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BAYESIAN SUBSET SIMULATION

By Julien Bect, Ling Li and Emmanuel Vazquez

Laboratoire des Signaux et Systèmes
CentraleSupélec / CNRS / Université Paris-Sud

Gif-sur-Yvette, France

We consider the problem of estimating the volume α of the ex-
cursion set of a function f : X ⊆ R

d → R above a given thresh-
old, under a given probability measure on X. In this article, we
combine the popular subset simulation algorithm (Au and Beck,
Probab. Eng. Mech. 2001) and our sequential Bayesian approach
for the estimation of a probability of failure (Bect, Ginsbourger, Li,
Picheny and Vazquez, Stat. Comput. 2012). This makes it possible
to estimate α when the number of evaluations of f is very limited
and α is very small. The resulting algorithm is called Bayesian sub-
set simulation (BSS). A key idea, as in the subset simulation algo-
rithm, is to estimate the probabilities of a sequence of excursion sets
of f above intermediate thresholds, using a sequential Monte Carlo
(SMC) approach. A Gaussian process prior on f is used to define
the sequence of densities targeted by the SMC algorithm, and drive
the selection of evaluation points of f to estimate the intermediate
probabilities. Adaptive procedures are proposed to determine the in-
termediate thresholds and the number of evaluations to be carried
out at each stage of the algorithm. Numerical experiments illustrate
that BSS achieves significant savings in the number of function eval-
uations with respect to other Monte Carlo approaches.

1. Introduction. Probabilistic reliability analysis has become over the
last thirty years an essential part of the engineer’s toolbox (see, e.g., Melch-
ers, 1999; De Rocquigny, Devictor and Tarantola, 2008a; O’Connor and
Kleyner, 2012). One of the central problems in probabilistic reliability anal-
ysis is the computation of the probability of failure

(1) α =

∫

X

1f≤0 dPX

of a system (or a component in a multicomponent system; see, e.g., Rausand
and Hoyland, 2004), where PX is a probability measure over some measurable
space (X,B) representing all possible sources of uncertainty acting on the

Keywords and phrases: Probability of failure, Computer experiments, Sequential de-
sign, Gaussian process, Stepwise uncertainty reduction, Sequential Monte Carlo
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2 J. BECT, L. LI & E. VAZQUEZ

system—both epistemic and aleatory—and f : X → R is the so-called limit-
state function, such that f takes positive values when the system behaves
reliably, and negative values when the system behaves unreliably, or fails. It is
assumed in this article that X is a subset of Rd—in other words, we consider
static reliability problems, where all uncertain factors can be described as a d-
dimensional random vector. Numerous examples of applications that fall into
this category can be found in the literature (see, for instance, Waarts, 2000;
Jonkman, Kok and Vrijling, 2008; De Rocquigny, Devictor and Tarantola,
2008b,c; Bayarri et al., 2009; Zio and Pedroni, 2009; Garcia, 2010).

Two major difficulties usually preclude a brute-force Monte Carlo (MC)
approach, that is, using the estimator

α̂MC =
1

m

m∑

i=1

1f(Xi)≤0 , Xi
i.i.d∼ PX ,

which requires m evaluations of f . First, the evaluation of f for a given x ∈
X often relies on one or several complex computer programs (e.g., partial
differential equation solvers) that take a long time to run. Second, in many
applications, the failure region Γ = {x ∈ X | f(x) ≤ 0} is a rare event
under the probability PX; that is, the probability of failure α = PX(Γ)
is small. When α is small, the standard deviation of α̂MC is approximately√

α/m. To estimate α by MC with a standard deviation of 0.1α thus requires
approximately 100/α evaluations of f . As an example, with α = 10−3 and 10
minutes per evaluation, this means almost two years of computation time.

