H ← H ⊗ W T ((WH)−1 ⊗ V̂ )

W T
(4)

In order to detect sound events, we sum together the (non-binary) activations per class obtained from

H . Finally, a threshold θ is chosen to binarise the real-valued activations per class (i.e. for each row

of H), in order to yield a sequence of estimated overlapped events. The value of θ is the same for all

event classes; the optimal N and θ values were chosen empirically by maximizing the F -measure for

the two annotations on the development set. Smoothing on the activations was also tested with no clear

11https://code.soundsoftware.ac.uk/projects/aasp-d-case-metrics
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improvements. The baseline event detection system was made available to challenge participants under

an open-source license.12

D. Challenge organisation

The full timeline for the challenge organisation is given in Table I. Some of the items included of the

timeline will be obvious to an outside observer. However there are some aspects of the timeline and the

workload which we believe merit emphasis:

• There were two periods which required the most time commitment from the organising team: creating

the datasets, and running the code submissions. In particular, as has been remarked by organisers

of related challenges [33], no matter how many precautions are taken to ensure people submit

code that will run on the organisers’ hardware (formal specifications, published virtual machine),

it often requires many person-hours of attention before submitted code will run properly. This will

be discussed further below. Recording the datasets also took significant time: this was not just the

audio recording itself, but also the supervision of annotators, and the listening sessions and manual

inspection to ensure data quality.

• We found it extremely useful to ask people to let us know of their intentions, in order to help us

plan. In December 2012 we surveyed the community for indicative data about the level of interest in

task participation, as well as the preferences for programming languages and operating systems. This

information fed directly into our design of a Linux virtual machine for people to test their code. Then

in March 2013 we asked participants to email us announcing their intentions to take part (with no

commitment implied). This enabled us to plan resources, and to follow up on expected submissions

that went astray. We received 20 notifications of intention to submit, some corresponding to multiple

task submissions; of these only three did not eventually submit.

• One aspect of the timeline that could have been improved was the long wait between collating the

results and releasing them publicly. It meant that participants could not compare and contrast results

while their systems were “fresh in their minds”. However, this was due to our decision to co-ordinate

with WASPAA 2013, which was an ideal forum for discussion of the challenge outcomes.

Regarding the execution of code submissions, our publication of a virtual machine as a standard

platform certainly reduced the number of compatibility issues we had to deal with. However, there

remained various software issues we encountered when running the code submissions:

12http://code.soundsoftware.ac.uk/projects/d-case-event
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TABLE I

TIMELINE OF DCASE CHALLENGE ORGANISATION. THE TIMELINE IS DIVIDED INTO MAIN PHASES, AND MILESTONES ARE

HIGHLIGHTED.

April 2012: Challenge proposed to IEEE AASP

May 2012: Challenge accepted by IEEE AASP

Jun 2012: Initial recordings made, to test equipment and to produce examples for discussion

Jun 2012: Organisers of IEEE WASPAA 2013 agree to host a challenge results special session

Jun–Dec 2012: Roaming recordings for SC task

Jul 2012: ⇒ Call for participation published to various mailing lists; website established

Aug 2012: Challenge publicised in IEEE SPS Newletter

Aug–Sep 2012: Community discussion on dedicated challenge mailing list.

Sep 2012: ⇒ Task design completed

Sep–Oct 2012: Office recordings for OL and OS tasks

Oct–Nov 2012: Ground-truth annotation of OL recordings (external annotators: 2 x 35 hours)

Nov–Dec 2012: Listening sessions to all recordings, to ensure data quality; error-checking and correction of manual annotations

Dec 2012: ⇒ Public release of training/development datasets (audio and annotations)

Dec 2012: Online survey of potential participants (preferred tasks, programming languages, operating systems)

Jan 2013: Create the Linux virtual machine disk image

Jan–Feb 2013: Write paper (EUSIPCO 2013) introducing the tasks and baseline systems

Jan–Feb 2013: Generating synthetic testing dataset for OS task

Jan 2013: ⇒ Publication of finalised task specifications (output formats, eval metrics etc.) as well as virtual machine

Feb 2013: Publication of the scripts used to calculate the evaluation metrics

Feb 2013: Publication of synthetic development dataset for OS task

Feb–Mar 2013: Further community discussion; official confirmation that for OL/OS three separate evaluation metrics will be applied

