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Automatic human identification from aerial image time series or video sequences is a challenging issue. We propose here a complete processing chain that operates in the context of recreational shellfish gatherers counting in a coastal environment (the Gulf of Morbihan, South Brittany, France). It starts from a series of aerial photographs and builds a mosaic in order to prevent multiple occurrences of the same objects on the overlapping parts of aerial images. To do so, several stitching techniques are reviewed and discussed in the context of large aerial scenes. Then people detection is addressed through a sliding window analysis combining the HOG descriptor and a supervised classifier. Several classification methods are compared, including SVM, Random Forests, and AdaBoost. Experimental results show the interest of the proposed approach, and provides directions for future research.

INTRODUCTION

Nowadays, image sensors are widely available and offer continuously improving performances. In this context, biologists, ecologists and other scientists interested in environmental studies are encouraged to extract study parameters from digital images. The Natural Park of Morbihan (South Brittany, France) has thus started to rely on analysis of aerial images to determine the frequentation of foreshore by recreational shellfish gatherers. Understanding their activity is of first importance for environmental studies, and periods of high tides can see up to 5,000 people collecting shellfish in the same area. While aerial images allows analyzing large or dense areas, the manual effort it requires (visual analysis of hundreds of images) calls for some significant gain in automation.

In this paper, we address this issue and propose the first (up to our knowledge) method to automatically identify and count shellfish gatherer from aerial images. We rely on machine learning techniques that provide a natural framework to adapt the human detection to the data under consideration. However, we consider here color images without ancillary information (and taken from an airplane), leading to a challenging human detection problem.

The processing of aerial images follows the pipeline given in Fig. 1: image stitching, patch de-composition with a multiscale sliding window, patch feature extraction, labeling using a pretrained classifier, grouping of neighboring positive windows (due to overlapping or multiscale analysis) in order to proceed to final counting.

IMAGE STITCHING

Mosaic of aerial images

Aerial shooting is set up in such a way that all shellfish gatherers are visible in the images. This results in partial overlapping between successive images, and thus the presence of multiple occurrences of a unique human in different images. Such doubles have to be tackled appropriately to avoid overestimation in the counting process. To do so, the first step of the process is to build a single mosaic from a series of aerial images. Each object will thus be present in a single mosaic from the scene (no double), that will be used as input for the detection step.

Each scene of interest corresponds to a series of images acquired from a plane. Nevertheless, this series is not continuous, since some areas of the scene might be of low interest (e.g., with no visible people) and will not be photographed. It is thus not possible to build a single mosaic, but rather a collection of suc- cessive mosaics. Each of them will represent a given geographical entity (e.g., beach, rocky coast, sea, etc).

As already indicated, we consider here images taken from a airplane. They are already ordered and the series constitute a global panorama (in the rectilinear sense). These assumptions will ease the assembling process. However, a major challenge w.r.t. state-of-the-art is the fact that aerial photos show major deformation due to the acquisition condition (the view is oblique and not top-down).

When only two images are considered, the stitching algorithm performs as follows. First some interest regions are extracted from the images with SURF and SIFT method. Once such regions have been extracted, a matching step aims to associate pairs of regions appearing in the couple of images (hopefully representing two successive occurrences of the same region). Euclidean distance is computed between the two region descriptions, and only associations with low distance are kept. Thus pairs containing two different objects but with similar visual appearance will be discarded. Let us note that those pairs would have resulted in an incorrect stitching. If the number of remaining associations is large enough, it is possible to build the resulting image. To do so, a geometric deformation (warping) is applied on either one or the two images to be able to stitch them. Assuming one of the images is close to a plane projection onto another plane (the second image), an homography matrix is built based on the association distances that have been previously computed. The first image is then copied in a frame, before the second one is inserted by applying homography and dealing with the overlapping area between the two images.

Before proceeding with the final stitching, a colorimetric rectification has to be achieved on the images to ensure their colors and exposures will lead to a visually consistent stitching. Figure 2 shows an example of image stitching from two successive images from an aerial sequence. Stitching experiments have been conducted using two different algorithms respectively relying in the BoofCV and OpenCV API.

