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Vector attribute profiles for
hyperspectral image classification

Erchan Aptoula, Mauro Dalla Mura, Member, IEEE, and Sébastien Lefèvre

Abstract—Morphological attribute profiles are among the most
prominent spectral-spatial pixel description methods. They are
efficient, effective and highly customizable multi-scale tools based
on hierarchical representations of a scalar input image. Their
application to multivariate images in general, and hyperspectral
images in particular, has been so far conducted using the marginal
strategy, i.e. by processing each image band (eventually obtained
through a dimension reduction technique) independently. In
this paper, we investigate the alternative vector strategy, which
consists in processing the available image bands simultaneously.
The vector strategy is based on a vector ordering relation that
leads to the computation of a single max- and min-tree per
hyperspectral dataset, from which attribute profiles can then be
computed as usual. We explore known vector ordering relations
for constructing such max-trees and subsequently vector attribute
profiles, and introduce a combination of marginal and vector
strategies. We provide an experimental comparison of these
approaches in the context of hyperspectral classification with
common datasets, where the proposed approach outperforms the
widely used marginal strategy.

Index Terms—Morphological attribute profiles, multivariate
morphology, vector ordering, hyperspectral images.

I. INTRODUCTION

THE advent of satellite sensors with very high spatial and
spectral resolutions has had a profound effect on the re-

mote sensing community by providing us with datasets richer
in information than ever before. Although this unprecedented
level of detail has paved the way for several new applications,
it has also scaled the problem of classification to a more
challenging level, as images are now more heterogeneous and
contain highly complex spatial structures and inter-pixel rela-
tions, thus making effective spectral-spatial content description
a necessity.

Given its rigorous non-linear mathematical foundation and
shape-oriented spatial tools, it is thus no surprise that mathe-
matical morphology has become largely popular with remote
sensing applications. It is employed in a rich variety of
tasks such as building detection [1], urban area detection
[2], forest mapping [3], road network extraction [4], content-
based retrieval [5], rubble detection [6], segmentation [7]–
[10], change detection [11] and spectral unmixing [12]. In
particular, the largest part of the morphology oriented efforts
in the remote sensing context, have focused on the topic of
spatial-spectral pixel description and classification; with the
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most widely applied and researched tool being morphological
profiles (MP) [13]–[16].

Indeed MP have been one of the most prominent spectral-
spatial pixel description methods of the last decade, with
numerous variations, the latest of which have been attribute
profiles (AP) [17]. APs are a more efficient generalization
of MPs, acting directly on connected components instead of
pixels, thus enabling object based image analysis. APs have
effectively replaced MPs, by removing the structuring element
shape restriction, and by further enabling the description
of image components through arbitrary parametric features,
thus leading to more flexible, complete and accurate content
representations. For a very recent survey on AP based spectral-
spatial classification the reader is referred to [18].

An AP is indeed a multi-scale, efficient and effective
tool constructed from hierarchical representations of its input
image [17]. It is based on a min- and a max-tree, also referred
to as component trees [19]. The inclusion tree (or tree of
shapes) [20], has been also considered, leading to a self dual
AP [21]. Yet, when it comes to dealing with multivalued im-
ages, as with all morphological tools, complications inevitably
arise. Specifically, component trees rely on a total order among
the image pixel values, a concept which is absent among
multivalued (vector) pixel values. So far, in order to deal with
this issue, all instances of APs with multivalued data have
been employing the same technique as MPs, the so-called
marginal strategy; i.e. band-wise independent processing [16].
It basically consists in constructing one tree per band using
the usual scalar order among pixel values, from which then
an AP is computed, followed finally by their concatenation in
order to form the pixel feature vector [22].

Although this strategy is feasible when dealing with mul-
tispectral images (i.e. up to about ten spectral channels), it
is impractical with hyperspectral images (i.e. with hundreds
of spectral channels). In this case, the conventionally used
approach relies on a dimension reduction step in which the
initial number of bands is reduced to few according to some
criterion (e.g. maximizing the variance of the data or the
discriminability of the classes) [23]. The tree representation
can then be built analogously on the retained components.

However, it is well known from the context of color
morphological analysis that there exists an alternative, called
vector processing strategy, that can handle all available image
bands simultaneously [24]. In this context, it manifests itself
through the use of a vector ordering relation, that enables
one to compute a single max-tree (and not multiple as in the
case of marginal strategy) from a hyperspectral dataset. Such
trees are straightforward to construct [25], by working on the
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Fig. 1. Outline of the marginal and vector strategies for attribute profile
computation from hyperspectral images.

corresponding rank image of the input multivalued data. The
main question rather is which vector ordering relation among
the tens of options is most appropriate for computing AP and
subsequently classifying hyperspectral remote sensing images,
and furthermore, whether there is a superior alternative to the
widely used marginal strategy.

This paper focuses on both of the aforementioned questions.
Specifically, our contributions are first the investigation of
AP defined using a vector strategy, then the definition of a
new approach combining the vector and marginal strategies,
and an experimental comparison of AP constructed using
the aforementioned strategies, with two common real hyper-
spectral remote sensing datasets and one multispectral, where
the proposed method is shown to outperform the marginal
strategy that is currently used exclusively in the state-of-the-
art.

In the sequel of this paper, following an overview of related
work on morphological pixel description of hyperspectral
images (Section II), we elaborate on vector AP and introduce a
new combined vector-marginal strategy for profile construction
(Section III). Next, we present and discuss the results of our
classification experiments (Section IV), while Section V is
devoted to concluding remarks.

