
HAL Id: hal-01253888
https://hal.science/hal-01253888v1

Submitted on 11 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interpretation of the reduced density gradient
Roberto A. Boto, Julia Contreras-García, Julien Tierny, Jean-Philip Piquemal

To cite this version:
Roberto A. Boto, Julia Contreras-García, Julien Tierny, Jean-Philip Piquemal. Interpretation of the
reduced density gradient. Molecular Physics, 2015, pp.1-9. �10.1080/00268976.2015.1123777�. �hal-
01253888�

https://hal.science/hal-01253888v1
https://hal.archives-ouvertes.fr


Interpretation of the reduced density gradient

Roberto A. Botoa,b∗, Julia Contreras-Garćıab,c, Julien Tiernyd,e and Jean-Philip
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dSorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
eCNRS, UMR 7606, LIP6, Paris, France

An interpretation of the reduced density gradient in terms of the bosonic kinetic energy density
is presented. Contrary to other bonding indicators based on the kinetic energy density such
as the localised orbital locator (LOL) or the electron localization function (ELF), the reduced
density gradient is not only able to identify covalent bondings, but also ionic and non-covalent
interactions. This study reveals that the critical points of the reduced density gradient are
closely connected with those of LOL and with the roots of the one-electron potential (OEP).
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1. Introduction

Recently some of us have developed the non-covalent interactions (NCI) method
to detect NCI in real space [1]. This method enables the identification of NCI as
isosurfaces of the reduced density gradient s : R3 → R,

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ(r)4/3
.

These isosurfaces expand over large regions of space containing interacting atoms.
This approach recovers a more intuitive picture of van der Waals interactions,
hydrogen bonds and steric repulsions than other local pairwise approaches such as
atoms in molecules (AIM) theory, or ELF. The application of the reduced density
gradient to visualise interacting regions, was motivated by the deviations from the
exponential behaviour observed when s is plotted versus ρ for interacting systems
Nevertheless, the original formulation of the reduced density gradient was not

introduced within chemical bonding theories, but within the generalised gradient
contribution to the generalised gradient approximation (GGA) exchange energy,
EGGA

x , from the density functional theory (DFT):

EGGA
x [ρ ↑ (r), ρ ↓ (r)] =

∫

R3

ρ(r)ǫunifx (ρ(r))Fx(s(r))dr,
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where ρ ↑ (r) and ρ ↓ (r) are the spin-up and spin-down electron densities re-
spectively, ρ(r) = ρ ↑ (r) + ρ ↓ (r) is the total electron density, ǫunifx (ρ(r)) =
−(3/4)(3/π)1/3(ρ(r))1/3 is the exchange energy per electron of the uniform elec-
tron gas, and Fx(s(r)) is the enhancement factor whose functional form defines the
exchange contribution to the energy within the GGA approximation [2]. Since the
reduced density gradient is one of the ingredients to correct the uniform electron
gas model, a lot of work has been devoted to analyse its properties [3, 4, 5]. As many
other dimensionless parameters introduced in the context of semilocal meta-GGAs
[6], the reduced density gradient is not a monotonic function in atomic systems,
that is, it exhibits a pattern of maxima and minima. This behaviour has been used
to identify atomic shells. Using this property, Zupan et al. proposed an analysis
of local or semilocal functionals, based on the distribution of the values of the re-
duced density gradient and the Seitz radius in atoms, solids and surfaces [7, 8]. In
subsequent work, del Campo et al. , applied the same procedure to set the basic
properties of the reduced density gradient in atoms [9].
Recently Finzel showed that several functions derived from the kinetic energy