Image stitching with BoofCV

The BoofCV API [START_REF] Abeles | Boofcv[END_REF] is designed for object tracking and image/video stitching. It provides classes implementing SURF and SIFT for detection of interest regions, functions measure distances among these regions. Some tools allowing using the homography matrices and their application on images are callable from the library. Stitching of two images, once the deformations have been performed, is achieved through a simple overlapping.

In order to extend from 2 to 3 or even N images, the stitching of the i th image on the previous mosaic is more challenging. Indeed, each new image requires to be deformed before being stitched with the mosaic that is also resulting on previous deformations. Deformations are thus accumulated among time, and new images might show a very strong deformation effect preventing an appropriate stitching or even matching of interest regions. We tackle this issue by proposing a hierarchical strategy to build the mosaic. Initial images are stitched two by two. The mosaics containing only two images are then again stitched two by two. This iterative process is repeated until the final mosaic is built. Besides, memory cost can be lowered through a bottom-up depth-first strategy that only requires to store at most two images per level (let us recall that the scene may contain hundreds of high-res images, making a brute force approach untractable).

Figure 11 shows a mosaic built using BoofCV with the proposed multiscale strategy, where white frames highlight initial overlapping areas and the size of the frames indicates the scale level (middle). While the process here has been described for image sequences, the method is also able to process raw video data. In this case only one image per second is considered (so one every 25 for standard video framerate).

The proposed strategy leads to a significant reduction of deformation accumulation among time, and allows for assembling a large number of images. But some deformation problems remain, that are related to the limited functionalities of the BoofCV API and the use of a simple homography matrix. We have thus considered OpenCV as a possible alternative solution.

Image stitching with OpenCV

The OpenCV API [START_REF] Bradski | Open source computer vision library[END_REF][START_REF] Itseez | Open source computer vision library[END_REF] offers more stitching options. It is thus possible to directly build a mosaic from several images (i.e., more than two). Besides, a wider range of warpers (plane, cylindrical, spherical, fisheye, stereographic, etc.) are available. The homography matrix is then replaced by a transformation function that is specific to each warper. If several images are processed, deformations are computed on all the images, thus limiting the cascaded deformations of an overlapped image part.

Figure 11 (bottom) shows that performing image stitching with OpenCV provides correct results when assembling aerial images. However, some assembling problems remain (see Fig. 3). 

SHELLFISH GATHERER DETECTION

3.1 Human Detection

Related Work

Human detection is a widely addressed computer vision problem, often associated to video monitoring or pedestrian detection. Detecting human gathering shellfish, share many similarities with the well-known and widely addressed problem of pedestrian detection. However some differences remain, that make the fishermen detection a challenging issue for which there is no available solution yet (to the best of our knowledge). Among the most important ones are the wide range of body positions that can be observed among the fishermen during their activity, as well as the unconstrained acquisition conditions (photo manually taken from an airplane). Nevertheless, we will rely here on a standard object detection scheme combing image description with machine learning.

A lot of works have been achieved on pedestrian detection or more generally object detection. Probably the most popular solution is the face detector introduced by Viola and Jones [START_REF] Viola | Robust Real-time Object Detection[END_REF], that combines Haar wavelet features with Adaboost classifier. As described in several survey papers in pedestrian detection [START_REF] Dollár | Pedestrian detection: A benchmark[END_REF][START_REF] Benenson | Ten years of pedestrian detection, what have we learned?[END_REF], improving the detection rate requires to improve both feature detection and machine learning algorithms. The HOG descriptor [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF] has been one of the major advances on the feature description side for human detection. It has been implemented in the OpenCV API with a linear SVM classifier, and is a main feature used in many detectors. When available, the detection can benefit from complementary description sources, e.g., related to motion or stereo-vision information.

While many approaches have been introduced to solve the pedestrian detection problem, only few papers tackled it from aerial images. These two problems show significant differences, especially since the pedestrian detection is often achieved through nearhorizontal cameras, while aerial detection rather consider either vertical (top-down) or oblique images. This prevents from straightforward transfer of the rich state-of-the-art in pedestrian detection methods. Nevertheless, a few works on human detection from aerial imagery have been published. For instance, a shadow detector is presented in [START_REF] Reilly | Geometric constraints for human detection in aerial imagery[END_REF] but its application is limited by the weather conditions (it requires sun illumination, and imposes constraints on the camera viewpoint). A part-based model for victim detection from UAV is described in [START_REF] Andriluka | Vision based victim detection from unmanned aerial vehicles[END_REF]. Finally, the human detection from a UAV view is explored in [START_REF] Blondel | Human detection in uncluttered environments: From ground to UAV view[END_REF], where the optimal acquisition angle to improve detection from aerial images is discussed. The authors also introduce an adaptation of HOG parameters to human detection and a saliency map to increase the detection speed. The focus is mainly on real time detection and there is no quantitative evaluation of the detection accuracy.