II. RELATED WORK

Soon after the initial introduction more than a decade
ago of morphological profiles [13], as a tool designed to
process grayscale panchromatic data, they were extended and
have been widely used on multivalued (and hyperspectral in
particular) images.

One of the initial attempts by Dell’Acqua et al. [26]
oriented towards the extension of MP to hyperspectral images,
consisted in simply reducing the input image into grayscale.
Specifically, the hundreds of available channels were reduced
to a single one, containing however the majority of variational
information by means of a principal component analysis
(PCA). Since such a radical dimension reduction led to an
inevitable and significant loss of information, Benediktsson et
al. [16], proposed later on extended morphological profiles. In
particular, they suggested the use of more than one principal
components (PC). In more detail, the pixel descriptions com-
puted independently (or marginally) from each PC, were then
concatenated to form the final pixel feature vector (Fig. 1a).

In the years that followed, a lot of effort has been put in opti-
mizing the dimension reduction step, with several approaches
having been investigated; for a detailed analysis of this aspect
the reader is referred to [23].

Although the widely used marginal approach, outlined in
Fig. 1a, has the important advantage of being straightforward,
since it continues to rely on existing grayscale operators, it
does have significant drawbacks as well. In particular, the
independent processing of each band multiplies the computa-
tional load, ignores any eventual inter-band correlation related
information, and in the case of MP, the filters can output
vectors not included in the input image. That is why, a second
strategy has emerged.

The alternative of marginal processing, which does not
suffer from the aforementioned disadvantages, consists in
processing all bands simultaneously by means of the so-called
vector processing strategy (Fig. 1b), which has been exten-
sively studied in the context of color morphology [24]. The
core idea is surprisingly simple; as mathematical morphology
is based on complete lattice theory, one can replace the un-
derlying ordering relation (e.g. the marginal ordering relation
in the case of marginal processing), with any algebraically
valid alternative, and still obtain theoretically correct results
with various properties. For an in-depth account of multivariate
morphology the reader is referred to [27].

The first attempt of this type in hyperspectral images was
made by Plaza et al. [14] who investigated an approach based
on cumulative spectral angular distances. Li and Hu [28] on the
other hand, experimented with using an ordering relation based
on the Euclidean norm of the vector pixel values. Moreover,
Aptoula and Lefèvre [24] provided a comparative study of
various ordering relations in the context of multispectral image
classification using MP, where it was shown that although
alternative ordering relations lead to pixel descriptions with
diverse class-specific performances, the marginal approach
still outperforms overall. Velasco and Angulo [29], have also
worked on this topic and proposed a supervised ordering
relation, constructed through machine learning methods from
user provided training pixel sets, though with no applications
in pixel description or classification.

More recently, Courty et al. [30], proposed a method based
on the PerTurbo classification algorithm, that leads to class-
specific ordering relations, while in [31] an ordering relation
exploiting the end-member vectors of a given hyperspectral
image has been introduced; although it has been shown to
lead to classification performances that can catch up with the
marginal approach, it still requires a precise computation of
end-member vectors.

As far as attribute profiles are concerned, so far all reported
instances of their use with hyperspectral images, have been
based on the marginal strategy [18], [32].

III. VECTOR ATTRIBUTE PROFILES

In this section, we will first recall the principles behind
AP, and then explain how to construct a single max-tree from
a multivariate image and finally introduce a new approach
combining the advantages of marginal and vector strategies.
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For a detailed account of attribute filters and profiles the reader
is referred to [17], [33].

A. Background

APs are multiscale image description tools, constructed
similarly to MPs, by applying successively a morphological
filter along a variety of settings. Specifically, APs rely on
morphological attribute filters (AFs) [33]; which belong to
the class of connected morphological filters. As such, AF and
AP revolve around the core concept of connectivity, and deal
directly with connected components (CCs) instead of pixels.

More formally, given a grayscale image f : E → Z, E ⊆
Z2, its upper-level sets are defined as {f ≥ t} with t ∈ Z
(resp. lower-level sets {f ≤ t}), i.e. the set of images obtained
by thresholding an image at all possible values of their pixels.
The connected components (CC ⊆ E) composing the upper
or lower level sets are referred to as peak components. AFs are
applied to these peak components, using a predefined logical
predicate Tακ consisting of comparing the attribute α computed
on CC against a threshold κ; e.g. T area300 : “is the area of CC
larger than 300 pixels?”. Depending on the binary outcome
of T area300 (CC), the connected component is either preserved
or removed from the image. An AF’s output is computed by
processing all the connected components present in the input
image, thus evaluating the underlying predicate for all of them.

Subsequently, an AP can be straightforwardly constructed
using a sequence of AFs (often attribute thinnings and thick-
enings [33]), that are applied to the input image using a set of
ordered logical predicates. More precisely, given a predicate
T and a collection of L thresholds {κi}1≤i≤L let γκi and
φκi denote respectively the attribute thinnings and thickenings
employing them. In which case the AP of a grayscale image
f would become:

AP (f) = {φκL(f), φκL−1(f) . . . , φκ1(f), f,

γκ1(f), . . . , γκL−1(f), γκL(f)}
(1)

Thus a pixel p of an image f can be characterized using the
values it obtains across this sequential filtering process.

As far as the extension of AP to a hyperspectral image
f : E → Zr, r > 1 is concerned, the widely (and exclusively)
encountered marginal strategy consists in first reducing the
number of spectral dimensions (from r to n, n << r)
through a variety of methods [18], and then in computing
independently the AP of each resulting image band, that are
finally concatenated in order to form the so-called extended
attribute profile (EAP):

EAP (f) = {AP (band1), AP (band2), . . . , AP (bandn)}
(2)

Here bandi refers to an image component after dimension
reduction, but it might equivalently denote an actual spectral
band of the input image if no reduction were performed, still
leading to an EAP constructed with the marginal approach.