Mar 2013: Request for participants to email to confirm participation

Apr 2013: ⇒ Deadline for participants to submit code

Apr–May 2013: Running all code submissions – team liaises with authors about software issues etc, compiles result statistics

May 2013: Deadline for participants to submit extended abstracts for WASPAA 2013

May 2013: Results released privately to each participating team

Jun 2013: Write paper (WASPAA 2013) giving results of the challenge

Oct 2013: ⇒ Results released publicly at WASPAA 2013

• A frequent issue in Matlab submissions was opening the training annotation text files (for reading)

using mode ‘r+’ (which is for reading and writing). This fails when files are read-only. We had set

the test data as read-only, and in the specification we had stated that submissions must not write

data in the test folder.

• One submission had been developed using Matlab on Windows; when we ran it using the same
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version of Matlab, but on Linux, it got rather poor results, which we initially attributed to overfitting.

It later emerged that the poor performance was because a Matlab toolbox exhibited a bug only when

running on Linux.

• On the virtual machine, there were occasional problems with version mismatch between Dynamic

Link Libraries (DLLs). Such issues were reduced but not completely eliminated with the use of the

virtual machine, often because participants did not fully test using the virtual machine, or occasionally

added late modifications after testing.

• One submission output space-separated results rather than tab-separated. This was contrary to the

published specifications but easy to miss in manual checking.

• Some submissions contained subtle bugs in data parsing. One submission accidentally ignored the

last line of every text file it read, meaning that it output 19 decisions for each testing fold rather

than 20. This wasn’t detected early on (because the output was correctly-formatted and could be

scored), but only at the point where an overall confusion matrix was compiled. A different submission

involved a script which parsed the text output from an executable. When the script failed to parse

the text, it always decided on the last class in the list – failure was only detected in the large number

of “tubestation” outputs.

Some of these issues (e.g. the data format issues) could have been prevented by providing unit tests

which participants must pass before submitting.

Earlier in the process, we also encountered a data issue: after we published the development datasets,

a community member on the mailing list alerted us to a formatting error in some of the annotations (the

text label doorknock was used in some places rather than the official label knock). Such issues occur

despite the multiple steps of checking we performed before release. We updated the dataset to correct

the issue, re-released it and confirmed this to the participants.

We required each submitted system to be accompanied by an extended abstract describing the system.

We experienced no issues in publishing these abstracts; however in future evaluations we would consider

explicit open-access licensing of the abstracts for greater clarity.

IV. SUBMITTED SYSTEMS

Overall, 11 systems were submitted to the scene classification (SC) task, 7 systems were submitted to

the office live (OL) event detection task, and 3 systems to the office synthetic (OS) event detection task.

Variants for each system were allowed, which increased the total number of systems somewhat.
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TABLE II

SUMMARY OF SUBMITTED SCENE CLASSIFICATION SYSTEMS.

Participants Code Method Lang

Chum et al.

[46]

CHR Various features at 2 frame sizes, classified either: (a) per-frame SVM +

majority voting; (b) HMM

Matlab

Elizalde [47] ELF Concatenation of 4 different mono mixdowns; “i-vector” analysis of

MFCCs, classified by pLDA

Matlab

Geiger et al.

[48]

GSR Diverse features, classified within 4-second windows using SVM, then

majority voting

Weka/

HTK

Krijnders

and ten Holt

[49]

KH “Cochleogram” representation, analysed for tonelikeness in each t-f bin,

classified by SVM

Python

Li et al. [50] LTT Wavelets, MFCCs and others, classified in 5-second windows by treebagger,

majority voting

Matlab

Nam et al. [51] NHL Feature learning by sparse RBM, then event detection and max-pooling,

classified by SVM

Matlab

Nogueira et al.

[52]

NR1 MFCCs + MFCC temporal modulations + event density estimation +

binaural modelling features, feature selection, classified by SVM

Matlab

Olivetti [53] OE Normalised compression distance (Vorbis), Euclidean embedding, classified

by Random Forest

Python

Patil and

Elhilali [54]

PE Auditory representation analysed for spectrotemporal modulations, classi-

fied within one-second windows using SVM, then weighted combination of

decision probabilities

Matlab

Rakotomamonjy

and Gasso [55]

RG Computer vision features (histogram of oriented gradient) applied to

constant-Q spectrogram, classified by SVM

Matlab

Roma et al.