The case of shellfish gatherers

We perform here human detection on each single aerial image or mosaic and thus we do not rely on any motion information. In this context, detection of shellfish gatherers is a challenging problem (see Fig. 4 first line). More precisely, several reasons have been identified as sources of problem complexity. Viewpoint variation. The plane altitude is not constant. Images acquired from the airplane are thus showing various distances from the ground. With the perspective effect, average human size is decreasing. Deformation. Shellfish gathering activity leads to a wide range of possible positions of the human body (i.e., much larger than with pedestrian detection), as well as a wide variety of outfits. Illumination change. Depending on the plane orientation or time of the flight, the illumination of the scene may vary, leading to significant luminance/color changes in the observed images. Background change. We are dealing with outdoor scenes that show various backgrounds; besides, the background may be cluttered Occlusion. For large groups of people, occlusion phenomena are a very recurrent problem.

Figure 4 (bottom) provides some visual illustrations of the detection problem complexity. 

Selection of Description and Classification Schemes

As shown in Fig. 1, our method rely on description and classification techniques to perform detection (and subsequent counting) of shellfish gatherers. We provide here some necessary background on the selected description and classification methods.

Description

Inspired from numerous works in pedestrian detection, we rely here on the HOG descriptor [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF] to perform human detection. This powerful and robust (e.g. to illumination change) shape detector consists in only the few following steps.

Normalisation and gamma correction. A first step consists in image equalization in order to reduce the influence of illumination changes and shadows. Gradient computing. A first order gradient is computed to describe orientation and magnitude of the edges contained in the image.

Ponderation. The image is divided into adjacent cells. For each of them, the distribution of gradient orientations is stored in a histogram with 9 orientation bins weighted by their magnitude. It allows to identify edge in a cluttered background. Cell normalization. Adjacent cells are gathered into blocks that are further normalized to increase robustness to illumination. Each cell is then shared among several blocks relying on different local normalization settings. These blocks compose the HOG descriptor.

Following [START_REF] Blondel | Human detection in uncluttered environments: From ground to UAV view[END_REF], we use here a smaller detection window than the one introduced in [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF] to improve the detector performance. Our detector is computed on a window of 32 × 64 pixels, with a cell size of 8 × 8 pixels and block size of 2 × 2 cells. Figure 5 illustrates the cells of both human and background. 

Classifiers

While for the description step, we have considered here a single method (i.e., HOG) that appear as the most common choice in the literature, the classification step is addressed through several methods: Support Vector Machines, AdaBoost, and Random Forest. All are supervised classifiers and we briefly recall them in the following paragraphs. Support Vector Machine. Support Vector Machines (SVM) are very popular tools for supervised learning. It assumes that it is possible to map the data into a higher dimensional space where two classes will be separated through an hyperplane. Learning the hyperplane relies on the training samples and the margin between the hyperplane and the labelled samples is being maximized to lower classification errors. Furthermore, SVM popularity has been strengthen with the use of kernels, easing the separability of the original data in a higher dimensional space. We use here two standard kernels (Gaussian and linear). AdaBoost. The AdaBoost classifier has popularized the principle of boosting [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF]. This technique consists in combining several basic classifiers (called weak classifiers) to build a robust decision function rather than to try to design a very powerful yet complex classifier (also called strong classifier). The AdaBoost technique has been involved in the widely used object detection scheme introduced by [START_REF] Viola | Robust Real-time Object Detection[END_REF]. Each weak classifier operates on a single feature or attribute, and its contribution w.r.t. the overall classification depends on some weighting parameters. Optimal weights are computed through an iterative scheme (maximum number of iterations set to 20). Random forests. Random forests [START_REF] Breiman | Random forests[END_REF] rely on another paradigm for combining classifiers called bagging (or bootstrap aggregating). Here the elementary classifiers are decision trees, that aim to provide an iterative procedure for classification. At each level of the tree are identified the couple of feature and associated threshold that allows for the best separability among classes. Random forests build upon this principle and consider that this selection is made among a random subset of the features. Individual decision trees are initialized with random subsets of training samples, that are finally combined to produce the global decision.