Although AFs have been part of the morphological toolbox
for almost two decades, the reasons for their only recent
popularity have been mostly computational, in addition to
their flexibility. Efficient implementations of AFs have become
possible thanks to a tree based image representation [34].

In particular, according to that representation, the connected
components of a given grayscale image are represented in a
max-tree (alternatively min-tree) structure through their inclu-
sion relations. Thus a grayscale image can be fully represented
as a rooted tree of peak components. Its advantage stems from
the implementation possibility of filtering in the form of node
or branch removal from the tree representing the input image.
This becomes especially interesting for the computation of
AP since each tree needs to be computed only once and then
multiple filtering outputs can be derived easily from it.

Input
Hyperspectal

Image

Grayscale
Rank
Image

Max-Tree

Tree construction

Filtered
Tree

Grayscale
Rank
Image

Output
Hyperspectal

Image

Image reconstitution

Fig. 2. Processing flow of the vector strategy for vector attribute filtering.

Fig. 3. A max-tree example constructed using the lexicographical ordering
relation in the RGB color space (blue <L green <L cyan <L red <L

magenta <L orange <L yellow <L white).

B. Vector strategy

The vector strategy (Fig. 1b) involves employing all avail-
able image components simultaneously. In detail, attribute
filters, as well as the AP and EAP that derive from them,
operate on connected components, in other words on sets of
pixels coordinates. Consequently, they are fully independent
from whether those coordinates within the CC represent scalar
or vector pixel values. Thus, the only practical requirement
for defining AP based on a vector strategy is being able to
compute the tree representation of a multivariate image. In
the following we will refer to a max-tree, but the reasoning
clearly applies on the other hierarchical representations for
which an underlying vector ordering between pixel values is
required as well.
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Fig. 4. Outline of the proposed strategy for attribute profile computation from hyperspectral images.

The hierarchy of the levels of a max-tree, as presented in
[34], is determined by the natural order of scalar pixel values
(0 to 255 in the case of 8-bit grayscale images). Hence, the
root of the tree denotes the entire image coordinate space,
with the lowest possible pixel value, while the leaves of the
tree represent the connected components with the highest pixel
values. Of course, as there is no universally accepted vector
ordering method, the computation of a max-tree from multi-
variate images becomes evidently problematic. If however we
equip with such a total ordering relation, e.g. lexicographical
ordering:

∀ v, v′ ∈ Zn, v <L v′ ⇔ ∃ i ∈ {1, . . . , n} ,
(∀ j < i, vj = v′j) and (vi < v′i)

(3)

or Euclidean norm (‖·‖) based ordering:

∀ v, v′ ∈ Zn, v <E v′ ⇔ ‖v‖ < ‖v′‖ or
(‖v‖ = ‖v′‖ and v <L v′)

(4)

in that case one can trivially transform any multivariate image
f : E → Zn into a grayscale image g : E → Z where
∀ p ∈ E, g(p) = rank≺(f(p)), with rank≺ denoting the
integer rank of a vector according to the ordering relation
≺. This approach has been already successfully applied to
computing multivariate quasi-flat zones [35]. Consequently,
one can straightforwardly then apply the usual max-tree
construction algorithm, hence leading to a tree containing
the connected components not just of a single band, but of
the entire multivariate input image (Fig. 2). After attribute
filtering, the filtered multivariate image can be trivially and
efficiently reconstituted using a reverse rank lookup. A visual
example of using the lexicographical ordering for constructing
a color max tree in the RGB color space is provided in Fig. 3.

Thus, given a multivariate image f : E → Zn, n > 1 and a
total ordering relation ≺ such as Eq. (3) or (4), one can apply
vector attribute thinnings and thickenings on it (γκi and φκi ),
with the only exception being that the input and output trees
represent multivariate images. Hence, vector attribute profiles
(V AP≺) can be straightforwardly defined as:

V AP≺(f) = {φκL(f),φκL−1(f) . . . ,φκ1(f), f,
γκ1(f), . . . ,γκL−1(f),γκL(f)}

(5)

i.e. a sequence of 2L+ 1 multivariate images, each one with
the same dimension as f.

C. Proposed strategy

Although the debate between marginal and vector strategies
has been long going in the field of color morphology [24],
quantitatively speaking, the vector processing strategy has
seldom outperformed the marginal approach in an actual image
description task [24], [36].

TABLE I
SUMMARY OF THE QUALITIES OF THE MARGINAL, VECTOR AND

PROPOSED APPROACHES

Marginal strategy
+ one max-tree per band; band specific description

- oblivious to what happens in adjacent bands
- data is processed n times

Vector strategy
+ takes into account information from adjacent bands

+ data is processed once
- one max-tree per dataset; i.e. limited data representation

Proposed strategy (combine the two)
+ one max-tree per band, computed using a vector ordering

+ each tree takes into account adjacent bands w.r.t. arbitrary weights
- data is processed n times

This has motivated us to explore a third alternative com-
bining the best qualities of each (Table I). To explain, given
a hyperspectral image of n bands (and after an eventual
dimension reduction step), we propose to process the data n
times, just as in the case of the marginal approach, but at
each iteration we process not a single band, but the entire
hyperspectral dataset, using a distinct vector ordering ≺i
(Fig. 4).