The first issue—designing efficient algorithms to estimate α in the case
of an expensive-to-evaluate limit-state function—can be seen as a problem
of design and analysis of computer experiments (see, e.g., Santner, Williams
and Notz, 2003), bearing some similarities to the problem of global optimiza-
tion (see Villemonteix, Vazquez and Walter, 2009, and references therein).
Sequential kriging-based design strategies for the estimation of α have been
proposed, and spectacular evaluation savings have been demonstrated on var-
ious examples with moderately small α (typically, 10−2 or 10−3); see Bect
et al. (2012) for a review of fully sequential strategies and Dubourg, Deheeger
and Sudret (2011) and Auffray, Barbillon and Marin (2014) for examples of
two-stage strategies. The closely related problem of quantile estimation has
also been investigated along similar lines (Oakley, 2004; Cannamela, Garnier
and Iooss, 2008; Arnaud et al., 2010).

A key idea to address the second issue—i.e., to estimate a small probabil-
ity of failure—is to consider a decreasing sequence of events Γ1 ⊃ Γ2 ⊃ · · · ⊃
ΓT = Γ such that the conditional probabilities PX (Γt | Γt−1) are reasonably
large, and therefore easier to estimate than α itself. Then, sequential Monte



BAYESIAN SUBSET SIMULATION 3

Carlo simulations (Del Moral, Doucet and Jasra, 2006) can be used to pro-
duce estimates p̂t of the conditional probabilities PX (Γt | Γt−1), leading to
a product-form estimate

∏T
t=1 p̂t for α. This idea was first proposed, for the

simulation of static rare events in reliability analysis1, in a seminal article of
Au and Beck (2001). Their algorithm, called subset simulation, can be seen
as variation on the importance (or multilevel) splitting technique used for the
simulation of rare events in Markovian models (see, e.g., Glasserman et al.,
1999). It has since then become one of the most popular techniques for the
computation of small probabilities of failure, and the theoretical properties
of several (most of the times idealized) variants of the algorithm have re-
cently been investigated by several authors (see, e.g., Guyader, Hengartner
and Matzner-Løber, 2011; Cérou et al., 2012; Caron et al., 2014). However,
because of the direct use of a Monte Carlo estimator for p̂t at each stage t,
the subset simulation algorithm is not applicable when f is expensive to
evaluate.

In this article we propose a new algorithm, called Bayesian subset simula-
tion (BSS), which tackles both issues at once using ideas from the sequential
design of computer experiments and from the literature on sequential Monte
Carlo methods. Section 2 reviews the subset simulation algorithm from the
point of view of sequential Monte Carlo (SMC) techniques to prepare the
ground for the introduction of our new algorithm. Section 3 describes the
algorithm itself and Section 4 presents numerical results. Finally, Section 5
concludes the article with a discussion.

2. Subset simulation: a sequential Monte Carlo algorithm. This
section recalls the main ideas of the classical subset simulation algorithm
(Au and Beck, 2001), which, although not originally presented as such, can
be seen as a sequential Monte Carlo sampler (Del Moral, Doucet and Jasra,
2006; Cérou et al., 2012).

2.1. Idealized subset simulation (with fixed levels and IID sampling). We
consider the problem of estimating the probability α of a rare event Γ of
the form Γ = {x ∈ X : f(x) > u}, where u ∈ R and f : X → R, using
pointwise evaluations of f . Note that the limit-state function (see Section 1)
can be defined as x 7→ u − f(x) with our notations. Assuming, for the sake
of simplicity, that PX has a probability density function πX with respect to

1A very similar algorithm had in fact been proposed earlier by Diaconis and Holmes
(1995) for a quite different purpose (estimating the probability of a rare event under the
bootstrap distribution).
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Lebesgue’s measure, we have

α =

∫

X

1f(x)>u πX(x) dx .

The key idea of the subset simulation algorithm is to introduce an increas-
ing (finite) sequence of thresholds −∞ = u0 < u1 < u2 · · · < uT = u, which
determine a corresponding decreasing sequence of subsets:

X = Γ0 ⊃ Γ1 ⊃ · · · ⊃ ΓT = Γ, Γt := {x ∈ X : f(x) > ut} ,

of the input space X. Let αt = PX (Γt). The decreasing sequence (αt)0≤t≤T

obeys the recurrence formula

(2) αt+1 = αt PX (Γt+1 | Γt) = αt

∫
1Γt+1

(x) qt(x) dx,

where qt stands for the truncated density

qt(x) =
1Γt(x)πX(x)∫
1Γt(y)πX(y) dy

.

