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Introduction

Vibrating structures are generally assumed to behave linearly and in a noisefree environment. This is in practice not perfectly the case. First, nonlinear phenomena such as jump phenomenon, hysteresis or internal resonance appear when the transverse vibration of a bi-dimensional structure exceeds amplitudes in the order of magnitude of its thickness [START_REF] Touzé | Asymmetric non-linear forced vibrations of free-edge circular plates. part 1: Theory[END_REF]. Second, the presence of plant noise is a natural phenomenon that is unavoidable for all experimental measurements.

In order to perform reliable measurements of vibrating mechanical structures one should thus keep in mind these two issues and care about them. The rst one, respectively nonlinearities , can be considered as a deterministic process in the sense that in the absence of noise the output signal depends only on the input signal. The second one, respectively noise , is purely stochastic: in the absence of an input signal, the output signal is not null and cannot be predicted at any arbitrary instant. At rst, these two issues can be thought of as independent and solved by means of two distinct procedures. However, it turns out that they are actually coupled. Indeed, all the noise that is not correctly removed from the measurements could be misinterpreted as nonlinearities, thus polluting measurements. And if nonlinearities are not accurately estimated, they will end up within the noise signal and information about the structure under study will be lost. In this paper, we thus try to estimate nonlinearities while quantifying the uncertainties on these estimations that result from noise.

The underlying idea consists in extracting the maximum of available linear and nonlinear deterministic information from measurements without misinterpreting noise.

The rst problem addressed here is related to the estimation of nonlinear models of vibrating structures [START_REF] Pearson | Discrete-Time Dynamic Models[END_REF][START_REF] Kerschen | Past, present and future of nonlinear system identication in structural dynamics[END_REF]. Some approaches are based on a physical modeling of the structure whereas some perform without any physical assumption (black-box models). As nonlinear mechanisms in structures are complex and various and as we do not intend to build a model for each case, we choose to rely on black-box models. Among these black-box approaches, some assume a given form for the selected model (block-oriented models [START_REF] Chen | Modeling and identication of parallel nonlinear systems: Structural classication and parameter estimation methods[END_REF][START_REF] Janczak | Identication of Nonlinear Systems using Neural Networks and Polynomial Models: A Block-Oriented Approach[END_REF][START_REF] Giri | Block-Oriented Nonlinear System Identication[END_REF][START_REF] Schoukens | Structure discrimination in block-oriented models using linear approximations: A theoretic framework[END_REF]) whereas some do not put constraints on the model organization. Because block-oriented models can be interpreted easily, this class of models has been retained. A class of block-oriented models that is particularly interesting is the class of parallel Hammerstein models (see Fig. 1). It belongs to the class of Sandwich models [START_REF] Chen | Modeling and identication of parallel nonlinear systems: Structural classication and parameter estimation methods[END_REF] and is shown to possess a good degree of generality [START_REF] Pearson | Discrete-Time Dynamic Models[END_REF]. Moreover, thanks to exponential sine sweeps [START_REF] Muller | Transfer-function measurement with sweeps[END_REF][START_REF] Stan | Comparison of dierent impulse response measurement techniques[END_REF][START_REF] Majdak | Multiple exponential sweep method for fast measurement of head-related transfer functions[END_REF], nonparametric versions of such models can be very easily and rapidly estimated [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF]. The procedure developed recently for the nonparametric estimation of parallel Hammerstein models [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF] will thus be extended here in order to be able to take into account stochastic plant noise. This procedure has already proven to be very useful to study vibrating structures in various contexts [START_REF] Ege | Vibroacoustics of the piano soundboard: (non)linearity and modal properties in the low-and mid-frequency ranges[END_REF][START_REF] Novak | Nonlinear acoustic characterization of micro-damaged materials through higher harmonic resonance analysis[END_REF][START_REF] Rébillat | Nonlinear structural damage detection based on cascade of hammerstein models[END_REF]. The second problem addressed here is related to the estimation of uncertainties caused by the presence of noise in the context of nonlinear system estimation. Of prime importance for this issue is the design of the excitation signals.