Formally, let bi : Zn → Z be the mapping returning the
i-th grayscale band of a multivariate image f : E → Zn and
start by defining a set {≺i}1≤i≤n of n distinct weighted norm
based Euclidean ordering relations:

∀ v, v′ ∈ Zn, v ≺i v′ ⇔ ‖v‖i < ‖v
′‖i or

(‖v‖i = ‖v′‖i and v <L v′)
(6)

where:

‖v‖i =

√√√√ n∑
j=1

vjwij (7)

with wij ∈ W = [0, 1]n×n a set of weights. Then, given a
multivariate image f, we compute for each i-th band, a vector
attribute profile V AP≺i using its corresponding ordering re-
lation ≺i, by first applying Eq. (5), and then extracting from
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(a) Color image (b) Lexicographical (c) Euclidean norm (d) Marginal (e) Weighted Euclidean

Fig. 5. From left to right, a color image with three distinct colors: c1 = [255, 150, 100] orange, c2 = [150, 255, 100] green, c3 = [100, 255, 255] cyan, and
the resulting max-trees (rooted at the bottom), for various ordering relations: lexicographical (<L), Euclidean Norm (<E ), Marginal and Weighted euclidean
with the weight matrix W2 of Eq. (10).

each resulting image its i-th band:

V AP i≺i
(f) = {bi(h) | ∀h ∈ V AP≺i(f)} (8)

and once we repeat this for every band, we obtain the final
weighted vector attribute profile:

V APW (f) =
{
V AP 1

≺1
(f), V AP 2

≺2
(f), . . . , V APn≺n

(f)
}

(9)

Thus, V APW will have the same number of grayscale com-
ponents as EAP and V AP≺ (i.e. (2L+ 1)× n).

In order to better illustrate the interest of our approach, let
us consider the simple scenario of a multivariate image with
only three bands and the following three distinct weight sets:

W1 =

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣ W2 =

∣∣∣∣∣∣
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

∣∣∣∣∣∣ W3 =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
(10)

Basically, the j-th column of the i-th row of the weight matrix,
represents the relative contribution of the j-th band when
processing the i-th band. This gives us a very high level of
flexibility for fine tuning the behavior of our approach.

To explain, in the case of using equal weights (W1), ≺1, ≺2

and ≺3 are identical to the Euclidean norm based ordering <E ,
thus V APW1 becomes equal to V AP<E

. In other words, all
bands contribute equally to the resulting profile. On the other
extreme, we have the imbalanced W3, where for each band’s
profile computation we employ only that band while other
bands do not contribute at all, thus rendering V APW3

identical
to the marginal approach (EAP ). In-between the two, there
is a more balanced weight matrix W2, where the processing
focuses primarily on one band but without ignoring the others.
For a more visual illustration, Fig. 5 shows a RGB color image
with three distinct colors, along with the resulting max-trees
for various ordering relations.

D. Weight selection

Obviously, the selection of the weight matrix is of prime im-
portance. As far as the weight matrix of Eq. (9) is concerned,
it can modify the behavior of V APW from acting exactly
as the marginal strategy all the way to acting identically to
V AP<E

. The general idea, when selecting the relative weights
of each band (i.e. every row of W in Eq. (7)) is to set them
according to the contribution potential of that band, in other

words proportionally to the amount of useful information in
that band; an excessively weighted noisy band is bound to
corrupt results, while an under-weighted useful band would
lead to suboptimal scores.

Of course an automatic and unsupervised weight computa-
tion system would be the ideal solution, however the design of
such a method is beyond the scope of this paper. Nevertheless
we would still like to present some directions that we consider
as promising in this regard.

• Supervised weights: Similarly to the work of Velasco
and Angulo [29], a straightforward approach for setting
the weight matrix could be to employ a small set of
training pixels, labeled by an expert. Their labels could
be used for evaluating various weight matrices in order
to determine the optimal one, in terms of classification
performance. This could be achieved by starting with
a predetermined sub-optimal weight matrix, and then
feeding it to any standard optimization solution, such as
genetic algorithms, in order to determine the optimal one.

• Eigenvalue based weights: an alternative unsupervised
solution could be to exploit the eigenvalues of the bands
of the image under study, after applying a PCA. The
weight of each band could be set proportionally to its
eigenvalue. Although fully unsupervised, this solution
would be of interest only in cases where a dimension
reduction step occurs.

• Statistically set weights: a further solution for setting the
weights independently of any dimension reduction stage,
could be to exploit the statistical properties of the bands
under study. Since we are interested in the amount of
useful information that they contain, one could measure
their variance, or better yet their entropy, and then set the
weight of each band proportionally to them.

• Morphologically set weights: another approach in this
context, could be to quantify the usefulness of every
image band not by measuring a global property such as
entropy, but more specifically by measuring the amount of
spatial structures and irregularities in the spatial domain
of the image. This property can be quantified for instance
through the application of tophat (residue of morpho-
logical opening) and bothat (residue of morphological
closing) operators. Consequently, the weights could be
set proportionally to the amount of image volume corre-
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sponding to the respective tophat and bothat applications
of that band. In fact, with an intelligently chosen struc-
turing element, one could even measure the presence or
not of particular objects of interest.

Let us now study the classification performance of EAP ,
V AP and V APW with two common hyperspectral datasets
and one multispectral dataset, to see whether we can finally
find a suitable alternative to the widely and exclusively used
marginal strategy for attribute profile computation.