density, and developed as energetic corrections in density functionals, are able to
reproduce atomic shell structure to different extents, and therefore, are promising
chemical bonding descriptors [10]. This is the case of ELF, LOL, the Becke-Johnson
potential and many other dimensionless parameters [11, 12, 13]. The connection
of all these functionals with the kinetic energy density is the key to understand
their success as bonding descriptors in real space; any sort of covalent interaction
is followed by a decrease in the interatomic kinetic energy, therefore, any function
able to map this variations should be a good candidate as a real space bonding
indicator. Conversely, it has been demonstrated that such descriptors only shed
light on the covalent bonding description, and are not able to identify NCI [14, 15].
The NCI method has come up to fill the gap between both interaction types.
Although mainly applied to NCI, it can also be used to detect covalent bonds and
ionic interactions [1, 16]. Thus, the applicability of the reduced density gradient
ranges from atomic shell structure to NCI. In spite of providing an intuitive image
of chemical bonding, the NCI index needs to be developed in two main aspects.
On the one hand, there is not a clear physical meaning of s(r). In DFT, s(r)
is understood as a measure of the inhomogeneity of the system, and therefore,
as a correction to the uniform electron gas. Regions where s(r) takes large and
small values were analysed, independently of the oscillation within such regions.
Bohórquez et al. proposed an alternative definition as a relative measure of the
local momentum [17]. On the other hand, the lack of physical meaning of s(r)
hampers a direct connection with energetics. Contreras et al. defined a strategy
to define NCI regions and to integrate molecular properties within them [18].
Following this approach, a close connection between properties integrated in such
regions and the stabilization energy in systems governed by dispersive interactions
has been shown [19, 20]. However, the origin of such correlation is still unclear.
In this work we discuss the chemical content of the reduced density gradient, and

we show that beyond a dimensionless DFT parameter, s(r) may be included in the
family of chemical descriptors based on the kinetic energy density such as LOL or
ELF. Subsequently, we rationalise the ability of such functions to reveal NCI.

2. Theory

The Pauli kinetic energy density tp(r) is defined as the excess of kinetic energy
compared with a system of bosons of the same density [21]. For a single determi-
nantal wavefunction, it may be expressed as the difference between the positive
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kinetic energy density τ(r) = 1/2
∑

i ∇φ∗

i (r)∇φi(r) and the von Weizsäcker term
τw(r) = 1/8(∇ρ(r))2/ρ(r). Here ρ(r) =

∑

i φ
∗

iφi is the electron density and φi are
the spinorbitals. Scaling this kinetic energy density by the Thomas-Fermi term
τTF (r) = CFρ(r)

5/3 where CF = 3/10(3π2)2/3, we obtain the ELF kernel, χ(r)

χ(r) =
tp(r)

τTF (r)
=

τ(r)− τw(r)

τTF (r)
. (1)

Becke and Edgecombe introduced tp(r) as an indicator of the probability of find-
ing and electron in the vicinity of a same spin reference electron. The smaller
the probability density, the higher the probability of finding an opposite spin pair
of electrons, and therefore, the Pauli principle is recovered [11]. Although all the
chemical meaning of ELF is contained in tp(r) as the only measure of electron local-
isation [22], it is known that tp(r) is not able to reveal chemical structure features
(see Supporting Information, Figure S1). As explained by Schmider et al. [23] the
origin of this may be found in the scaling relation between the kinetic energy τ(r)
and the density; τ(r) is completely dominated by the core regions. To circumvent
this problem, Becke and Edgecombe chose τTF (r) as reference. Within the local
quantum theory framework, Bohórquez et al. chose the electron density as refer-
ence [24]. They analysed the local values of all the functions involved in tp(r),
tp(r)/ρ(r), τ(r)/ρ(r) and τw(r)/ρ(r). They have not only shown, that tp(r)/ρ(r)
provides a better depiction of electron localisation than tp(r), but also τ(r)/ρ(r)
and τw(r)/ρ(r) are useful chemical bonding descriptors. Conversely, the chemi-
cal content of τ(r), was already used by Schmider and Becke to define the LOL
descriptor. LOL is defined from the dimensionless variable t(r),

t(r) =
τTF (r)

τ(r)
. (2)

The function t(r) is bounded by zero from below, but has no an upper boundary,

0 ≤ t(r) < ∞. (3)

To circumvent this problem, they proposed to map t(r) onto the range [0,1].
They referred to this map as ν,

ν(r) =
t(r)

1 + t(r)
=

1

1 + τ(r)
τTF (r)

. (4)

