N

N

Interoperability of multiscale visual representations for
satellite image big data

Frangois Merciol, Antoine Sauray, Sébastien Lefevre

» To cite this version:

Frangois Merciol, Antoine Sauray, Sébastien Lefévre. Interoperability of multiscale visual representa-
tions for satellite image big data. Conference on Big Data from Space (BiDS), 2016, Santa Cruz de
Tenerife, Spain. hal-01253872

HAL Id: hal-01253872
https://hal.science/hal-01253872
Submitted on 13 Nov 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01253872
https://hal.archives-ouvertes.fr

INTEROPERABILITY OF MULTISCALE VISUAL REPRESENTATIONS FOR SATELLITE
IMAGE BIG DATA

Francois Merciol, Antoine Sauray and Sébastien Lefévre

Université Bretagne Sud — IRISA
Campus de Tohannic, BP 573, 56017 Vannes Cedex, France

ABSTRACT

In this paper, we propose an interoperable solution for dealing with
hierarchical representations of satellite images. Computationally in-
tensive construction of the tree representation is performed on the
server side, while the need for computational resources on the client
side are greatly reduced (tree postprocessing or visualization). The
proposed scheme is interoperable in the sense that it does not im-
pose any constraints on the client environment, and API for C++,
Java and Python languages are currently available. The communica-
tion is performed nodewise in a binary format using array structure
for limiting the memory footprint.

Index Terms— Hierarchical image representation, Tree, Client-
server framework, Interoperability.

1. INTRODUCTION

Recent years have seen Earth Observation entering in the Big Data
era. This brings new challenges related to the V’s: volume, variety,
velocity, as well as veracity and visibility. Very high spatial resolu-
tion (e.g., a Pleiades scene is 40,000 x 40,000 pixels) as well as
high temporal revisiting frequency (e.g., Sentinel missions will offer
worldwide updates of a scene every 5 days) lead to massive datasets
to be processed in order to produce land cover map, detect objects
of interest or changes, retrieve specific patterns, or perform (manual
or assisted) visual interpretation. To do so, very efficient solutions
have to be designed, requiring algorithms of appropriate complexity
relying on efficient data structures and operating on adequate archi-
tectures (e.g., cloud, HPC, etc). Representing images through mul-
tiscale representations based on tree structures has been proved to
be a relevant framework for efficient processing of large image data
[1]. Besides, trees have been successful in addressing various tasks
in remote sensing [2, 3, 4].

However, one of the major bottlenecks of such a hierarchical
image analysis strategy is the need for prior computation of the tree
representation. The computational cost of building a tree from a
large dataset is indeed significantly high, even in the case of efficient
algorithms [5]. In this paper, we propose a new strategy based on a
client-server model, where the tree is built on a server before being
used by the client. Such a strategy presents many advantages: ex-
tensive (and possibly scalable) computational resources are needed
only on the server side, since the client will only process the tree
structure (requiring much less resources than dealing with raw data);
similarly to computing resources, network resources are required on
the server side between the data source and the processing server,

The authors acknowledge the support of the French Agence Nationale
de la Recherche (ANR) under reference ANR-13-JS02-0005-01 (Asterix
project).

not on the client side; if the satellite image comes with access re-
strictions, which is the case for most commercial satellites that do
not allow distributing the raw data, it is possible to provide a tree-
based product (non bijective image representation) to the client; any
compatible client can be used, even running in some environments
not known for their performance; finally, if the client is only inter-
ested by some part of the image (and not the full data), only a subset
of the tree can be sent by the server.

2. INTEROPERABILITY

The client-server strategy is designed here in such a way that there is
no need for a unique environment (software, coding language, oper-
ating system) on both sides. Interoperability is ensured through sev-
eral wrappers allowing to access the API from the client side using
various environments (C++, Java, Python, etc.). Any postprocessing
or visualization tool can then be used on the client side. Let us note
that the proposed solution can also be used on the client side only
allowing different tools for tree construction and manipulation. The
only requirement is a standard scheme to support the distribution of
the (full or partial) tree from the server to the client.

There are many interoperable formats, the most famous being
XML. However, exchanging large datasets using a verbose language
such as XML is not efficient. So we have rather used byte arrays
containing scalar values (either integers or real numbers). It requires
some appropriate interface between client and server components
(i.e. to use the same coding format: number of bits, byte order-
ing). To illustrate the interoperability offered by our framework, we
provide 3 code snippets for C++, Java and Python in Fig. 1. We can
observe that the calls are very similar from one language to the other.