IV. EXPERIMENTS

The main goal of the experiments presented in this section
is to test the hypothesis that a combination of marginal
and vector strategies for AP computation from hyperspectral
images, as defined in Eq. (9), can lead to superior classification
results w.r.t. their marginal counterpart. The tested approaches
are EAP (Eq. (2)), V AP<L

& V AP<E
(Eq. (5)) and the pro-

posed strategy V APW (Eq. (9)). Our experiments include two
hyperspectral and one multispectral datasets, two geometric
attributes (one increasing and one not-increasing), and study
the effect of the number of image components as well as the
effect of various attribute threshold sets.

A. Setup

The experiments have been conducted using three datasets,
of which two are fairly common; namely Pavia University
and Indian Pines. The first is an urban area of size 340× 610
pixels and 9 thematic classes, and has been acquired using the
ROSIS-03 sensor with a 1.3m spatial resolution over the city
of Pavia, Italy. The ROSIS-03 sensor has 115 data channels
with a spectral coverage ranging from 0.43 to 0.86µm. After
the elimination of 12 noisy bands, 103 bands have been left
for processing (Fig. 6).

(a) Pavia University (b) Ground Truth (c) Training Set

Fig. 6. The Pavia University dataset (false colors) and its corresponding
ground truth; its thematic classes (training set size/ground truth size) are:

Asphalt (548/6631), Trees (524/3064), Bitumen (375/1330),
Meadows (540/18649), Metal sheets (265/1345), Shadows

(231/947), Gravel (392/2099), Bare soil (532/5029) and Self-
blocking bricks (514/3682).

The second dataset has been captured over the Indian
Pines test site in north-western Indiana, USA, through the
AVIRIS sensor. This sensor has 224 data channels with a

(a) Indian Pines (b) Ground Truth

Fig. 7. The Indian Pines dataset and its corresponding ground truth; its
thematic classes (ground truth size) are: Alfalfa (46), Corn-notill
(1428), Corn-mintill (830), Corn (237), Grass-pasture (483),

Grass-trees (730), Grass-pasture-mowed (28), Hay-windrowed
(478), Oats (20), Soybean-notill (972), Soybean-mintill (2455),

Soybean-clean (593), Wheat (205), Woods (1265),
Buildings-Grass-Trees-Drives (386) and Stone-Steel-Towers (93).

(a) Vaihingen (b) Ground Truth (c) Training Set

Fig. 8. The Vaihingen dataset and its corresponding ground truth; its thematic
classes (training set size/ground truth size) are: Impervious Surfaces
(3858/113k), Building (2554/134k), Low vegetation (2259/116k),

Tree (3356/141k), Car (170/3127).

spectral coverage ranging from 0.43 to 2.5µm. The scene
depicts primarily agricultural fields of regular geometry, with
16 thematic classes, has a spatial resolution of 20m and is
of size 145 × 145 pixels. Plus, 24 spectral bands affected by
atmospheric absorption have been discarded, thus resulting in
a dataset of 200 bands (Fig. 7).

Both hyperspectral datasets have had their spectral dimen-
sion reduced by means of a PCA as per [22]. Four PCs
representing approximately 99% of the total image variance
have been preserved for both. As a note, we are fully aware of
the plethora of alternative dimension reduction methods used
in this context [37], [38]; the reason we have selected PCA
is because of its widespread use, and because our goal is to
measure the relative differences between the tested strategies,
and not to achieve absolute performance maximization.

As to the third multispectral dataset, it has been captured
over the small village of Vaihingen, Germany and contains
mostly detached buildings [39] (Area 34). It possesses a very
high spatial resolution of 23cm per pixel, and has a size of
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543×1000 pixels. The Vaihingen dataset, possesses 3 spectral
channels: near infrared, red and green with 5 thematic classes
(Fig. 8).

Classification has been conducted using a Random Forest
classifier composed of 100 trees. The number of variables
involved in the training of the classifier was set to the
square root of the feature vector length, as suggested by [40].
Classification performance has been measured by means of the
kappa statistic. For the Pavia University dataset, training has
been realized using the standard training set widely used in
the state-of-the-art [22]. As to Indian Pines, randomly selected
1% pixels per class of the ground truth have been used for
training, along with 30 Monte Carlo runs to minimize training
set selection bias. As a side-note, larger training sets (5%,
10% and 15%) have also been explored, however their effect
of the relative performances of the methods under study have
been negligible. For the Vaihingen dataset, we have used the
training set shown in Fig. 8c.

We have selected two geometrical attributes for constructing
the attribute profiles, the area (an increasing attribute, i.e. if
it is verified for a connected component, then it will also be
verified by all the regions brighter or darker, depending on
the transformation) and the first moment invariant of Hu (a
non-increasing attribute, also known as moment of inertia)
[41]. Moreover, the subtractive rule has been used for dealing
with the non-increasing attribute as in [17], [42]. For area
thresholds (λa,Pav, λa,P in), we have computed the automatic
settings according to [43] and for the moment of inertia
(λm,Pav, λm,Pin) we have employed the manual settings used
in [22], [37], [44]:

λa,Pav = {770, 1538, 2307, 3076, 3846, 4615, 5384

6153, 6923, 7692, 8461, 9230, 10000, 10769}
λa,P in = {50, 100, 150, 200, 250, 300, 350, 400, 450,

500, 550, 600, 650, 700}
λm,Pav = λm,Pin = {0.2, 0.3, 0.4, 0.5}

However, it is well known that attribute threshold selections
have a very significant effect on the performance of AP [17],
and the aforementioned settings, regardless of whether they
are automatic or manual, have been empirically determined
by their respective authors with always the marginal strategy
in mind. Which is why, for the sake of fairness, we employ
multiple sets (Λa,Pav,Λa,P in,Λm,Pav,Λm,Pin) of thresholds
for both attributes, by simply scaling them with various
multipliers µ:

Λa,Pav = {µ · λa,Pav | ∀µ ∈ {0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8}}
Λa,P in = {µ · λa,P in | ∀µ ∈ {0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8}}
Λm,Pav = {µ · λm,Pav | ∀µ ∈ {0.1 · k | k ∈ {1, . . . , 20}}}
Λm,Pin = {µ · λm,Pin | ∀µ ∈ {0.1 · k | k ∈ {1, . . . , 20}}}

B. Weight selection

As the design of an automatic weight selection solution is
beyond the scope of this paper, at this stage of our work we
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Fig. 9. Plots illustrating the effect of various weight matrices on the
performance of both attributes using all 4 PC of the Pavia University dataset.

have proceeded with an empirical selection. Since our goal is
to combine marginal and vector strategies we started with a
pool of weight matrices ranging between the two extremes
(W1: Euclidean norm based ordering and W10: Marginal
ordering):

{W1 = 0.1 · J4,W2 = 0.1 · J4 + 0.1 · I4,
. . . ,W9 = 0.1 · J4 + 0.8 · I4,W10 = I4}

(11)

where J and I denote respectively the matrix of ones and the
identity matrix. Fig. 9 shows the classification scores obtained
with the Pavia University dataset for both attributes. Based
on these results, we have selected to use the weight matrix
W6 = 0.1 · J4 + 0.5 · I4 for both attributes and all datasets.

C. Classification

The classification scores (in terms of the kappa statistic)
that have been obtained for the Pavia University dataset are
shown in Fig. 10, the classification maps corresponding to the
various studied strategies are provided in Fig. 14 and its class
based performances are at Table II.

As far as the increasing attribute, area, is concerned, the
overall performances are affected moderately by the various
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Fig. 10. Classifications scores (κ statistic) for the Pavia University dataset for the area and moment of inertia attributes using a variety of principal components
and threshold settings.

TABLE II
CLASSIFICATION ACCURACIES (%) FOR THE PAVIA UNIVERSITY DATASET WITH 4 PCS AND OPTIMAL SETTINGS OF EACH METHOD.

Area Moment
Class Set Size EAP V AP<L

V AP<E
V APW EAP V AP<L

V AP<E
V APW

Asphalt 6631 95.4 91.9 92.1 95.1 92.7 92.8 90.6 94.1
Meadows 18649 94.0 77.8 96.5 97.1 78.2 74.0 87.3 94.1

Gravel 2099 90.2 78.8 54.8 79.4 80.3 61.7 45.7 76.7
Trees 3064 98.4 95.1 95.3 97.6 99.5 98.4 98.9 98.8

Painted metal sheets 947 99.2 99.9 99.9 99.9 99.3 99.6 99.0 99.0
Bare Soil 3682 84.9 63.7 74.9 97.1 65.8 62.6 63.4 64.6
Bitumen 1345 99.9 95.6 97.4 99.9 99.8 91.6 97.8 99.6

Self-Blocking Bricks 1330 99.6 91.7 90.7 99.1 98.0 91.7 85.4 97.2
Shadows 5029 98.5 98.4 87.8 95.6 99.6 99.6 97.5 92.7

Average Accuracy 95.57 88.1 87.71 95.64 90.36 85.78 85.07 90.76
Overall Accuracy 94.2 82.5 90.6 96.3 84.1 80.1 84.6 90.7

κ 0.92 0.77 0.88 0.95 0.8 0.75 0.8 0.88

thresholds sets. However, the relative performances are con-
sistent across 2, 3 and 4 principal components. The vector
approaches (V AP<E

and V AP<L
) are inferior to the marginal

strategy, while the lexicographical approach is consistently
the poorest among them. Considering the fact that the lex-
icographical ordering takes almost exclusively into account
the first dimension of vectors, this practically means that it
almost ignores all PC beyond the first, thus taking a serious
performance hit. Besides, these results confirm the similar MP
based experiments in [24]. The overall best approach with area
is V APW which is systematically superior to the marginal
approach.

In terms of class based performances, the vector approaches
(V AP<E

and V AP<L
) exhibit drastically distinct perfor-

mances both w.r.t. each other and w.r.t. V APW and EAP .
The latter two are mostly similar, with the principal exceptions
being the classes Bare Soil and Gravel, where they outperform

each other respectively by a significant margin. These results
are particularly motivating for exploring the collaboration of
distinct ordering relations.

On the other hand, with the non increasing attribute, overall
performance drops, as area apparently is a more effective
attribute with this dataset. Moreover, the performances vary
more erratically across the various attribute thresholds, es-
pecially for fewer PC, thus underlining the effect of the
selected attribute. All the same, V APW clearly outperforms
the marginal strategy by multiple percentile points, especially
for 4 principal components and higher scaling factors. If
we take a further and closer look to the involved classes,
one can observe additionally, that for their optimal settings,
the relative performances of the methods under study have
remained relatively similar w.r.t. the area attribute.

The corresponding results of the Indian Pines dataset are
provided in Fig. 11, its classification maps are shown in Fig. 15
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Fig. 11. Classifications scores (κ statistic) for the Indian Pines dataset for the area and moment of inertia attributes using a variety of principal components
and threshold settings.
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Fig. 12. Classifications scores (κ statistic) for the Vaihingen dataset using the area and moment of inertia attributes along a variety of thresholds.

and its class based performances are at Table III.
Judging from the scores obtained with area, one can im-

mediately observe that the performances vary much less than
before, and are much closer. However, they diversify as the
number of components increases, and with 4 principal com-
ponents we can see that the lexicographical method performs
way better w.r.t. the previous dataset, while V APW is overall
the best with a very small margin. The marginal approach
on the other hand performs poorer. One possible explanation
could be the fact that the first PC of the Pines dataset contains a
significantly higher amount of information w.r.t. to the first PC
of Pavia University, thus placing lexicographical ordering at an
advantage. Hence, a dataset specific selection of weights would
probably improve even further the performance of V APW .