LOL refers both to t(r) and to its bounded counterpart ν(r). It may be noticed,
that the inverse of t(r) is the first right term of Equation 1. In what follows,
we shall refer to tLOL(r) = τ(r)/τTF (r) as the LOL kernel. The properties of
this dimensionless ratio were already discussed by Finzel [10]. Contrary to τ/ρ,
tLOL(r) is not a bounded function. At the positions of the stationary points of
localised orbitals, tLOL(r) is driven to small values (ν → 1). In regions dominated
by the overlap of localised orbitals, tLOL(r) attains large values (ν → 0). Thus, the
chemical content of LOL is similar to that of ELF.
The term τw(r) in Equation 1, is the kinetic energy density in the absence of the

Pauli principle, hence it accounts for the bosonic character of the system. τw(r)
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constitutes a rigorous lower bound for τ(r), it exhibits the same limiting behaviour
at r = 0 and r → ∞ and it is exact for any system described by a single spatial
orbital. In many electron systems, it also approaches τ(r) for those systems that
are well described by strongly localised orbitals in separate regions. Additionally,
τw(r) is the kinetic energy density of the marginal probability amplitude introduced
by Hunter some time ago [25]. τw(r) may be thereby understood as a measure
of the single particle character of the system. Because a localised electron pair
behaves as a single particle, namely as a boson, its kinetic energy density is given
by τw(r). This was already noticed by Bohórquez et al. who proposed a partition of
molecular space based on the local behaviour of τw(r)/ρ(r), valid for every pair of
atoms connected through a bond critical point (BCP) [24]. They also introduced the
localised electron detector (LED) (P̃ (r)) defined as the local momentum associated
with τw(r)/ρ(r),

P̃ (r) = −
∇ρ(r)

2ρ(r)
. (5)

In line with their work, they interpreted s(r) as scaled momentum, where the
scaling function is the Thomas-Fermi momentum pTF (r) = (3π2ρ(r))1/3 [17],

s(r) =
|P̃ (r)|

pTF (r)
. (6)

3. Results

Similar to tLOL(r), we may rescale τw(r) by τTF (r) defining the dimensionless
variable tbose(r) as,

tbose(r) =
τw(r)

τTF (r)
. (7)

tbose(r) carries the same chemical information as τw(r); they account for the
single particle character of the system. It is easy to notice that χ(r) is nothing but
the difference between tLOL(r) and tbose(r). Similar to τw(r) and τ(r), tbose(r) is
a lower bound to tLOL(r), and they approach each other in regions well described
by a single orbital, as it occurs where there is electron pair localisation [21]. We
may establish a parallelism between both functions: if tLOL is understood as an
indicator of positions where localised orbitals attain their stationary points, tbose
may be understood as a locator of the stationary points of the electron density. As
explained by Savin [26], at regions where localised orbitals attain their maxima,
∇ρ(r) is expected to be close to 0, and both functions tLOL and tbose are driven to
small values. Thus, one requirement though not sufficient for electron localisation is
small values of∇ρ(r), and therefore, of τw(r) as well as tbose. Note that the opposite
is not true; not all regions of low values of ∇ρ(r) involve maxima of localised
orbitals. In this regard tbose(r) contains more chemical information than tLOL(r);
it is not only able to provide regions of electron pair localisation in particular, but
regions of electron localisation in general. This interpretation is also valid for any
function derived from τw(r), such as τw(r)/ρ(r) or LED. As noted by Bohórquez
et al. [17] both τw(r)/ρ(r) and LED are bounded by physical limits, whereas
tbose(r) is an unbounded variable. For the shake of comparison with LOL, we define
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Figure 1. β (solid red line) and LOL (dashed blue line) along internuclear axis for N2. The zero was set
at the BCP.