EXPERIMENTATIONS

The detection method described in the previous section is assessed through an experimental evaluation. Our goal is to compare the performance of the different classifiers on a predefined dataset as well as one some mosaics produced with the stitching methods introduced in Sec. 2.

Experimental Setup

Dataset

The experimental dataset is made of aerial photographs of the Gulf of Morbihan, Brittany, France. Sixteen different images (containing between 8 MPixels for still images to 42 MPixels for large mosaics) have been split in two different sets. Seven images have been used to extract positive and negative samples to train the classifiers. The other nine are used to test the performances of the proposed pipeline (i.e., ground truth has been built manually and contain 1231 humans), and the results are explained in Sec. 4.2. Since the classification method in use is supervised, it requires the availability of some training set. In order to ensure robustness of the proposed detection method, we have manually extracted samples from different images with various background and illumination conditions. It is well known that the training set has a strong influence on the classification and detection results. We have thus built a large set of positive (600) and negative (8000) images. The ratio between positive and negative images is approximately 1:13, and positive/negative training samples are illustrated in Fig. 6. The negative set has been extracted by hard negative mining process. 

Evaluation Method

The availability of some ground truth data (see previous subsection) allows conducting supervised evaluation. We use here standard evaluation criteria and measure the number of true positive (TP), false negative (FN), and false positive (FP). A detected object is considered as a true positive as soon as the distance between its window center and the position of the closest reference data is lower than half its window width. From these scores, we compute the widelyused recall R, precision P and F 1 measures:

• R = T P/(T P + FN) measures the ratio of real humans among all detected objects; • P = T P/(T P+FP) measures the ratio of detected humans among all present in the scene; • F 1 = 2 × P × R/(P + R) is the harmonic mean allowing to evaluate both precision and recall.

The F-1 score will be the main evaluation criteria (the higher it is, the better the method is) since it account for both false positive and negative rates. Precision and recall scores will be used for better understanding of the behavior of the compared methods.

Evaluation in a detection context with sliding windows

The proposed method is applied on large images through a sliding window scan (and detection). At each position a sub-image is extracted, used as input in the description and classification steps. Due to the oblique viewpoint, size of visible humans in the scene can vary depending on their position. We thus rely on a multi-scale detection procedure to account for different objects size. It consists simply in downsampling the mosaic image, before applying the same sliding window analysis.

A major issue with the proposed multiscale/sliding window analysis comes with the possible multiple overlapped detections of the same human. Positive neighboring rectangles are then merged through a standard similarity vote procedure in a post-processing step. Figure 7 illustrate how this strategy can greatly simplify the detection by combining the multiple detected objects into more robust detections. Once the full image is processed and the rectangles merged the different scores are computed. The detection is validated if the rectangle's center is at a minimal distance from a truth position. 

Results

In this paper, we report two different kinds of experimental evaluations. We have first conducted a classification task using the positive/negative samples to assess the performance of the different classifiers. We then evaluate their ability to perform object detection in the context considered, i.e. processing large aerial mosaics to identify shellfish gatherers.

Classification evaluation

The four classifiers presented in Sec. 3.2.2 (i.e., SVM with linear kernel, SVM with rbf kernel, AdaBoost, and Random Forests) are assessed on the extracted image dataset split into a 60% training set and 40% testing set. The results are given in Fig. 8 through a ROC curve. We can see that on this classification task, the SVM with an rbf kernel has a better area under the curve and thus performs better. Indeed, for a 0.05 fpr (false positive rate), we reach a tpr (true positive rate) of 0.94. This experiment was designed to provide some hints about the ability of the classifiers to address detection in the full image. 