Once more, the non-increasing moment attribute is more
sensitive to threshold selections, with V AP<E

performing
the poorest, probably because the 2nd, 3rd and 4th principal
components lack valuable information so the pixel signatures

become corrupted as the Euclidean norm takes the entire
vectors into account. Thanks to its balanced design, V APW
once more is the best performing approach among them,
while both vector methods are clearly inferior to the marginal
strategy. As far as class based performances are concerned,
the Pines dataset exhibits a high level of inter-class and inter-
method variance. In classes such as Grass-Pasture-Mowed,
Oats and Stone-Steel-Towers, the best performing method can
even triple the performance of the worst one.

The classification scores that have been obtained for the
Vaihingen dataset are shown in Fig. 12, the classification maps
corresponding to the various studied strategies are provided in
Fig. 16 and its class based performances are at Table IV.

In terms of the area attribute, there is an obvious correlation
between all studied approaches across attribute thresholds,
similarly to the Pines dataset and on the contrary of the Pavia
University dataset. The overall performances are very close,
and conversely to the other two datasets, they are globally
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TABLE III
CLASSIFICATION ACCURACIES (%) AND THEIR DEVIATIONS FOR THE INDIAN PINES DATASET WITH 4 PCS AND OPTIMAL SETTINGS OF EACH METHOD.

Area Moment
Class Set Size EAP V AP<L

V AP<E
V APW EAP V AP<L

V AP<E
V APW

Alfalfa 46 78.3 ± 1.6 82.6 ± 1.7 58.7 ± 1.8 97.8 ± 1.9 69.39 ± 1.5 79.14 ± 1.2 44.12 ± 1.3 93.68 ± 1.9
Corn-notill 1428 70.6 ± 1.7 65.9 ± 1.4 66.8 ± 1.3 75.1 ± 1.6 54.89 ± 1.4 48.87 ± 1.2 65.4 ± 1.5 68.22 ± 1.5

Corn-mintill 830 76 ± 1.5 87.1 ± 1.2 61.4 ± 1.6 55.9 ± 1.5 36.67 ± 1.2 30.36 ± 1.5 51.62 ± 1.4 42.32 ± 1.3
Corn 237 25.3 ± 1.8 22.4 ± 1.8 26.2 ± 1.4 23.2 ± 1.6 14.77 ± 1.1 12.96 ± 0.8 36.29 ± 1.1 25.36 ± 1.2

Grass-past. 483 62.9 ± 1.5 72.9 ± 1.8 66.9 ± 1.4 78.9 ± 1.8 54.04 ± 1.7 58.57 ± 1.1 50.64 ± 1.4 65.48 ± 1.6
Grass-trees 730 88.6 ± 1.3 98.9 ± 1.6 82.2 ± 1.3 87.1 ± 1.6 86.88 ± 1.5 87.75 ± 1.8 72.36 ± 1.8 87.64 ± 2.0

Grass-past.-mow. 28 100 ± 1.2 96.4 ± 1.4 71.4 ± 0.1 96.4 ± 0.2 58.92 ± 1.7 57.86 ± 1.4 22.15 ± 0.9 66.79 ± 1.7
Hay-windrowed 478 88.1 ± 1.4 96.4 ± 1.7 99.8 ± 1.6 99.8 ± 1.5 92.67 ± 1.8 83.41 ± 1.7 83.07 ± 1.8 91.91 ± 1.9

Oats 20 60 ± 1.9 25 ± 0.3 30 ± 1.6 30 ± 0.4 22.5 ± 1.0 17 ± 0.7 14 ± 0.8 27.5 ± 1.4
Soybean-notill 972 68.9 ± 1.4 47.6 ± 1.7 69.4 ± 1.4 61.7 ± 1.8 54.37 ± 1.3 42.55 ± 1.3 38.93 ± 1.2 48.44 ± 1.4

Soybean-mintill 2455 87.2 ± 1.8 94.3 ± 1.5 92.8 ± 1.7 93.7 ± 1.4 82.38 ± 1.6 82.45 ± 1.7 80.29 ± 1.9 87.26 ± 1.7
Soybean-clean 593 36.1 ± 1.7 67.1 ± 1.4 54.1 ± 1.9 76.9 ± 1.3 37.07 ± 1.3 28.46 ± 1.1 31.76 ± 1.2 47.41 ± 1.4

Wheat 205 98.5 ± 1.6 96.6 ± 1.4 73.2 ± 1.2 98.5 ± 1.2 92.11 ± 1.6 83.33 ± 1.9 61.71 ± 1.8 57.61 ± 1.5
Woods 1265 89.2 ± 1.3 82.1 ± 1.1 89.9 ± 1.7 89.7 ± 1.7 93.56 ± 1.4 95.72 ± 1.8 85.26 ± 1.9 95.45 ± 1.9

Build.-Gr.-Tr.-Dr. 386 68.7 ± 1.5 75.1 ± 1.3 66.8 ± 1.8 74.4 ± 1.5 47.92 ± 1.1 30.61 ± 1.2 35.82 ± 1.1 44.11 ± 1.4
St.-St.-Tow. 93 16.1 ± 1.9 48.4 ± 0.5 52.7 ± 1.8 51.6 ± 1.6 37.1 ± 1 22.81 ± 1.1 24.84 ± 1.1 41.94 ± 1.4