β(r) = 1/1+ tbose(r), as an upper limit to ν(r) (Figure 1). It may be seen that the
chemical picture obtained by the two functions is the same.
It may be straightforwardly shown that s(r) is the kernel of tbose(r),

s(r) =
( 3

10

)1/2 1

2(CF )1/2
|∇ρ(r)|

ρ(r)4/3
, (8)

tbose(r) =
τw(r)

τTF (r)
=

(5

3

)

s(r)2. (9)

We may notice that its critical points (CPs) match with those of tbose(r),

∇tbose(r) =
10

3
s(r)∇s(r). (10)

Since s(r) is positive semidefinite, at CPs the signs of their Laplacians are the
same,

∇2tbose(r) =
10

3

(

∇s(r)∇s(r) + s(r)∇2s(r)
)

. (11)

at CPs ∇tbose(rcp) = ∇s(rcp) = 0, and

∇2tbose(rcp) =
10

3

(

s(rcp)∇
2s(rcp)

)

. (12)

Thus, the CPs of s(r) and tbose(r) are identical both in location and in nature.
Because of the presence of the gradient of ρ in the numerator, and their positive
semidefinite condition, at every CP of ρ(r) both functions cancel and have a min-
imum. This result may be clearly shown, if we develop the explicit expression for
∇tbose(r),

∇tbose(r) =
1

4CF

∇ρ(r)

ρ(r)5/3

[∇2ρ(r)

ρ(r)
−

4

3

(∇ρ(r))2

ρ(r)2

]

. (13)

From this expression we may differentiate two situations where ∇tbose(r) is can-
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celled:

(1) AIM-CPs: CPs of ρ(r), for which ∇ρ(r) = 0.
(2) Non-AIM-CPs: Points where:

∇2ρ(r)

ρ(r)
−

4

3

(∇ρ(r))2

ρ2(r)
= 0. (14)

At AIM-CPs ∇2tbose(r) takes the following form:

∇2tbose(r) =
1

4CF

(∇2ρ(r))2

ρ(r)8/3
. (15)

As pointed out above, these positions correspond to minima of tbose(r) and
s(r). Non-AIM-CPs involve a subtle balance between the local Laplacian of ρ(r),
∇2ρ(r)/ρ(r) and a term proportional to the local von Weizsäcker kinetic energy
density 8τw(r)/ρ(r) = (∇ρ(r))2/ρ2(r). Moreover, it can be noticed that this will
always happen at points of positive Laplacian (see Equation 14). In other words,
at closed shell interactions with no AIM CP, i.e. very weak interactions.
The variables in Equation 14 for the non-AIM-CPs are also involved in the one-

electron potential (OEP) [25, 27],

OEP (r) =
1

4

[∇2ρ(r)

ρ(r)
−

1

2

(∇ρ(r)

ρ(r)

)2]

. (16)

The regions of negative OEP have been identified as classically allowed regions, in
the sense that the kinetic energy density given by -OEP takes positive values. Con-
versely, the regions where OEP attains positive values, have negative values of this
kinetic energy density, and therefore, have been identified as classically forbidden
regions. This separation has been used to identify atomic shells and bonding regions
as the classically allowed ones. When OEP cancels the ratio between ∇2ρ(r)/ρ(r)
and (∇ρ(r))2/ρ2(r) is equal to 1/2, whereas it is 4/3 when Equation 14 is satisfied.
Thus, any non-AIM CPs of tbose(r) is anticipated by a zero of OEP, and therefore,
by a transition from a classically allowed to a forbidden region.

3.1. Computational details

In order to asses the quality of the functions mentioned above as bonding descrip-
tors, we have computed s(r), tLOL(r), tbose(r) and ELF for several chemically repre-
sentative systems in their ground states: N2 and F2 as molecules representing apolar
covalent and charge-shift bonding type respectively, H2O and CH3F, as examples of
polar covalent bonds, LiH and LiF as examples of ionic bonds, and 1,2-ethanediol
as an example of NCI. The wavefunctions were calculated at the restricted Hartree-
Fock level with the 631g++dp basis as implemented in GAMESS code [28]. The
1,2-ethanediol geometry has been optimised with the CCSD(T)-F12a/cc-pVDZ-
F12 method as implemented in MOLPRO 2010.1 [29]. All the functions herein
presented, were computed with our CHECKIN code, developed explicitly for this
work and available upon request. Scalar field visualisation was performed with
ParaView version 4.3.1 [30] and VMD version 1.9.1 [31].
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Figure 2. tbose(r) along with ELF values (solid black line) for N2(a) and F2(b). Negative (classically
allowed) and positive (classically forbidden) regions of OEP are displayed as cyan and red-colored areas
respectively. Labels B and LP stand for bond and lone pair ELF basins respectively.