[56]

RNH Recurrence Quantification Analysis applied to MFCC time-series, classified

by SVM

Matlab

Baseline MFCCs, classified with a bag-of-frames approach Python

Majority Vote MV Majority voting of all submissions Python

The systems submitted for the scene classification task are listed in Table II, along with a short

description of each system. Citations are to the extended abstracts giving further technical details about

each submission. The methods for scene classification are discussed further in a tutorial article [65],

while in Section V-A we will expand on some aspects of scene classification methods when considering

which approaches led to strong performance.

The systems submitted for the event detection tasks are listed in Table III, along with a short de-
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TABLE III

SUMMARY OF SUBMITTED EVENT DETECTION SYSTEMS.

Participants Code Method Lang

Chauhan et al.

[57]

CPS Feature extraction - Segmentation - Likelihood ratio test classification Matlab

Diment et al.

[58]

DHV MFCCs (features) - HMMs (detection) Matlab

Gemmeke et al.

[59]

GVV NMF (detection) - HMMs (postprocessing) Matlab

Niessen et al.

[60]

NVM Hierarchical HMMs + Random Forests (classification) - Meta-classification Matlab

Nogueira et al.

[61]

NR2 MFCCs (features) - SVMs (classification) Matlab

Schröder et al.

[62]

SCS Gabor filterbank features - HMMs (classification) Matlab

Vuegen et al.

[63]

VVK MFCCs (features) - GMMs (detection) Matlab

Baseline NMF with pre-extracted bases (detection) Matlab

Fig. 1. Schematic of event detection systems (nodes with a * are not systematically used). Below, state-of-the-art design choices

are given as examples.

Pre-processing* Features Classification Post-processing*

denoising MFCCs HMM smoothing

scription of each system. Citations are to the extended abstracts giving further technical details about

each submission. Figure 1 shows the processing chain adopted by the submitted algorithms. The main

processing nodes are the feature computation and the classification for which a variety of implementations

are considered. Optionally, the audio data can be pre-processed for example to reduce the influence

of background noise, and the decisions given by the classifiers can be smoothed to reduce unrealistic

transitions between events.

The system designs for each submission are now described:

• CPS: The CPS submission follows a scheme that combines segmentation, feature extraction, and

classification. Firstly, various frequency-based and time-based features are extracted. The audio

stream is subsequently segmented using a speech segmenter that uses energy-based features. Each
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segment is then assigned to a class using a generalised likelihood ratio test classifier.

• DHV: The DHV submission was created for both the OL and OS tasks. It follows a generative

classification scheme using HMMs with multiple Viterbi passes. Firstly, MFCCs are extracted as

features, and used as input to continuous-density HMMs (each state corresponds to an event class,

including background noise). Polyphonic detection is achieved by performing consecutive passes of

the Viterbi algorithm.

• GVV: The GVV submission uses a dictionary-based model using NMF. Firstly, a dictionary is

created using samples from training set (called exemplars), using mel-magnitude spectrograms as

time-frequency representations. The input spectrogram is projected onto the dictionary using NMF

using the Kullback-Leibler divergence. The resulting event probability estimates are post-processed

using an HMM containing a single state per event.

• NVM: The NVM submission follows a two-step classification scheme. At the first step, a large

variety of audio features that capture temporal, spectral or auto-correlation properties of the signal

are fed to two classifiers: a two-layer HMM and a random forest classifier. Another HMM is then

used to combine the predictions.

• NR2: The NR2 submission follows a discriminative classification scheme implemented with support

vector machines (SVMs). The classifier is fed with MFCCs that are computed using either the

original signal or a noise-reduced one. The decisions coming from the classified versions are then

combined and smoothed to reduce short transitions.

• SCS: The SCS submission follows a generative classification scheme with a 2-layer HMM decoding.

The classifier is fed with 2 dimensional Gabor features (Time / Frequency) that allows percussive

events to be nicely modelled. Before feature computation, the audio signal is enhanced using a noise

suppression scheme that estimate the noise power spectral density and remove it in the spectral

domain.

• VVK: The VVK submission follows a generative classification scheme with a GMM decoding.

GMM models for each class of events and the background are first trained with MFCCs. The event

models are next re-estimated in order to reduce the impact of background frames on the model

likelihoods. At decoding the likelihoods are smoothed using a moving average filter and thresholded

to produce the prediction.