// C++ snippet
CppSession<Component, Leaf> xcppSession
= CppSession<Component, Leaf>::getlInstance
(serverUrl, imageUrl);
cppSession->buildTree (algo, metric);
cppSession->createlLeaves ();
cppSession->copyTree ();

// Java snippet

Session s = Session.getInstance (urlServer, urllImage);
s.buildTree (algo, metric);

s.createlLeaves ();

root = s.copyTree (connectedComponentCreator);

// Python snippet

sl = PythonSession (urlServer, path)
sl.buildTree (algo, metric)
sl.createleaves (leafCreator)
sl.copyTree (connectedComponentCreator)

Fig. 1. Client requests for tree construction in C++, Java and Python.

3. IMPLEMENTATION

For the sake of performances, the server component has been coded
in C++. It benefits from significant optimizations with no overhead
for tree coding (only the minimal number of quartets needed is re-
quired). API for tree communication with C++, Java, and Python-
compliant clients have been designed. The system is made freely
available to the scientific community’.

The proposed framework is illustrated through an example
(Fig. 3). We assume here that nodes contain scalar data, but the
solution can be easily adapted to more advanced representations.

First, a given client has to choose the appropriate server based on
its needs. Indeed, a pool of servers might be available, each server
coming with its specific algorithms (kind of tree, kind of data to
be processed, etc). The client establishes a connection to a server
through a Kernel object. Once the communication link has been es-
tablished, messages are exchanged between the client and the server
through a dedicated protocol. To do so, it relies on the interface
given in Fig. 2. Let us observe that the communication is here of
type unconnected socket (e.g. with one TCP connection by HTTP
request). This protocol relies on the BOOST library, both for socket
management and vector serialization.

class UTP {
public:
static UTP xgetInstance (const string &url);

int openSession (const string &url);
void closeSession (int sessionId);
void closeAllSession ();

void buildTree (int sessionId, int tree, int weight);

vector<int> getInfos (int sessionId);

double getMillisec (int sessionId);

vector<float> getValues (int sessionId);

vector<int> getNodeChildren (int sessionId, int id);

vector<int> getNodePixels (int sessionId, int id);

//

i
Fig. 2. Interface available to the client (C++ example).

Once the Kernel object has been created, the input image has to
be loaded on the server, resulting in a new Session object. The pro-
tocol for iterative communication of array structures is actually im-
plemented within this Session object. As shown in the Snippets from
Fig. 1, the creation of both Kernel and Session objects are embed-
ded in a single function call. Depending on the application context,
various data sources are to be considered. Indeed, the client might
already store the image to process. In this case, the image is to be
sent to the server over the network, before receiving back its tree
representation. More interestingly, the server might already store
the image data (e.g. in some business or research environments).
As such, there is no network cost to transfer the original image. A
last and more realistic scenario, especially when considering the cur-
rent initiatives such as the EU Copernicus programme, considers that
original data are actually made available through dedicated geospa-
tial hubs (such as the one from ESA or from national space agen-
cies). In this last case, we can reasonably assume that there exist a
fast network connection between the server and the data hub.

Once the image is stored on the server, the latter computes its
tree representation. To do so we assume that some efficient tree
construction algorithms [5, 6] are available on the server. Besides
the tree, several data structures are stored: the list of nodes in the
image (array with 10 cells in the figure), the list of inner nodes or
nodes with children (array with 4 cells, noted C*), the list of leaves

'See http://www.irisa.fr/obelix for more details.

or nodes with pixels (array with 8 cells, noted L*). These additional
structures increase the overall storage cost on the server side. But let
us recall that once the tree has been built, there is no need to store
the initial image on the server anymore. Indeed, the tree can then
be used at any time to answer a client request (both for the full im-
age or only a part of it). If the tree is used in a single user session,
the server will store the tree and the additional data structures until
the end of the user session. If the image data shall remain available
(through its tree representation) for future users, then all structures
but the original data are kept.