3.2. Bonding analysis

3.2.1. Covalent and ionic interactions

Figures 2 and 3 display tbose(r), tLOL(r) and s(r) along the internuclear axis
for F2 and N2. The origin was set at the BCP. Since the equivalence between
s(r) and tbose(r) has been already discussed, for the shake of simplicity we shall
only refer to tbose(r). tbose(r) and tLOL(r) differentiate the core, lone-pairs and
interatomic bonding regions as minima separated by maxima. In line with our
interpretation of tbose(r), these minima are regions of electron location, namely
regions of electron pair localization as revealed by ELF maxima (See Supporting
Information, Figure S2). Nuclear and bond critical points of ρ(r) are identified
as positions where tbose(r) takes a value of zero. Conversely lone pairs are not
revealed by critical points of ρ(r), but by critical points of the Laplacian of the
electron density. tbose(r) shows minima at such positions driven by the non-AIM-CP
condition (Equation 14), following thereby a transition from a classically forbidden
region to a classically allowed region, as may be seen in Figure 2. We highlight
that all CPs of tbose given by Equation 14 are anticipated by roots of OEP, but
the opposite is not true; not all roots of OEP are followed by Equation 14. This
situation may be found in N2. Even though no CP of tbose(r) is found between the
external core-maxima and the BCP, the former is localised at regions of positive
OEP, whereas the latter is found in a region of negative OEP. In contrast, F2

exhibits minima between the BCP and the external core maxima. We may notice
that the BCP for F2 is localised at a region of positive OEP. It is well known that
F2 exhibits a positive value of the Laplacian of the electron density at the BCP,
being thereby identified as a region of electron depletion. Because the signs of OEP
and ∇2ρ(r) are the same at CPs of ρ(r), the BCP for F2 is localised at a classically
forbidden region.
Whereas the presence of a BCP guarantees the existence of a minimum for tbose(r)

this is not the case for tLOL(r). As a covalent bond indicator it shows a very flat
minimum for CH3F, and only inflexion points for H2O and LiF. As pointed out
before the difference between tLOL(r) and tbose(r) is nothing but the ELF kernel
χ(r). As this difference increases at the BCP, the value of ELF at such point
decreases, thus the electron population of the corresponding disynaptic ELF basis
decreases until annihilation of the disynaptic basin, as shown in Table 1.
Despite the differences between tLOL(r) and tbose(r), both functions show for
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Table 1. Populations N̄(Ω), population

variance σ2 of ELF basins.

Molecule Basin N̄(Ω) σ2

N2 V(N,N) 3.24 1.39
F2 V(F,F) 0.44 0.38
H2O V(O,H) 1.71 0.78
CH3F V(C,F) 0.98 0.70

CH3F and LiF higher core-valence maxima around the less electronegative atom,
C and Li, respectively. The absence of a valence shell in H, avoids this high maxima
around the H atom in the water molecule. It is worthy to say that both functions
exhibit a minimum between the BCP and the core-valence maximum of the more
electronegative atom for the three polar bonds. This region of electron localization
is similar to that found for F2. These results are in line with the ELF analyses,
which reveal that V(F,F) and V(C,F) basins are characterised by a low electron
population and relatively high variance. This has been identified as a signature of
charge-shift bonding [32, 33].