The use of special types of periodic excitations has been proved particularly advantageous in this respect [START_REF] Pintelon | System Identication: A Frequency Domain Approach[END_REF]. A typical example is provided by multisines (i.e. a Fourier series with random phases) where some harmonics are voluntary removed. The detection of energy at the non-excited frequencies in the system response then provides a clear evidence of the presence of nonlinearites and also enables their quantication and, to some extent, their qualication (e.g. whether they correspond to odd or even orders). Another property of multisines is to allow the separation of nonlinearities from measurement noise. Several strategies towards this aim are described in reference [START_REF] Pintelon | System Identication: A Frequency Domain Approach[END_REF]. They usually require the use of several multisine excitations with varying gains and/or randomly diering phases. In a recent work, a fast method was proposed to identify nonlinearities based on the use of a nonstationary excitation with an underlying periodic structure [START_REF] Zhang | Fast detection of system nonlinearity using nonstationary signals[END_REF]. The idea was to progressively stear the system outside its linear range and at the same time to benet from the properties of a multisine excitation to quantify the emergence of nonlinearities and separate out plant noise. The aim is here to demonstrate that the use of such a procedure based on multiple exponential sine sweeps will allow for a more robust and ecient estimation of nonlinear models of vibrating structures.

The aim of this paper is thus to provide a methodology that allows for the autonomous estimation of nonlinearities and uncertainties by bootstrap on a given vibrating structure. Nonlinearities are estimated by means of a blockoriented nonlinear model approach based on parallel Hammerstein models and on exponential sine sweeps [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF]. Estimation uncertainties are simultaneously assessed using repetitions of the input signal (multi exponential sine sweeps) as the input of a bootstrap procedure. Mathematical foundations and practical implementation of the method are discussed on an experimental example. The experiment chosen here consists in exciting a steel plate under various boundary conditions with exponential sine sweeps and at dierent levels in order to assess the evolutions of nonlinearities and to estimate uncertainties over a wide range of frequencies and input amplitudes. The paper is organized as follows. The original method developed for the nonparametric estimation of parallel Hammerstein models [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF] is rst rapidly described in Sec. 2. Then, the benets of the use of multiple exponential sine sweeps for the estimation of nonlinear models of vibrating structures is discussed in Sec. 3. Performances of the whole method are then illustrated experimentally on a vibrating plate in Sec. 4.

Identication of parallel Hammerstein models

This section aims at resuming the identication of parallel Hammerstein models by means of exponential sine sweeps, as initially proposed in Refs. [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF]. It introduces the quantities and notations that will be used later in the paper.

Parallel Hammerstein models

Volterra series are a convenient and general tool that provides an analytical expression of the relationship between the input e(t) and the output s(t) of a Hammerstein models based on exponential sine sweeps models [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF]. A: Generation of an exponential sine sweep e(t) from parameters (f 1 , f 2 , Tm). B: Excitation of the nonlinear system and recording of the output signal s(t). C: Generation of an inverse lter y(t) from parameters (f 1 , f 2 , Tm). D: Convolution of the inverse lter y(t) with the output signal s(t). E: Extraction of intermediate values {gn(t)} by means of temporal windowing. Computation of {hn(t)} from {gn(t)} using the matrix C.

weakly non-linear system [START_REF] Boyd | Fading memory and the problem of approximating nonlinear operators with volterra series[END_REF]. A system is considered here as weakly nonlinear if it does not exhibit any discontinuous nonlinearity (such as a hard saturation for example). The class of weakly nonlinear systems is thus rather general and encompasses many real-life applications. Parallel Hammerstein models constitute an interesting subclass of Volterra systems [START_REF] Gallman | Iterative method for identication of nonlinear-systems using a Uryson model[END_REF][START_REF] Pearson | Discrete-Time Dynamic Models[END_REF]. This class of model is very appealing as it is at the same time easy to estimate and to interpret as well as being mathematically still rather general.