• Baseline: A detailed description of the Baseline system is given in Section III-C.
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Fig. 2. Mean values and confidence intervals of the accuracy of methods for SC evaluated on the DCASE private dataset using

stratified 5-fold cross-validation. The boxes enclose methods that cannot be judged to perform differently with a significance

level of 95% using a sign test [64]. For example, GSR > baseline, but we cannot confirm that CHR > baseline. Figure is

adapted from [65].

V. RESULTS

A. SC results

Figure 2 shows the overall performance of submitted systems for the scene classification task. The

baseline system achieved an accuracy of 55%; most systems were able to improve on this, although our

significance tests were able to demonstrate a significant improvement over baseline only for the strongest

four systems. The results indicate that level of difficulty for the task was appropriate: the leading systems

were able to improve significantly upon the baseline, yet the task was far from trivial for any of the

submitted systems. Also, the sizes of the error bars indicate that performance across the five folds was

broadly consistent, indicating that the dataset was not overly heterogeneous. However, the statistical tests

did not demonstrate significant differences between various systems (depicted by the large overlap of

boxes in Figure 2), which implies that a larger dataset may have enabled a more fine-grained ranking of

systems. The results for this SC task are further analysed in a tutorial article [65]. For that reason, here

we discuss briefly the state of the art reflected in the SC task outcomes, allowing us to expand further

on the OL/OS task outcomes in the next section.

The majority of the submitted systems used discriminative training, with many of the strong performers
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using an SVM as the final classifier. Further, most of the leading results were obtained by those who

captured medium-range temporal information in the features used for classification. Four of the five

highest-scoring systems did this: Roma et al. [56] captured temporal repetition and similarity using

“recurrence quantification analysis”; Rakotomamonjy and Gasso [55] used gradient features from image-

processing; Geiger et al. [48] extracted features from linear regression over time; Chum et al. [46] trained

a HMM. Each of these is a generic statistical model for temporal evolution, whose fitted parameters can

then be used as features for classification.

From the perspective of CASA, it is notable that none of the submitted systems used any kind of

decomposition of each audio scene into auditory streams. We suggest that this is not due to any inherent

difficulty in decomposing audio scenes, since automatic classification does not require “listening-quality”

outputs from such preprocessing. Instead it seems likely that it is more difficult to design a classification

workflow that makes use of structured scene analysis outputs, whose data may for example be sets of

labelled intervals rather than time-series statistics. Two submissions made use of event detection as part

of preprocessing, which does yield a structured parse of the audio scene [51], [52]. Those authors then

used summary statistics from the density/strength of event detections as features. We propose that further

refinement and development of this strategy may be a fruitful area for future work, perhaps via more

sophisticated temporal summary statistics such as those noted above.

Also notable is that the submissions with the more perceptually-motivated features—auditory spectro-

gram [54] and cochleogram [49]—did not lead to the strongest results. Nor did the unsupervised feature

learning of [51]. The various ways to approach audio feature design—perceptual, acoustic, statistical—

each have their merits. Based on the present evaluation, we note only that the more sophisticated audio

features did not yield a decisive advantage over simpler features.

We tested a simple majority-vote classifier from the pool of SC submissions, constructed by assigning

to an audio recording the label that was most commonly returned by other methods. This attained a

strong result, indicated as “MV” in the figure: 77% accuracy, slightly better than the leading individual

submission. The strong performance of this meta-classifier is particularly notable given its simplicity—

all systems are combined with equal weights. It suggests that for around 77% of soundscapes some

algorithms make a correct decision, and the algorithms that make an incorrect classification do not all

agree on one particular incorrect label. This allows to combine the decisions into a relatively robust

meta-classifier. (Note that we did not test for significance of the comparison between MV and the other

results, because the MV output is not independent of the output of the individual submissions.) More

sophisticated meta-classifiers could perhaps extend this performance further.
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TABLE IV

AGGREGATE CONFUSION MATRIX FOR SCENE CLASSIFICATION ACROSS ALL SUBMISSIONS. ROWS ARE GROUND TRUTH,

COLUMNS THE INFERRED LABELS. VALUES ARE EXPRESSED AS PERCENTAGES ROUNDED TO THE NEAREST INTEGER.