3.2.2. Non-covalent interactions

The ability of s(r) to reveal NCI was firstly discovered by plotting s(r) versus
ρ(r). Although pretty new in the chemistry community, the combined analysis of
two scalar fields has already been explored in scientific visualisation [34]. This kind
of diagrams condensate all the real space information in two variables, and in the
particular case of s(r) and ρ(r) they show troughs when ∇ρ(r) goes to zero. A real
space representation of the points in the trough leads to a set of isosurfaces that
represents such chemical interactions. This analysis goes beyond local analyses such
as AIM, which only focus on the CPs of ρ(r) and not on the surrounding regions.
Example of the discrepancies between both the local, as AIM, and regional, as NCI,
approaches may be found in 1,2-ethanediol [35]. As shown by Contreras et al. any
function of the form |∇ρ|/ρn will reveal NCIs as long as it is able to distinguish
them from the exponentially decaying tails of the density [18]. By plotting these
functions versus the electron density, they concluded a power of 4/3 used in the
reduced density gradient is the best choice, not only for isolating NCI, but also
for reducing the range of acceptable values. A power of 1, used by LED, does
not yield such a good resolution as s(r) for non-covalent interactions, but resolves
with the same quality both covalent and NCI, since it is bounded by theoretical
limits. Although tLOL(r) is not a member of this family of functions, because of the
explicit orbital dependence of the positive kinetic energy density, we may analyse
its ability to reveal NCI using the same kind of diagram. Although all the points
inside the troughs are needed to obtain a real space representation of the chemical
interaction, only the lower edge of the curved is needed to identify them. For the
sake of simplicity in Figure4 we splined the lower edges of the tLOL(ρ), s(ρ) and
tbose(ρ) curves.
As shown in Figure 4, LOL is not able to reveal the hydrogen bond in 1,2-

ethanediol. A representation of these functions along the O-H direction confirms
this result. Besides the core-valence maxima and the subsequent minimum, tbose(r)
exhibits a minimum corresponding to the weak hydrogen bond, whereas tLOL(r)
shows a maximum at this position. Figure 5 displays isosurfaces alongside the
maxima and minima of tLOL(r) and tbose(r). It may be noticed that tbose(r) reveals
a pancake component corresponding to the hydrogen bond, whereas no component
is found for tLOL(r) at such position. It is known that LOL [14] and ELF [36] only
exhibit 1-saddle CPs1 for non-covalent interactions, following thereby a 2-saddle
CP of tLOL(r) (Figure 5); a maximum along the O-H direction as shown in Figure 4
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Figure 3. tLOL(r)(solid red line), s(r)(short dashed black line) and tbose (dashed blue line) for: (a) N2,
(b)F2, (c) H2O, (d) CH3F, and (e) LiF.

and minima in the perpendicular directions. tbose(r) minimum indicates that the
hydrogen bond is driven by a region of electron localisation between the oxygen
and the hydrogen atoms. The absence of tLOL(r) minimum prevents ELF from
showing any maximum at this position. tbose(r) and s(r) are therefore, more subtle
indicators of electron localisation than tLOL(r), which requires higher degree of
electron localisation to exhibit a minimum.
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Figure 4. Hydrogen bonding analysis of the 1,2-ethanediol. tLOL(solid red lines), s (short dashed black
line) and tbose (dashed blue line) in terms of the electron density(a) and the position along the hydrogen
bond (b).

(a) (b)

Figure 5. Critical points of tlol(r) (a) and tbose(r) (b) for 1,2-ethanediol. Blue and green spheres represent
minima and maxima respectively.

4. Conclusions

We have introduced in this contribution the quantity tbose(r), which is a measure
of the bosonic kinetic energy. Covalent, ionic and non-covalent interactions may
be easily identified as minima of this function. We have shown that the reduced
density gradient s(r) is proportional to the square root of tbose(r), following thereby
the same physical interpretation. The CPs of tbose(r) are classified in two types;
those that match with the CPs of the electron density (AIM-CPs), and those
that are precluded by zeros of the one-electron potential (Non-AIM-CPS), and
therefore, by transitions from classically allowed to classically forbidden regions.
Thus information from ρ(r) and ∇2ρ(r) is added up.
We have discussed the relationship between tbose(r) with other descriptors based

on the kinetic energy as LOL, ELF and tLOL(r). All of them are able to dis-
close atomic shells, bonding and lone electron pairs. They reveal NCI as saddle
points, thereby being more suited to visualise covalent bonds. We have examined
tLOL(r) and tbose(r) through a set of molecular system representing covalent, ionic
and non-covalent interactions. These examples show that tbose(r) behaves simi-
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larly to tLOL(r) in covalent bonds and additionally, allows visualizing ionic and
non-covalent interactions.

Note

1. The index of a critical point is defined as the number of positive eigenvalues
of the hessian matrix at the position of the critical point. In R

3, maxima,
1-saddle, 2-saddle and minima critical points have indices 0,1,2 and 3 respec-
tively.
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