The small probability α = αT can thus be rewritten as a product of con-
ditional probabilities, which are larger (and therefore easier to estimate)
than α:

α =

T∏

t=1

pt, pt := PX (Γt | Γt−1) .

Assume that, for each t ∈ {0, 1, . . . , T − 1}, a sample
(
Y j
t

)
1≤j≤m

of inde-

pendent and identically distributed (IID) random variables from the trun-
cated density qt is available. Then, each conditional probability pt can be esti-
mated by the corresponding Monte-Carlo estimator p̂t =

1
m

∑m
j=1 1Γt

(
Y j
t−1

)
,

and α can be estimated by the product-form estimator α̂SS =
∏T

t=1 p̂t. By
choosing the thresholds ut in such a way that the conditional probabilities pt
are high, α can be estimated using fewer evaluations of f than what would
have been necessary using a simple Monte Carlo approach (see Section 2.4
for a quantitative example).

2.2. Sequential Monte-Carlo simulation techniques. Generating exact
IID draws from the densities qt is usually not possible, at least not effi-
ciently, even if a method to generate IID samples from q0 = πX is available.
Indeed, although the accept-reject algorithm (see, e.g., Robert and Casella,
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2004, Section 2.3) could be used in principle, it would be extremely inef-
ficient when t is close to T , that is, when PX {Γt} becomes small. This is
where sequential Monte-Carlo (SMC) simulation techniques are useful.

Given a sequence (qt)0≤t<T of probability density functions over X, SMC
samplers sequentially generate, for each target density qt, a weighted sam-
ple Yt =

((
wj
t , Y

j
t

))
1≤j≤m

, where wj
t ≥ 0,

∑
j w

j
t = 1 and Y j

t ∈ X. The

random vectors Y j
t are usually called particles in the SMC literature, and the

weighted sample Yt is said to target the distribution qt. They are, in general,
neither independent nor distributed according to qt, but when the sample

size m goes to infinity, their empirical distribution µ
(m)
t =

∑m
j=1w

j
t δY j

t
con-

verges to the target distribution—that is, to the distribution with probability
density function qt—in the sense that

∫

X

h(x) dµ
(m)
t (x) =

m∑

j=1

wj
t h(Y

j
t ) →

∫

X

h(x) qt(x) dx,

for a certain class of integrable functions h.
In practice, each weighted sample Yt is generated from the previous one,

Yt−1, using transformations; SMC algorithms are thus expected to be effi-
cient when each density qt is, in some sense, close to its predecessor den-
sity qt−1. The specific transformations that are used in the subset simulation
algorithm are described next. The reader is referred to Del Moral, Doucet and
Jasra (2006), Liu (2008) and references therein for a broader view of SMC
sampling techniques, and to Douc and Moulines (2008) for some theoretical
results on the convergence (law of large numbers, central limit theorems) of
SMC algorithms.

2.3. Reweight/resample/move. We now describe the reweight/resample/
move scheme that is used in the subset simulation algorithm to turn a
weighted sample Yt−1 targeting qt−1 ∝ 1Γt−1

πX into a weighted sample
Yt targeting qt ∝ 1Γt πX. This scheme, used for instance in Chopin (2002),
can be seen as a special case of the more general SMC sampler of Del Moral,
Doucet and Jasra (2006)2.

Assume a weighted sample Yt−1 =
((
wj
t−1, Y

j
t−1

))
1≤j≤m

targeting qt−1

has been obtained at stage t−1. The reweight step produces a new weighted
sample Yt,0 =

((
wj
t,0, Y

j
t−1

))
1≤j≤m

that targets qt, by changing only the
weights in Yt−1:

wj
t,0 ∝ qt

(
Y j
t−1

)

qt−1

(
Y j
t−1

) wj
t−1.