In a parallel Hammerstein models [START_REF] Gallman | Iterative method for identication of nonlinear-systems using a Uryson model[END_REF][START_REF] Pearson | Discrete-Time Dynamic Models[END_REF], each branch is composed of one nonlinear static polynomial element followed by a linear one, h n (t), as shown in Fig. 1. Mathematically, the relation between the input e(t) and the output s(t) of such a system is given by Eq. ( 1), where * denotes the convolution product:

s(t) = N n=1 (h n * e) n (t). (1) 
In this model, each impulse response h n (t) is convolved with the input signal raised to its n th power and the output s(t) is the sum of these convolutions. The rst impulse response h 1 (t) represents the linear response of the system. The other impulse responses {h n (t)} n∈{2•••N } model the nonlinearities. The family {h n (t)} n∈{1•••N } will be referred to as the kernels of the model. Any parallel Hammerstein model is fully represented by its kernels.

Exponential sine sweeps

Estimating each kernel h n (t) of a parallel Hammerstein models is not a straightforward task. A simple estimation method that has been proposed previously [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF] for this purpose is briey recalled here (see Fig. 2 for an overview of the method). To experimentally cover the frequency range over which the system under study has to be identied, cosines with time-varying frequencies are commonly used. When the instantaneous frequency of e(t) = cos[φ(t)] is increasing exponentially from f 1 to f 2 in a time interval T , this signal is called an Exponential Sine Sweep (see Fig. 2.A). It can be shown [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF] that by choosing 

T m = (2mπ -π/2)ln( f2 f1 )/2πf
∀n ∈ N * , cos [nφ(t)] = cos [φ(t + ∆t n )] with ∆t n = T m ln(n) ln( f2 f1 )
.

(

) 2 
Equation ( 2) states that for any exponential sine sweep of duration T m , multiplying the phase by a factor n yields the same signal, advanced in time by ∆t n .

Kernel recovery in the time domain

If an exponential sine sweep is presented at the input of parallel Hammerstein models, by combining Eq. ( 1) and Eq. ( 2) and by using properties of Chebyshev polynomials (see Appendix), one obtains the following relation (see Fig. 2.B):

s(t) = N n=1 (g n * e) n (t + ∆t n ) with g n (t) = N n=1 ck,n h k (t) (3)
where g n (t) can be interpreted as the contribution of the dierent kernels to the n th harmonic and ck,n is the coecient (n, k) of the matrix C. Details of the computation of the matrix C are provided in the Appendix.

In order to identify each kernel h n (t) separately, a signal y(t) operating as the inverse of the input signal e(t) in the convolution sense can be built as shown in [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF] (see Fig. 

(y * s)(t) = N n=1 g n (t + ∆t n ). ( 4 
)
Because ∆t n ∝ ln(n) and f 2 > f 1 , the higher the order of nonlinearity n, the more advanced is the corresponding g n (t). Thus, if T m is chosen long enough, the dierent g n (t) do not overlap in time and can be separated by simply windowing them in the time domain (see Fig. 2.E). Using Eq. ( 3), the family {h n (t)} n∈{1•••N } of the kernels of the parallel Hammerstein models under study can then be fully extracted as

[h 1 (t) • • • h N (t)] T = C[g 1 (t) • • • g N (t)] T . (5)

Advantages and limitations of the method

The method described here [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF][START_REF] Novak | Nonlinear system identication using exponential swept-sine signal[END_REF] thus easily provides a direct mathematical access to all the kernels of a parallel Hammerstein model. The main advantage of this exponential sine sweep based method is to be fast and simple: using only one exponential sine sweep one can have direct access to the kernels of an arbitrary vibrating device without the need of any complicated signal processing procedure (see Fig. 2).

The method presented here is not exactly the same as the standard sine sweep method [START_REF] Muller | Transfer-function measurement with sweeps[END_REF][START_REF] Stan | Comparison of dierent impulse response measurement techniques[END_REF]. It can be thought as similar as the input signal being used is still a sine sweep. However, the sine sweep used here has to satisfy some specic additional requirements. First of all, the input sine sweep must have its frequency varying exponentially with time. Secondly, the length of the exponential sine sweep cannot be set arbitrarily and must be chosen among a given set of admissible values. Finally, the two methods do not have the same purpose. With the standard sine sweep method, the aim is to estimate the linear impulse response of a given system while being robust to nonlinearities.

With the proposed method, the aim is to estimate a whole nonlinear model of the system under study. The method presented here can thus be thought as an extension of the standard sine sweep method.