After tree construction, the server sends a first array providing
the image height and width (3 x 3), the number of nodes in the
tree (10), the number of inner nodes or nodes with children (4), and
the number of leaves or nodes with pixels (8). The client is then
able to allocate the right amount of memory and initialize the local
data structure (root, nodes, pixels). On the client side, an iterator
is used to request the server to send information for each node of
the tree. Inner nodes are considered first (C0 to C3). The server
then send iteratively the information for each C; through an array
containing the ID of the node followed by the ID of its children (e.g.,
node 0 has children 1, 5, and 2). Once all inner nodes have been
transferred, the client iterates on leaves (L0 to L7). It thus requests
the server to provide information that consists for each node of an
array containing the ID of the node followed by the ID of the pixels
(e.g., node 2 points to pixel 3). The (full or partial) tree is then
available on the client side.

4. EXPERIMENTS

It is rather difficult to assess the impact of network performances
on the overall system. Thus we have decided to run the client and
the server on the same computer to avoid being affected by unpre-
dictable network behavior. Furthermore, we have also discard the
effect of image loading over the network by storing the images di-
rectly on the server. We report the results obtained on a standard
workstation (8 GB RAM, 4 cores Intel i5-3320M @2.60GHz).

We have compared between several configurations. The server is
running in C++, and various clients are used: C++, Java and Python.
For reference we have also included a Java standalone application
(not client-server). We have considered various satellite image size
(from 80,000 to 13,000,000 pixels) and types (panchromatic, multi-
spectral), and use the notation X X /N to denote an image containing
X pixels with IV spectral bands. Results are given in Fig. 1. We use
here the a-tree implementation from Havel et al [5].

We can derive several observations from these experimental re-
sults. First, when small images are considered, the proposed client-
server framework is not mandatory. Indeed, a standalone application
is not too costly in this case, and can achieve a similar level of perfor-
mance than the client-server mode (e.g. very similar times obtained
for the full Java and C++/Java mode). Even on such small images,
we can notice the strong impact of the core algorithm (e.g. 0.11 for
the C++ construction, while 0.40 for the Java one). When image
size increases, computation cost becomes an issue and the proposed
framework achieves satisfying performances. Indeed, it can benefit
from a significant optimization on the server side (i.e., compare be-
tween the full Java and C++ server). Furthermore, the cost for array
communication and tree reconstruction on the client side is reason-
able w.r.t. the overall cost. This allows the proposed system to out-
perform a standalone application for both C++ and Java clients. Let
us remark that if a more powerful server would have been considered
(and not run on the same computer than the client), the improvement
would have been much higher. For a given client, the overall cost

information used
EETAEN
EIEI RAEE
EIEREEE
EIERAEE

client data
[)
o
000 o
® e
.l.l.l.l
2
B & s
L
XW
l.l l.l
l:/
-
LA)

[L=t

™
O
I
m Km ~ ~ ~ ~ ~ ~ ~
%] m - - - —] — -
° [©] Sl [N Sy [] e] 3] 9]
be] (] [l Sl @l n n n n n n n
ez It 8 3 3 3 = 3 3 3
S B =] S|) A 3 3 3 3 3 3 3
o BNy g ST W 2l 3o 3| 3lm 2 2w 2lm
a @ S|l | Syl SHE 3h=- Sb=- SHEF Sk Y A
D iz S T AT A g g g
O) — pu} —]]]

server data

i node with children
¢ node with pixels

“ node
" pixels

\

time

LOL1L2L3L4L5L6L7

[9]7T8]

Fig. 3. Illustration of the communication process for tree transfer.

Method 80k x4 200k x4 8M x1 13M x1
full Java 0.40 0.85 22.11 —
C++ server 0.11 0.31 15.57 26.36
C++ client 0.05 0.13 4.26 7.05
C++/C++ 0.16 0.44 19.83 33.41
Java client 0.31 0.31 6.84 19.87
C++/Java 0.42 0.62 22.41 46.23
Python client 1.03 2.88 99.64 —
C++/Python 1.14 3.19 115.21 —

Table 1. Comparison between standalone computation and the pro-
posed client-server framework with various clients.

Evolution of computation time w.r.t. image size
200 T T T T

Server
Client
Total

150 |- q

computation time (in s)
<]
3
T

. . . .
0 1x107 2x107 3x107 4x10” 5x107 6x107 7x107
image size (in pixels)

Fig. 4. Quantitative evaluation of the most efficient architecture
(both server and client are in C++).

then tends to the client cost only.