2See in particular Section 3.1.1, Remark 1, and Section 3.3.2.3.
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The resample and move steps follow the reweighting step. These steps
aim at avoiding the degeneracy of the sequence of weighted samples—i.e.,
the accumulation of most of the probability mass on a small number of
particles with large weights.

The simplest variant of resampling is the multinomial resampling scheme.
It produces a new weighted sample Yt,1 =

((
wj
t , Y

j
t,1

))
1≤j≤m

, where the new

particles Y j
t,1 have equal weights wj

t =
1
m , and are independent and identically

distributed according to the empirical distribution
∑m

j=1w
j
t,0 δY j

t−1

. In this

work, we use the slightly more elaborate residual resampling scheme (see,
e.g., Liu, 2008), which is known to outperform multinomial resampling (Douc
and Cappé, 2005, Section 3.2). As in multinomial resampling, the residual
resampling scheme produces a weighted sample with equal weights wj

t =
1
m .

The resampling step alone does not prevent degeneracy, since the resulting
sample contains copies of the same particles. The move step restores some
diversity by moving the particles according to a Markov transition kernel Kt

that leaves qt invariant:

∫
qt(x)Kt(x,dx

′) = qt(x
′) dx′;

for instance, a random-walk Metropolis-Hastings (MH) kernel (see, e.g.
Robert and Casella, 2004).

Remark 2.1. In the special case of the subset simulation algorithm, all
weights are actually equal before the reweighting step and, considering the
inclusion Γt ⊂ Γt−1, the reweighting formula takes the form

wj
t,0 ∝ 1Γt(Y

j
t−1).

In other words, the particles that are outside the new subset Γt are given
a zero weight, and the other weights are simply normalized to sum to one.
Note also that the resampling step discards particles outside of Γt (those
with zero weight at the reweighting step).

Remark 2.2. In the general version of the reweight/resample/move pro-
cedure, which will be used in Section 3.3, the resampling step is carried
out only when some degeneracy criterion—such as the expected sample size
(ESS)—falls below a threshold (see, e.g., Del Moral, Doucet and Jasra, 2006).
Indeed, consecutive densities in the sequence (qt) sometimes happen to be
very similar, in which case the weights do not degenerate as quickly as in
the subset simulation algorithm.
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2.4. Practical subset simulation: adaptive thresholds. It is easy to prove
that the subset simulation estimator α̂SS =

∏T
t=1 p̂t is unbiased. Moreover,

Cérou et al. (2012, Proposition 3) have proved that it is asymptotically
normal in the large-sample-size limit:

(3)
√
m

α̂SS − α

α

D−−−−→
m→∞

N
(
0;σ2

)

where
D−→ denotes convergence in distribution and

(4) σ2 ≈
T∑

t=1

1− pt
pt

,

when the MCMC kernel has good mixing properties (see Cérou et al.’s article
for the exact expression of σ2). For a given number T of stages, the right-
hand side of (4) is minimal when all conditional probabilities are equal; that
is, when pt = α1/T .

In practice however, the value of α is of course unknown, and it is not
possible to choose the sequence of threshold beforehand in order to make
all the conditional probabilities equal. Instead, a value p0 is chosen—say,
p0 = 10%—and the thresholds are tuned in such a way that, at each stage t,
p̂t = p0. A summary of the resulting algorithm is provided in Table 1.

Equations (3) and (4) can be used to quantify the number of evaluations
of f required to reach a given coefficient of variation with the subset simu-
lation estimator α̂SS. Indeed, in the case where all conditional probabilities
are equal, we have

(5) var (α̂SS/α) ≈ T

m

1− p0
p0

.

with T = log(α)/ log(p0). For example, take α = 10−6. With the simple
Monte Carlo estimator, the number of evaluations of f is equal to the sample
size m: approximately n = δ−2 α−1 = 108 evaluations are required to achieve
a coefficient of variation δ = std(α̂MC)/α = 10%. In contrast, with p0 =
10%, the subset simulation algorithm will complete in T = log(α)/ log(p0) =
6 stages, thus achieving a coefficient of variation δ = std(α̂SS)/α = 10%
with m = δ−2 T (1 − p0)/p0 = 5400 particles. Assuming that the move step
uses only one evaluation of f per particle, the corresponding number of
evaluations would be n = m+ (T − 1)(1 − p0)m = 29700 ≪ 108.
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Table 1

Subset simulation algorithm with adaptive thresholds

Prescribe m0 < m a fixed number of “succeeding particles”. Set p0 = m0

m
.