However, this method still needs to be improved to some extent. The main limitation lies in its unability to distinguish between nonlinearities and experimental noise. This results in an overestimation of the nonlinear behavior as estimated kernels also include some plant noise. Another limitation of this method is related to the parameter N that denotes the number of kernels (or equivalently the number of branches) to be estimated in the parallel Hammerstein models. For the moment this parameter is chosen arbitrarily or by using some empirical rules and eorts have to be done to estimate it automatically. These questions constitute the main topics of this paper and will be addressed in the following section.

Finally, recent studies [START_REF] Torras-Rosell | A new interpretation of distortion artifacts in sweep measurements[END_REF][START_REF] Ciric | On the eects of nonlinearities in room impulse response measurements with exponential sweeps[END_REF] have shown that distortion artifacts can appear in the causal part of the impulse responses estimated by means of exponential sine sweep when the system under study is not perfectly modeled by parallel Hammerstein blocks. Indeed, in practical applications one will never face a system that is exactly a parallel Hammerstein model as this kind of system corresponds to a mathematical idealization. In this situation the method proposed here will thus unavoidably return some sort of artefact present in the causal part of the estimated impulse responses. However, as mentioned by references [START_REF] Torras-Rosell | A new interpretation of distortion artifacts in sweep measurements[END_REF][START_REF] Ciric | On the eects of nonlinearities in room impulse response measurements with exponential sweeps[END_REF] those artifacts remain of very small amplitude.

Estimation uncertainties

The identication method described in the previous section originally used a single sweep for the excitation signal, as described by Eq. ( 2). Although this is enough to decompose the system output into nonlinear contributions of dierent orders, it does not allow for the estimation of uncertainties. This may be troublesome when weak nonlinearities typically related to higher-order kernels are highly contaminated by plant noise. Inspired from Refs. [START_REF] Pintelon | System Identication: A Frequency Domain Approach[END_REF][START_REF] Zhang | Fast detection of system nonlinearity using nonstationary signals[END_REF], a simple solution to alleviate this situation is to repeat the same exponential sine sweep several times so as to excite the system with a periodic signal. By taking advantage of repeated experiments, it is then possible to estimate the contribution of plant noise by synchronous averaging. The use of the synchronous average on repeated experiments is not a novel contribution as such; yet, when combined in a certain manner with the exponential sine sweep method, it provides rather unique and simple ways 1) to automatically test for the determination of the eective number of kernels to estimate and 2) to assess estimation uncertainties on the nonlinear kernels by use of the bootstrap. These issues are discussed in the following subsections.

Noise estimation by synchronous averaging

The principle is to repeatedly excite the system with the same sine sweep e 0 (t). The input signal then reads e(t) = K-1 k=0 e 0 (t -kT m ), with K periods of duration T m indexed by k (see Sec. 2.2 for the denition of T m ). A property of non-linear systems described by parallel Hammerstein branches is to respond with a periodic output sharing the same period T as the input (PISPO system: Period In Same Period Out). The same property obviously holds for the deconvolved signal. Specically, let

x(t) = g(t) + n(t) (6) 
denote the noisy counterpart of Eq. ( 4) where g(t) = (y * s)(t) = N n=1 g n (t + ∆t n ) has now been periodized such that g(t) = g(t -T m ) and n(t) stands for plant noise.

The aim is now to separate g(t) from n(t). Since the system output is theoretically periodic in the absence of noise, a natural estimate of it is provided by the synchronous average

ĝ(t) = 1 K K-1 k=0 x(t -kT m ) (7) 
and, by subtraction, an estimate for plant noise is

n(t) = x(t) -ĝ(t). (8) 
Note that these estimates hold whatever the probability and power spectral distributions of the noise provided that it is uncorrelated from one period to another. In addition, it is readily checked that they are unbiased. Given a number K of periods of the same sweep, the variance of ĝ(t) can be shown to be equal to σ 2 n /K with σ 2 n the variance of plant noise of which an estimate at time t is returned by

σ2 n (t) = 1 K K-1 k=0 n(t -kT m ) 2 . (9) 
Therefore, the noise-to-signal ratio (NSR) of the synchronous average decreases proportionally with K. Specically, by dening

NSR(K ) = 20 log 10 RMS(ĝ -g) RMS(ĝ) , (10) 
the NSR based on K averages (wherein RMS(z) stands for the Root-Mean-Square value of signal z(t)), one has the simple relationship

NSR(K ) = NSR(1) -3 • log 2 (K) (11) 
where NSR(1) = RMS(n)/RMS(x) is the initial NSR. Therefore, the NSR decreases by 3 dB when doubling the number of averages. However, even if this formula may suggest that noise disappears when increasing the number of averages, one should keep in mind that noise will never be completely eliminated from nite-length measurements.