Detection evaluation

We finally assess the different classifiers in a detection context. To do so we start with a mosaic, i.e. a large image with three images stitched together. Comparative results are given in Tab. 1. The best performance is obtained by the SVM with Gaussian Kernel, with a F1 score of 0.70 (corresponding to high precision and recall). The final result obtained with this classifier is shown in Fig. 10. In this scene, 235 shellfish gatherers are present. The SVM with rbf kernel has correctly detected 142 of them (true positive), while 29 detections were wrong (false negative). Beyond assessment on a real mosaic, we have also conducted some performance evaluation on a set of 9 images acquired at different times and locations. Those images were chosen so as to provide a high variability in terms of backgrounds, illumination conditions, and density of shellfish gatherers. Two of those images are mosaics (one is stitched from 3 initial images while the other is a composition of 8 images). To illustrate, the largest mosaic contains 368 humans while for single images, this amount varies from 24 to 183 for the most crowded scene.

We report in Fig. 9 the performance of the 4 classifiers through box plot analysis of the evaluation scores on this set of images. We can observe that, once again, SVM with rbf kernel outperforms the other methods on the F-1 score and provides a balance between false positive and negative. Conversely, the SVM with linear kernel provide satisfactory level of recall at the expense of a decrease in precision. Indeed, the rbf kernel, with hard negative mining, has drastically reduced the number of false positive. From this experimental study, we can conclude that the SVM classifier with the rbf kernel is the best compromise between recall and precision. It will thus be chosen to provided an accurate estimation of the number of shellfish gatherers present in the scene.

CONCLUSION

In this paper, we have addressed the problem of automatic counting of recreational shellfish gatherers from aerial imagery. While being of prime importance for environmental activities, as well as management and monitoring of natural parks, the lack of automatic solutions makes such (manual) visual analysis time-consuming and prevents from considering large study sites. The proposed solution is a first attempt towards automation of such analysis.

Stitching results show a correct and assembling matching of image sequences. Nevertheless, some image deformations remain that limit the performances of the subsequent classifier. Besides, the non rectilinear path followed by the plane (that rather follows the coastline) brings some issues with the warper model in use. We are thus considering to change the warper dynamically when assembling each new image with the previous ones. Relying on GPS information that might be available with the images could also help to perform 3D modeling of the scene before its projection on a 2D plane.

As far as the detection step is concerned, we have observed that optimizing classifier parameters can lead to satisfying levels of accuracy for shellfish gatherers detection from real aerial campaigns from the Brittany coast. There are still several directions to be pursued to improve the quality of the results. First, the visual appearance and size of the humans depends on acquisition conditions (e.g., sun illumination, plane altitude, etc), while the learning is currently performed offline on a given set of training samples. Defining automatic strategies to tune detection parameters (i.e., sliding window size, classification settings) would allow for significant increase of the method robustness w.r.t. new datasets and make it able to deal with other geographical study sites. Besides, we would like to rely on other patch descriptors (e.g., color histograms) as well as other machine learning paradigms (e.g., deep learning, active learning) to improve the detection rates.

Figure 1 :

 1 Figure 1: Processing pipeline.

Figure 2 :

 2 Figure 2: Illustration of the image stitching process: (top) original images, (middle) matching of interest regions, (bottom left) deformation, and (bottom right) final stitching.

Figure 3 :

 3 Figure 3: From left to right, a zoom on two images to be stitched, and the assembling error with double occurrences of humans (highlighted with white frames).

Figure 4 :

 4 Figure 4: Illustration of the complexity intrinsic to detection of shellfish gatherers from aerial imagery: (top) sample scene and (bottom) complexity sources (occlusion, background change, and variety of human positions and outfits).

Figure 5 :

 5 Figure 5: Illustration of HOG (cells with gradient histogram) for positive (left) and negative (right) samples.

Figure 6 :

 6 Figure 6: Illustration of the training set: positive (top) and negative (bottom) samples.

Figure 7 :

 7 Figure 7: Detection after the sliding window method (top) and after merging positive rectangles (bottom).

Figure 8 :

 8 Figure 8: ROC curve of the different classifiers, computed on a classification task.

Figure 9 :

 9 Figure 9: Classifiers evaluation on box plots of the precision, recall and F-1 scores.

  

Table 1 :

 1 Quantitative evaluation of the classifiers for the image of Fig.10 (mosaic with 3 images stitched).

	Classifier	Precision Recall	F1
	Adaboost	0.61	0.46	0.52
	Random Forest	0.61	0.43	0.51
	SVM linear kernel	0.47	0.73	0.57
	SVM rbf kernel	0.83	0.60	0.70
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