1. Initialization (stage 0)

(a) Generate an m-sample Y j
0

i.i.d
∼ PX, 1 ≤ j ≤ m, and evaluate f

(
Y j
0

)
for all j.

(b) Set u0 = −∞ and t = 1.

2. Repeat (stage t)

(a) Threshold adaptation

• Compute the (m − m0)-th order statistic of
(
f(Y j

t−1)
)
1≤j≤m

and call

it u0
t .

• If u0
t > u, set ut = u, T = t and go to the estimation step.

• Otherwise, set ut = u0
t , Γt = {x ∈ X; f(x) > ut} and It = {j : Y j

t−1 ∈
Γt}.

(b) Reweight and resample – For each j ∈ {1, . . . ,m},

• set Y j
t,1 = Y j

t−1 if j ∈ It,

• set Y j
t,1 = Y l

t−1, with l randomly drawn in It, otherwise.

(c) Move – For each j 6∈ It,

• generate Y j
t ∈ Γt according to Y j

t ∼ Kt(Y
j
t,1, ·),

where Kt is a transition kernel that leaves qt ∝ 1Γt
πX invariant. (NB:

here, f is evaluated.)

(d) Increment t.

3. Estimation – Let mu be the number of particles such that f
(
Y j

T−1

)
> u. Set

α̂SS =
mu

m
pT−1
0 .
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3. Bayesian subset simulation.

3.1. Bayesian estimation and sequential design of experiment. Our ob-
jective is to build an estimator of α from the evaluations results of f at
some points X1,X2, . . . ,XN ∈ X, where N is the total budget of evaluations
available for the estimation. In order to design an efficient estimation proce-
dure, by which we mean both the design of experiments and the estimator
itself, we adopt a Bayesian approach: from now on, we shall denote by ξ the
random process that models our incomplete knowledge about f . For the sake
of tractability, we assume as usual that, under the prior probability that we
denote as P0, ξ is a Gaussian process (possibly with a linearly parameterized
mean, whose parameters are then endowed with a uniform improper prior;
see Bect et al., 2012, Section 2.3, for details).

Denote by En (resp. Pn) the conditional expectation (resp. conditional
probability) with respect to X1, ξ(X1), . . . ,Xn, ξ(Xn), for any n ≤ N and
assume, as in Section 2, that PX has a probability density function πX
with respect to Lebesgue’s measure. Then, a natural (mean-square optimal)
Bayesian estimator of α = PX (Γ) using n evaluations is the posterior mean

(6) En (α) = En

(∫

X

1ξ(x)>u πX(x) dx

)
=

∫

X

g̃n,u(x)πX(x) dx,

where g̃n,u(x) := En

(
1ξ(x)>u

)
= Pn

(
ξ(x) > u

)
is the coverage function of

the random set Γ (see, e.g., Chevalier et al. (2013a)). Note that, since ξ is
Gaussian, g̃n,u(x) can be readily computed for any x using kriging (see, e.g.,
Bect et al., 2012, Section 2.4).

Observe that g̃n,u ≈ 1Γ when the available evaluation results are informa-
tive enough to classify most input points correctly (with high probability)
with respect to u. This suggests that the computation of the right-hand side
of (6) should not be carried out using a brute force Monte Carlo approx-
imation, and would benefit from an SMC approach similar to the subset
simulation algorithm described in Section 2. Moreover, an SMC approach
is also beneficial for the problem of choosing (sequentially) the sampling
points X1, . . . , XN . Indeed, consider the following stepwise uncertainty re-
duction (SUR) strategy proposed by Bect et al. (2012):

Xn+1 = argmin
xn+1∈X

Jn (xn+1) ,(7)

Jn (xn+1) :=En

(
PX

(
Γ △ Γ̂n+1,u

) ∣∣∣ Xn+1 = xn+1

)

=

∫

X

En

(
τn+1,u(x)

∣∣ Xn+1 = xn+1

)
πX(x) dx.(8)
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where Γ̂n,u =
{
x ∈ X

∣∣ g̃n,u(x) > 1/2
}

and

(9) τn,u(x) := Pn

(
x ∈ Γ △ Γ̂n,u

)
= min

(
g̃n,u(x), 1− g̃n,u(x)

)
.