Using the synchronous average ĝ(t) in place of g(t) in the identication method of section 2 will obviously decrease the uncertainties on the estimation of the non-linear kernels h n (t). However, despite the NSR being decreased, the complete removal of noise is not possible (as long as K < ∞) and it still remains to assess the limit where weak nonlinearities can be statistically distinguished from noise and the corresponding uncertainties estimated. These two issues are addressed in the following two subsections.

Autonomous determination of the number of kernels

The principle of the exponential sine sweep based method is rooted on the detection of the n th order harmonic contributions g n (t), n = 1, ..., N in the timedomain. As illustrated in Fig. 2.E, it might not be obvious at rst to determine how many g n (t)'s have been excited when higher-order ones are likely to be masked by noise.

However, the determination of the correct number N of harmonic contributions is crucial to return unbiased estimates [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF]. This is due to the fact that the kernels h n (t) to be estimated are depending on all identied harmonic contributions g k (t), k = 1, ..., N , as seen by inverting the second formula in Eq. ( 3). Too small a number would result in underestimating the nonlinearities in the system. On the contrary, too large a number would considerably increase estimation noise.

An autonomous procedure is proposed that determines the eective number of kernels which can be distinguished from plant noise. It is based on the following statistical F-test. Let's consider the synchronous average ĝ(t) in a short time interval I n centered around the expected occurrence of the n-th kernel, i.e. t ∈ I n = [t n,1 , ..., t n,2 ] with ∆t n ≤ t n,1 and t n,2 < ∆t n-1 . The question is whether ĝ(t) signicantly protrudes from background noise in that interval and therefore originates from a n-th nonlinearity or whether it is mainly noise (see Fig. 6). This corresponds to two alternative hypotheses: H0: ĝ(t), t ∈ I n is plant noise only H1: ĝ(t), t ∈ I n contains an n th order harmonic contribution g n (t).

Following the analysis of section 3.1 and making use of Eq. ( 9), an estimate of the variance in interval I n under H0 is returned by

σ2 In|H0 = 1 t n,2 -t n,1 + 1 tn,2 t=tn,1 1 K σ2 n (t) (12) 
(note the division by K since the level of noise on the synchronous average is K times as small as on the initial signal according to formula [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF]). Therefore, assumption H0 is to be rejected if the current variance

σ2 In = 1 t n,2 -t n,1 + 1 tn,2 t=tn,1 ĝ(t) 2 (13)
is found statistically greater than σ2

In|H0 . This can be easily formalized with a F-test for the equality of two variances: H0 is rejected if the ratio σ2

In /σ 2 In|H0 is greater than F (α) K-1,K-1 , the critical value of the F distribution with K -1 and K -1 degrees of freedom and a signicance level of α.

The highest-order harmonic contribution g N (t) that is found signicant through this procedure then determines the model order N .

Bootstrap assessment of uncertainties

Eventually, the use of repeated exponential sine sweeps also gives access to the uncertainties on the non-linear kernels h n (t). Even if a full analytic treatment of the question is possible in the case of Gaussian noise, a resampling strategy based on the bootstrap is preferred due to its simplicity and versatility with respect to unknown noise properties [START_REF] Zoubir | Bootstrap Techniques for Signal Processing[END_REF].

The bootstrap is a technique to articially produce random repetitions of the experiment from the available data. The aim is to obtain an histogram for the estimated kernels h n (t) from which condence intervals (or any other measure of statistical dispersion related to uncertainties) can easily be constructed. This is achieved by producing a series of virtual repetitions of the same experiment.