Label bu
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bus 81 3 0 4 1 0 0 4 6 2

busystreet 1 69 14 2 1 2 1 3 3 5

office 1 0 55 13 9 12 4 3 1 3

openairmarket 1 2 0 59 13 0 9 12 3 2

park 1 1 8 3 51 29 3 2 1 1

quietstreet 0 5 4 3 29 43 9 5 0 1

restaurant 1 1 0 16 5 0 53 21 2 3

supermarket 6 5 6 6 4 7 10 42 7 7

tube 7 7 1 1 2 2 5 3 44 28

tubestation 5 16 1 4 1 2 3 8 19 41

Table IV shows a confusion matrix for the scene labels as round percentages of the sum of all confusion

matrices for all submissions. Confusions were mostly concentrated over classes that share some acoustical

properties such as park/quietstreet and tube/tubestation. Our labels contained five indoor and five outdoor

locations, and both types showed a similar level of difficulty for the algorithms.

B. OL/OS results

Results for the event detection OL and OS tasks are summarized in Tables V and VI, respectively.13

The baseline was outperformed by most systems for both tasks. Results for the OL task indicate the high

level of difficulty in recognising sound events (from many possible classes, with great variability) from

noisy acoustic scenes. The best performance for the OL task using most types of metrics is achieved by

the SCS submission, which used a Gabor filterbank feature extraction step with by 2-layer hidden Markov

models (HMMs) for classifying events, followed by the NVM submission, which used a meta-classifier

13The original OS results published at the time of the challenge differ from the results published here due to a systematic fault

affecting a subset of the labels in the original OS development and test datasets. This was found and fixed, and the three teams

who submitted systems to the OS task were contacted and invited to revise their systems. The DHV system was re-trained on

the corrected OS development data; the configurations of the other systems (GVV, VVK and baseline) were not affected, and

were left unchanged. All three systems were re-evaluated on the corrected test datasets to obtain the results here. The corrections

to the data generally improved system performance, which is to be expected since they improved the correspondence between

training and test sets.
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combining hierarchical HMMs and random forests. Results for each event class separately are visualised

in Figure 3, where it can be seen that most systems had solid detection rates for clearing throat, coughing,

door knocks and speech, but had weak results for drawers, printers, keyboards and switches.

Many of the OL/OS methods employed a decomposition step, either expliticly (e.g. GVV) or implicitly

(e.g. DHV), which is of interest from the perspective of CASA (see Section I). It should be noted that

MFCCs were not proven as useful for the event detection tasks as with the scene classification tasks,

with more rich and auditory model-based representations proving to be more useful (such as Gabor

filterbanks and Mel-magnitude spectrograms). Again, contrary to the SVM-dominated scene classification

task, variants of HMMs were proven to be both the most popular as well as reliable tools for event

detection, due to their ability to model timeseries data. Of particular interest are submissions that were

also submitted to the polyphonic OS task, where two systems experimented with multiple Viterbi passes

(DHV, GVV) in order to handle overlapping events.

Regarding statistical significance tests in event detection systems, to the authors’ knowledge no such

tests have been attempted so far in the literature. As has been argued in [16] for the multi-pitch detection

problem (which is structurally similar to sound event detection), indicators of statistical significance are

not highly pertinent for multi-class detection problems: in practice, even a small performance difference

can often yield statistical significance. Detailed system descriptions and detailed results per system can

be found on the challenge website.14 However, for the OL task there was a large enough number of

participants that we were able to examine statistically whether the different metrics tended to rank systems

in the same order. We applied the Kruskal-Wallis test, a nonparametric test for comparing whether multiple

groups of data (here, the evaluation ranks for each system) exhibit differences in distribution [?, Section

6.2.2]. This found a significant pattern of agreement among the OL rankings judged across all evaluation

measures (H = 88.4, p = 3.3 × 10−14). The only systematic deviation from consensus among the

evaluation metrics was for submission GVV, which was ranked low (9th or 10th) on all F-measures but

3rd or better on all AEER measures.

For the OS task, the best performance across most of our evaluation metrics is achieved by the GVV

system, which used NMF decomposition followed by HMM postprocessing. Overall rates for each system

are broadly comparable with the OL task. It should also be noted that submitted systems performed better

for signals with lower polyphony, with the exception of the DHV system, which had better performance

with higher polyphony levels (5.57% frame-based F for low polyphony and 30.08% for high polyphony).

14http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/
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TABLE V

RESULTS FOR THE PARTICIPATING SYSTEMS FOR THE OFFICE LIVE EVENT DETECTION TASK. THE STRONGEST

PERFORMANCE ACCORDING TO EACH METRIC IS HIGHLIGHTED IN BOLD.