Furthermore, we can notice some significant differences be-
tween the clients. Indeed, each client comes with its own memory
management system, and its performance has a direct influence on
the cost needed to create data structures on the client side. As such,
we can see that Python might not be able to address very large
images, even in this client-server mode. But let us note that for the
largest image in consideration, the full Java application also fails
due to memory limitations. Only the proposed framework, both
with C++ and Java clients, is able to address the large image.

Finally, we have measured the computation time for both C++
server and client, for another set of satellite images with increasing
size. We can see in Fig. 4 that the overall process has a linear com-
plexity, and the client cost is always much lower than the server one.
This shows the relevance of the proposed framework.

5. DISCUSSION

The proposed solution has appealing properties in terms of memory
cost. As already indicated, a naive approach would have been to per-
form a full transfer of a tree through an XML representation. But the
textual representation, as well as the data embedding through XML
tags, would have led to a prohibitive cost. Byte coding appears as
a relevant alternative. It is indeed possible to consider coding the
tree in a proprietary binary format. Unfortunately, there is no native
serialization scheme in all languages, and worse no interoperabil-
ity between the existing serialization formats. Without serialization,

byte coding can still be implemented to ensure the communication
process between the client and the server. But this would also require
an additional cost if interoperability is sought. Indeed, in this case
the end-user aims to manipulate the tree in an environment different
from the one on the server side. Thus a new tree structure is needed
on the client side to map the tree sent from the server in a format
compliant with the client environment. The proposed scheme (see
Fig. 3) introduces node-based messages. Such messages have a size
that is negligible w.r.t. the tree size, and can be removed as soon
as they have been used on the client side to update the tree recon-
struction. Since a tree representation might come with a very large
memory footprint (e.g. in case of large images), the proposed strat-
egy allows allocating most of the client memory to the storage of the
tree with no significant overhead due to the server communication.

We have considered a complete transfer of the tree from the
server to the client. If the latter is interested in only a part of the im-
age, two different strategies can be followed (top-down and bottom-
up). On the one side, the user can select a subtree, but it requires
to identify the node of the tree acting as the subtree before transfer-
ring the subtree. While this second step is easily achievable with the
framework proposed in this paper, performing node selection on a
client-server paradigm is not trivial. On the other side, the selection
can be done in a bottom-up way. In this case, the user defines the
area of interest directly in the image, from which the related subtree
(or forest, i.e. set of (sub)trees) is extracted. Among the available
solutions for allowing such user selection, we can rely on our previ-
ous work [7] where the user input consists in a bounding box. The
selected tree is then the largest subtree (or set of subtrees) totally
included in the bounding box.

Future work will include demonstration of this framework
within realistic remote sensing scenarios, as well as enrichment of
the server component with additional tree construction algorithms.

6. REFERENCES

[1] G.K. Ouzounis, V. Syrris, L. Gueguen, and P. Soille, “The
switchboard platform for interactive image information mining,”
in Image Information Mining Conference, 2012.

[2] S. Lefevre, L. Chapel, and F. Merciol, “Hyperspectral image
classification from multiscale description with constrained con-
nectivity and metric learning,” in IEEE Workshop on Hyperspec-
tral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS), 2014.

[3] F. Merciol and S. Lefevre, “Fast building extraction by mul-
tiscale analysis of digital surface models,” in IEEE Interna-
tional Geoscience and Remote Sensing Symposium, 2015, pp.
553-556.

[4] E. Aptoula, M. Dalla Mura, and S. Lefevre, “Vector attribute
profiles for hyperspectral image classification,” IEEE Transac-
tions on Geoscience and Remote Sensing, 2016, to appear.

[5] J. Havel, F. Merciol, and S. Lefévre, “Efficient schemes for
computing a-tree representations,” in International Symposium
on Mathematical Morphology, 2013, pp. 111-122.

[6] E.Carlinet and T. Geraud, “A comparative review of component
tree computation algorithms,” IEEE Transactions on Image Pro-
cessing, vol. 23, no. 9, pp. 3885-3895, 2014.

[7] F. Merciol and S. Lefevre, “Buffering hierarchical representa-
tion of color video streams for interactive object selection,” in
International Conference on Advanced Concepts for Intelligent
Vision Systems, 2015, pp. 864-875.