Let x k (t) = x(t -kT m ), 0 ≤ t < T m , denote the k-th cycle of signal x(t) (as dened in Eq. ( 6)) and π a random draw of the integers 0, ..., K -1 (i.e. each element π(i), i = 0, ..., K -1, is randomly assigned a value of set 0, ..., K -1 with uniform probability 1/K). A new virtual measurement x (b) (t) (where (b) denotes the bootstrap index and is not to be confused with an exponentiation) is then produced by concatenating K random draws with replacement,

x π(0) (t); ...; x π(K-1) (t) . [START_REF] Novak | Nonlinear acoustic characterization of micro-damaged materials through higher harmonic resonance analysis[END_REF] from which the synchronous average

ĝ(b) (t) = 1 K K-1 k=0 x π(k) (t) (15) 
is computed. By means of an example with K = 3, one possible bootstrap draw, say b = 1, would return {π(0); π(1); π(2)} = {2, 1, 1} and therefore ĝ(1) (t) = 

U (b) n (f ) = H (b) n (f ) - 1 B B-1 b=0 H (b) n (f ). ( 16 
)
The mean square uncertainty on the n-th kernel based on K averages may then be dened as

MSU n (f, K) = 1 B B-1 b=0 |U (b) n (f )| 2 . ( 17 
)
Finally, the uncertainty-to-signal ratio (USR) can be dened as:

USR n (K) = MSU n (f, K)df 1 B B-1 b=0 |H (b) n (f )| 2 df ( 18 
)
where the integrals are taken over the full frequency band of interest.

This index can be interpreted as a compact way to assess the quality of the estimated kernels and can be compared to NSR(K ) as dened in Eq. [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF]. NSR(K ) stands for the ratio of the energy of the noise versus the energy of the estimated signal for K repetitions of the exponential sine sweep. USR n (K) denotes the ratio of the energy of the uncertainty on the n th kernel versus the energy of the estimated n th kernel for K repetitions of the exponential sine sweep. As the uncertainty on the n th kernel may be linked with the variance of noise, a correlation between both indexes is to be expected.

Note that the bootstrap is a computer intensive method. Yet it was found reasonably fast to run for values of B up to the order of a few hundreds.

4 Application to a vibrating plate

Experimental setup

In order to illustrate the performance of the proposed extended exponential sine sweep method, vibratory measurements have been done on a simple mechanical system. The chosen structure is a thin rectangular steel plate of 540 × 640 × 1 mm 3 dimensions. An electrodynamic mini-shaker (B&K Type 4810) is used to excite the plate at a point chosen arbitrarily (see Fig. 3). Acceleration of the plate is measured at two positions: at the driving point through an impedance head (PCB Type 288D01) and at several centimeters from it using a second accelerometer (B&K Type 4508). Two congurations have been tested: in the rst one (see Fig. 3(a)) the plate is clamped at edges with four metal bars (of 2 cm width) screwed to the top ledges of a cavity of 500 × 600 × 700 mm 3 dimensions.

in the second conguration (see Fig. The extended exponential sine sweep method presented here has been applied to these two dierent congurations. The aim is not to compare the amount of nonlinearities for dierent test cases or to discuss the relative results of dierent experimental congurations, but simply to show how the methodology can be easily applied to examples of common engineering problems which may arise in the vibroacoustic community: a typical lightly damped clamped structure and a highly damped free-free one. These two systems with dierent boundary conditions and dierent amounts of damping exhibit dierent levels of nonlinearities from dierent origins (geometrical nonlinearities, contacts, . . . ).

For each conguration the plate is excited with 20 exponential sine sweeps of 30 sec each, repeated periodically. The instantaneous frequency of the sweep increases from 20 Hz to 1 kHz. The sampling frequency is xed at 25.6 kHz in order to allow for the estimation of high order kernels. Several measurements at dierent gains have been performed in order to assess the evolutions of nonlinearities and of the signal to noise ratio over a wide range of frequencies and input amplitudes.