Evaluation Method

Event-Based Class-Wise Event-Based Frame-Based

System F (%) Foffset (%) AEER AEERoffset F (%) Foffset (%) AEER AEERoffset F (%) AEER

CPS 2.23 1.65 2.285 2.301 0.65 0.49 1.872 1.891 3.82 2.116

DHV 26.67 22.43 2.519 2.676 30.72 25.29 2.182 2.370 26.0 3.128

GVV 15.52 13.46 1.779 1.831 13.21 12.03 1.556 1.606 31.94 1.084

NVM 1 32.57 24.95 1.864 2.095 29.37 21.80 1.639 1.899 40.85 1.115

NVM 2 34.16 26.28 1.852 2.095 33.05 24.88 1.602 1.877 42.76 1.102

NVM 3 34.51 27.01 1.827 2.052 33.52 24.65 1.575 1.846 45.50 1.212

NVM 4 30.47 24.68 1.906 2.083 28.17 21.62 1.650 1.849 42.86 1.360

NR2 19.21 15.26 3.076 3.244 21.54 17.64 2.857 3.010 34.66 1.885

SCS 1 39.47 36.74 1.669 1.749 36.33 34.20 1.579 1.677 53.02 1.167

SCS 2 45.17 41.06 1.601 1.727 41.51 38.32 1.511 1.646 61.52 1.016

VVK 30.77 25.40 2.054 2.224 24.55 20.36 1.762 1.949 43.42 1.001

Baseline 7.38 1.58 5.900 6.318 9.00 1.86 5.960 6.462 10.72 2.590

As expected, the onset-offset evaluation produced worse results compared to onset-only evaluation for

both tasks, although the performance difference is rather small (this may be explained by the percussive

nature of most events).

It is also instructive to look at the correlation between the ranking of systems that were both submitted

to the Office Live and Office Synthetic challenges. It allows us to study the consistency of performance

of the evaluated systems using natural and artificial data. The OL and OS tests are not independent, since

they partly use the same audio source material, but comparing their outcomes gives us an indication of

whether the synthesis procedure for OS had a strong impact on the eventual rankings. Let us consider

results achieved using the Class-Wise Event-Based metrics as they are more resilient to discrepancies

between datasets in terms of density of events within the scene. Apart from a slight permutation of GVV

and VVK systems, the strong level of correlation (average of 90% over the 4 metrics in terms of the

Spearman’s rank correlation coefficient) indicates that considering artificially synthesised sound scenes

may have some meaning for this kind of task.

VI. REFLECTIONS AND RECOMMENDATIONS

Before concluding, we wish to draw some reflections out from the above results and from our experience

of managing the DCASE challenge, and to offer some recommendations for future evaluation challenges.
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TABLE VI

RESULTS FOR THE PARTICIPATING SYSTEMS FOR THE OFFICE SYNTHETIC EVENT DETECTION TASK. THE STRONGEST

PERFORMANCE ACCORDING TO EACH METRIC IS HIGHLIGHTED IN BOLD. SEE FOOTNOTE 13.

Event-Based Class-Wise Event-Based Frame-Based

System F (%) Foffset (%) AEER AEERoffset F (%) Foffset (%) AEER AEERoffset F (%) AEER

DHV 16.06 11.12 3.52 3.76 18.69 12.18 2.90 3.16 18.68 7.98

GVV 17.00 13.60 1.68 1.77 14.16 11.40 1.22 1.30 21.28 1.32

VVK 13.78 9.16 1.68 1.80 10.51 7.48 1.38 1.49 13.51 1.89

Baseline 7.75 0.57 6.26 6.87 9.47 0.33 5.33 5.95 12.76 2.80

Our challenge comes in the context of a series of challenges coordinated by the IEEE AASP, such as

challenges relating to distant and reverberant speech.15

Our design of the challenge involved participants submitting code, for the organisers to execute against

private datasets. This design, in common with MIREX music audio challenges [33], incurs resource costs

as the hosts must dedicate time to running the submissions. It also requires holding back some private

data, which cannot immediately benefit the community as open data. However it has advantages such

as ensuring participants do not overfit to the test data, and ensuring that results are reproducible in the

sense of empirically verifying that the submitted software can be run by a third party.