Average Accuracy 69.65 ± 1.3 72.42 ± 1.2 66.39 ± 1.5 74.42 ± 1.4 58.02 ± 0.9 53.87 ± 1.4 49.89 ± 1.3 61.95 ± 1.6
Overall Accuracy 75.9 ± 1.2 78.7 ± 1.2 76.6 ± 1.7 79.9 ± 1.6 67.04 ± 1.1 63.29 ± 1.4 63.94 ± 1.5 71 ± 1.6

κ 0.72 ± 0.01 0.75 ± 0.01 0.73 ± 0.01 0.77 ± 0.01 0.62 ± 0.01 0.57 ± 0.01 0.58 ± 0.01 0.66 ± 0.01

TABLE IV
CLASSIFICATION ACCURACIES (%) FOR THE VAIHINGEN DATASET WITH OPTIMAL SETTINGS OF EACH METHOD.

Area Moment
Class Set Size EAP V AP<L

V AP<E
V APW EAP V AP<L

V AP<E
V APW

Impervious Surfaces 113549 64.4 64.1 63.8 65.2 87.6 84.5 75.0 83
Building 133719 64.9 64.7 64.6 65.8 77.9 75.5 81 83

Low vegetation 116526 35.5 33.6 33.1 36.7 30.3 34.3 45.7 19.2
Tree 141474 57.4 57.1 57 57.9 70.4 69.2 62.4 69.5
Car 3127 60.1 60 60.1 60.3 70.2 69.5 80.5 75

Average Accuracy 56.5 55.9 55.72 57.2 67.28 66.6 68.82 65.94
Overall Accuracy 61.7 61.3 61.2 62.2 75.9 74.1 74.9 77.3

κ 0.59 0.58 0.58 0.6 0.68 0.65 0.67 0.7

worse than the moment of inertia. This is not unexpected, since
the dataset in question is of very high spatial resolution and as
such, elongation (as provided by the moment of inertia) can be
a more discriminatory property of objects than their area. Still,
the proposed strategy (V APW ), achieved systematically better
scores, though with a very small margin. Furthermore, the vec-
tor strategies once again perform worse than their alternatives,
V APW and EAP . In terms of class based performances, all
four tested approaches have achieved similar scores per class,
with V APW outscoring its alternatives with all classes.

As to the moment attribute, this time overall performances
are higher, and more diversified across attribute thresholds.
Even so, the proposed approach still outperforms the marginal
strategy, while the vector strategies follow them closely. As far
as class specific classification scores are concerned, low vege-
tation proves to be particularly challenging to recognize, while
the tested approaches exhibit a more diversified performance
across classes.

D. Computational cost

In order to better evaluate the studied approaches, we
present in Fig. 13 their execution times (in seconds). We
measured using a standard laptop (3GHz, 8GB memory) the
time required for a full profile computation (tree construction,
filtering and tree reconstitution) for every strategy using the
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Fig. 13. The computational cost of the studied approaches across all three
datasets using their optimal settings along with the area attribute.

area attribute and all three datasets along with optimal thresh-
old settings for each.

As expected, the vector approaches (V AP<E
and V AP<L

)
are faster than the marginal approach. However, since the
marginal max/min trees are developed across only 256 in-
tensity levels, while purely vector strategies operate on 2564

possible spectral values, their difference is relatively negligi-
ble. Naturally the slowest among them is V AP<W

, since it
needs to process the data both with a vector strategy and with
multiple passes as in the case of the marginal approach. Let
it be noted however, that our implementations are preliminary
and sub-optimal single threaded prototypes.
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(a) Ground Truth (b) Lexicographical (c) Euclidean Norm (d) Marginal (e) Weighted Euclidean

Fig. 14. The classification maps of the Pavia University dataset using the area attribute for each AP computation strategy, along with their optimal settings.

(a) Ground Truth (b) Lexicographical (c) Euclidean Norm (d) Marginal (e) Weighted Euclidean

Fig. 15. The classification maps of the Indian Pines dataset using the area attribute for each AP computation strategy, along with their optimal settings.

V. CONCLUSION

The focus of this paper has been on attribute profiles, a
powerful morphological spectral-spatial pixel description tool,
and especially on how to improve their strategy of computation
from hyperspectral images. To this end, we have transferred
from color morphology some of the accumulated know-how
on multivariate image processing. Specifically, we have first
formulated an effective alternative vector strategy to the widely
and exclusively used marginal processing method, which is
capable of processing all image bands simultaneously.

We have further introduced a combination of both marginal
and vector strategies as a more balanced approach, integrating
the best aspects of the two available methods. In particular, the
approach that has been developed can be configured through
its weight matrix to a behavior ranging from being identical
to the widely used marginal strategy (hence providing band
specific descriptions) all the way to the other extreme, of
being a purely distance based vector approach (thus taking
into account information from adjacent bands). As a result,
the approach that has been developed can be configured to
deal with a very large variety of dataset properties.

Moreover we have provided an experimental comparison
of the studied approaches with three datasets, two attributes,
multiple number of bands, and various threshold levels. Our
experiments have shown that despite using the same relatively
simple weight matrices, that have been determined empirically,
the classification performances of the proposed method have

been clearly superior to the marginal approach. These results
have motivated us greatly for pursuing this method further,
especially in order to design an automatic solution for dataset
specific weight matrix determination, for which multiple di-
rections have been presented.
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