Assessment of estimation uncertainties

This subsection illustrates the assessment of estimation uncertainties by means of the bootstrap technique described in Sec. 3.3. The signal under study corresponds to the second accelerometer (glued on the plate several centimeters away from the impedance head) for the rst conguration where the plate is clamped (see Fig. 3(a)). It contains a maximum of K max = 20 repetitions of the response of the system to exponential sine sweeps. During the rst repetition the system is considered to exhibit a transient response while it reaches its stationary regime when the second repetition of the sweep is starting up. For that reason, the rst repetition has been removed from the analysis. The objective is here to demonstrate the USR (see Eq. ( 18)) improvement caused by the synchronous averaging process. for the estimation of non-linear kernels up to order N = 6. The estimated kernels are displayed in each gure together with the corresponding mean square uncertainty MSU(f, K) of Eq. ( 17) as obtained from bootstrap. One can clearly see the benet of reducing the noise by synchronous averaging, especially for the high-orders kernels for which the initial USR without averaging is very low (-11 dB for the 6 th order kernel for example) and becomes acceptable after averaging (-23 dB for the 6 th order kernel). Moreover, comparison of Figs. 4(a) and 4(b) displays a reduction of 13 dB of the estimation uncertainties for each kernel order, which is very close to the value predicted by Eq. [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF]. Figure 5 then illustrates the improvement with respect to K of both the NSR as given by Eq. ( 11) and the USR as given by Eq. ( 18). As expected, the curves evidence an excellent correlation between both indexes.

Figure 5: Improvement with respect to K of both the NSR as given by Eq. [START_REF] Rébillat | Identication of cascade of hammerstein models for the description of nonlinearities in vibrating devices[END_REF] and the USR as given by Eq. ( 18).

Determination of the eective number of kernels

This section illustrates the automatic determination of the eective number of kernels N opt as explained in Sec. 3.2. Measurements are now performed on the second conguration (suspended damped plate, see Fig. 3(b)). The signal studied here corresponds to the second accelerometer, after synchronous averaging on all periods except the rst one (transient regime). Four gains for the excitation signal are successively tested G = 0.1 -1 -5 and 10 in order to study the robustness of the determination method to predict the proper number of kernels to estimate. For the fourth gain (G = 10), the excitation force delivered from the shaker is one hundred times higher than for the rst gain (G = 0.1). For example, in terms of displacement, at a resonance frequency around 130 Hz and at the point of measurement of the second accelerometer (several centimeters away from the shaker), the gain G = 0.1 creates a displacement of about 5 µm whereas the gain G = 10 generates a displacement of about 0.5 mm, that is half the plate thickness (1 mm). It is obvious that with such large-amplitude vibration motions, geometrical nonlinearities appear strongly with high order kernels being excited. In Fig. 6, the determination of the eective number of kernels (using the methodology presented in Sec. 3.2) is illustrated in the time-domain on the signal g(t) = (y * s)(t) (output signal after deconvolution, see Eq. ( 4)). The thresholds dened in Sec. 3.2 (through F-test at 0.995 and with a security parameter chosen equal to 6) is displayed in red lines in Fig. 6 together with the intervals I n which are materialized by the vertical shaded areas. These thresholds allow estimation of the eective number of kernels to retain for each excitation level. Green windows are displayed for retained kernels and red windows for rejected ones.

As expected, the optimal model order N opt of retained kernel increases with the level of excitation: N opt = 1-3-8 and 12 respectively. These estimated kernels are presented in Fig. 7 for each gain. One can note that the level of the kernels increases with the excitation gain. Moreover, the frequency content of the rst kernel (corresponding to the linear part) is very similar for each measurement, thus assessing the reproducibility and precision of the measurements. To sum it up, the methodology presented here is a useful tool to select the proper model order N opt and a major improvement of such nonlinearity estimation methodologies. 

Conclusion

The aim of this paper is to provide a methodology that allows for the autonomous estimation of nonlinearities and of uncertainties by bootstrap on a given vibrating structure. Nonlinearities are estimated by means of a blockoriented nonlinear model approach based on parallel Hammerstein models and on exponential sine sweeps. Estimation uncertainties are simultaneously assessed using repetitions of the input signal (multi-sine sweeps) as the input of a bootstrap procedure. Mathematical foundations and practical implementation of the method are discussed on an experimental example. The experiment chosen here consists in exciting a steel plate under various boundary conditions with exponential sine sweeps and at dierent levels, in order to assess the evolutions of nonlinearities and of the signal-to-noise ratios over a wide range of frequencies and input amplitudes.