An interesting point of comparison is provided by similar challenges run via the Kaggle website

such as the 2013 SABIOD machine listening challenges.16 These challenges centered around automatic

classification of animal sounds. The mode of interaction in that case was not to submit code, but to

submit system output. Further, participants could iteratively modify their code and submit updated output,

getting feedback in the form of results on a validation dataset. This does carry some risk of overfitting

to the specifics of the challenge, and less direct reproducibility, although the winning submission was

required to be made open-source and confirmed by the hosts. Relative to DCASE, the SABIOD challenges

appeared to encourage a greater amount of ad-hoc participation from independent machine-learning

professionals, perhaps due to the immediate feedback loop made possible by the online system. The

workflows represented by the DCASE and the SABIOD challenges each have their own strengths and

weaknesses, and we look forward to further refinements in public evaluation methodology.

We have enumerated the steps involved in running the DCASE challenge, in particular to highlight

15http://www.signalprocessingsociety.org/technical-committees/list/audio-tc/aasp-challenges/
16http://sabiod.univ-tln.fr/
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Fig. 3. Event detection (OL) results in class-wise F (%) for each event class separately.

the resource implications for hosting such challenges. Dataset collection and annotation was the main

requirement on staff time. This challenge was not funded explicitly by any project, and so would not have

been possible without the resources made available by a large research group (see Acknowledgments).

This includes staff and PhD students as core organisers, data annotators, programmers assisting with

issues such as code and the virtual machine, and infrastructure such as code- and data-hosting facilities.

In Section III-D we described various steps we took to ensure that the challenge would run smoothly,

such as publishing formal task specifications, baseline code and a virtual machine. This reduced but by

no means eliminated the time required to run and troubleshoot the code submissions received. A clear

recommendation that emerges from this experience is that a formal test for the submitted code to be run
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at submission time would help greatly. This could be applied in the form of automated unit testing, or

more simply by the challenge organisers running the submissions using public data and confirming that

the results obtained match the results that the submitters obtained on their own system.

Community involvement was crucial to the successful conduct of this challenge, in particular for

discussing the task specifications, but also for negotiating logistics of submission and discussing the final

results. The support of the IEEE AASP Technical Committee and the IEEE WASPAA 2013 Conference

Committee helped us to form this community.

VII. CONCLUSIONS

With the DCASE challenge we aimed to frame a set of general-purpose machine listening tasks for

everyday audio, in order to benchmark the state of the art, stimulate further work, and grow the research

community in machine listening beyond the domains of speech and music. The challenge results illustrate

tasks we designed for this had the right level of difficulty for this: none of the tasks was trivial for

any submitted system, and a range of scores was achieved enabling comparison of the advantages and

disadvantages of systems. The strong level of participation from a diverse set of researchers indicates

that the tasks were pertinent to current research.

For the scene classification (SC) task, the leading systems attained results significantly above baseline

and comparable to average results from human listeners. A strategy used by many of the strongest systems

was to use feature representations which capture medium-scale temporal information about the sound

scene. However there is still room for improvement beyond the highest-scoring system; we demonstrated

this was possible with a simple majority-vote metaclassifier aggregating the submitted systems, illustrating

that there is information yet present in the audio that can drive stronger performance in future. The best

way to improve the SC task in future rounds would be through larger dataset sizes in order to draw

stronger conclusions about the significance of differences between system performances.

For the event detection (OL/OS) tasks, the leading systems achieved relatively strong performance,

although with substantial scope for improvement. This was particularly evident in the polyphonic OS

task, indicating that polyphony in audio scenes remains a key difficulty for machine listening systems

and more development is needed in this area. However, the class-wise analysis of results also indicates

that some event types proved harder to detect than others, even in the monophonic OL task, indicating

that the ability for one system to detect a wide range of sound types is also a key challenge. Future event

detection challenges could be improved with further community attention to evaluation metrics and their

relation to practical requirements. It may also be of value to evaluate systems explicitly regarding the
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correlation between their performance and the level of polyphony in a scene.

Regarding the community formed around this research topic, we were very encouraged by the strong

level of participation, and by the decisions of various groups to publish their submitted systems as open-

source code. These, alongside the resources which we published (open-source baseline systems; open

datasets; virtual machine disk image) provide a rich resource for others who may wish to work in this

area.17 The community has set a benchmark, establishing that leading techniques are able to extract

substantial levels of semantic detail from everyday sound scenes, but with clear room for improvement

in future.
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