The major improvements provided in this article are: the fact that the synchronous average allows the design of a simple statistical test to automatically determine the eective number of non-linear kernels in the exponential sine sweep method (in a manner that is actually quite unique to this method), the fact that the synchronous average is combined with the bootstrap to propose a versatile technique for assessing the uncertainties on any quantity of interest by taking advantage of repeated measurements. Subsequently, it can easily be shown that they satisfy the recurrence relation given in Eq. [START_REF] Torras-Rosell | A new interpretation of distortion artifacts in sweep measurements[END_REF].

k = 0 T 0 (x) = 1 (20a) k = 1 T 1 (x) = x (20b) k > 1 T k+1 (x) = 2xT k (x) -T k-1 (x) (20c) 
Then, by writing the polynomials as in Eq. ( 21) , one can obtain Eq. ( 22), using Eq. ( 20), and nd the coecients of the matrix A.

T k (x) = k i=0 A(i, k)x i (21) 
i = 0 A(0, k + 1) = -A(0, k -1)

(22a) 0 < i < k A(i, k + 1) = 2A(i -1, k) -A(i, k -1) (22b) i k A(i, k + 1) = 2A(i -1, k) (22c) 
The linearisation of the polynomials can now be rewritten in a matrix form, as in Eq. ( 23). The matrix C, necessary to access to {h n (t)} n∈[1,N ] , is the matrix A without the rst column and the rst row, as seen in Eq. ( 5). To avoid the implementation of the recurrence, the C matrix of order 8, which is sucient for practical use, is given in Eq. ( 25). 
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 1 Figure 1: Representation of parallel Hammerstein models

Figure 2 :

 2 Figure 2: Schematic representation of the estimation procedure for parallel

  2.C). After convolving the output of Parallel Hammerstein models s(t) given in Eq. (3) with y(t), one obtains Eq. (4) (see Fig.2.D) :

n

  (t), b = 1, ..., B, from which a histogram can nally be calculated. Similarly, histograms are available on any transform of the estimated kernels, in particular on their Fourier transforms as displayed in Sec. 4. Specically, by denoting H (b) n (f ) the Fourier transform of the bootstrap estimate of the n-th kernel h (b) n (t) from a random draw b, the uncertainties in the frequency domain are evaluated by the dierence

Figure 3 :

 3 Figure 3: Overview of the experimental setup. (a) First conguration: steel plate coupled to a cavity (clamped boundary conditions). (b) Second conguration: suspended damped plate (free boundary conditions).

Figures 4 (

 4 Figures 4(a) and 4(b) display the eect of the synchronous average over K = 19 repetitions of the exponential sine sweep as compared to K = 1

Figure 4 :

 4 Figure 4: Illustration of the USR improvement implied by synchronous averaging. a) Frequency gains of kernels estimated on one period of the excitation signal together with the mean square uncertainty obtained classically. b) Frequency gains of kernels estimated by synchronously averaging K = 19 periods of the excitation signal together with the mean square uncertainty MSU n (f, 19) obtained by bootstrap (B = 150 random draws with replacement).

Figure 6 :

 6 Figure 6: Illustration of the determination of the eective number of kernels for the second conguration (suspended damped plate, see Fig.3(b)) for four dierent excitation gains (G = 0.1 -1 -5 -10). The signal |g(t)| = |(y * s)(t)| (output signal after deconvolution, see Eq. (4)) in the time domain is displayed in dB in blue and the selection thresholds in red. Retained kernels are displayed with green windows, and rejected ones with red windows.

Figure 7 :

 7 Figure 7: Estimated kernels for the second conguration (suspended damped plate, see Fig.3(b)) after determination of the eective number of kernels for each of the four excitation levels.
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  1 with m ∈ N * one obtains the following property:

  (t) is obtained by following the procedure of Sec. 2. This is repeated B times such as to collect B estimates h

	1 3 (x 2 (t)+x 1 (t)+x 1 (t)); another draw would return {π(0); π(1); π(2)} = {0, 2, 0} and therefore ĝ(2) (t) = 1 3 (x 0 (t) + x 2 (t) + x 0 (t)), etc . . .
	Next, for each bootstrapped synchronous average ĝ(b) (t) a new estimate
	h (b)

n