For moderately small values of α, it is possible to use a sample from PX

both for the approximation of the integral in the right-hand side of (8) and
for an approximate minimization of Jn (by exhaustive search in the set of
sample points). However, this simple Monte Carlo approach would require a
very large sample size to be applicable for very small values of α; a subset-
simulation-like SMC approach will now be proposed as a replacement.

3.2. A sequential Monte Carlo approach. Assume that α is small and
consider a decreasing sequence of subsets X = Γ0 ⊃ Γ1 ⊃ · · · ⊃ ΓT = Γ,
where Γt = {x ∈ X : f(x) > ut}, as in Section 2. For each t ≤ T , denote
by α̂B

t the Bayesian estimator of αt = PX (Γt) obtained from nt observations
of ξ at points X1, . . . , Xnt :

(10) α̂B

t := Ent (αt) =

∫

X

gt dPX,

where gt(x) := g̃nt,ut(x) = Pnt

(
ξ(x) > ut

)
.

The main idea of our new algorithm is to use an SMC approach to con-
struct a sequence of approximations ̂̂αBSS

t of the Bayesian estimators α̂B

t ,
1 ≤ t ≤ T (as explained earlier, the particles of these SMC approximations
will also provide suitable candidate points for the optimization of a sequential
design criterion). To this end, consider the sequence of probability density
functions qt defined by

(11) qt(x) :=
πX(x) gt(x)∫
πX(y) gt(y) dy

=
1

α̂B

t

πX(x) gt(x).

We can write a recurrence equation for the sequence of Bayesian estima-
tors α̂B

t , similar to that used for the probabilities αt in (2):

(12) α̂B

t+1 =

∫
gt+1(x)πX(x) dx = α̂B

t

∫
gt+1(x)

gt(x)
qt(x) dx.

This suggests to construct recursively a sequence of estimators
(̂̂αBSS

t

)
using

the following relation:

(13) ̂̂αBSS

t+1 = ̂̂αBSS

t

m∑

j=1

wj
t

gt+1(Y
j
t )

gt(Y
j
t )

, 0 ≤ t < T,
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where
(
wj
t , Y

j
t

)
1≤j≤m

is a weighted sample of size m targeting qt (as in

Section 2.2) and ̂̂αBSS

0 = 1. The final estimator can be written as:

(14) ̂̂αBSS

T =

T−1∏

t=0

̂̂αBSS

t+1

̂̂αBSS

t

=

T−1∏

t=0

m∑

j=1

wj
t

gt+1(Y
j
t )

gt(Y
j
t )

.

Remark 3.1. The connection between the proposed algorithm and the
original subset simulation algorithm is clear from the similarity between the
recurrence relations (2) and (12), and from the use of SMC simulation in both
algorithms to construct recursively a product-type estimator of the proba-
bility of failure (see also Del Moral, Doucet and Jasra, 2006, Section 3.2.1,
where this type of estimator is mentioned in a very general SMC framework).

Our choice for the sequence of densities q1, . . . , qT also relates to the orig-
inal subset simulation algorithm. Indeed, note that qt(x) ∝ Ent

(
1ξ>ut

πX
)
,

and recall that q̃t ∝ 1ξ>ut
πX is the distribution used in the subset simula-

tion algorithm at stage t. (This choice of instrumental density is also used
by Dubourg, Deheeger and Sudret (2013, 2011) in the context of a two-stage
kriging-based adaptive importance sampling algorithm. This is indeed a quite
natural choice, since q̃t ∝ 1ξ>ut

πX is the optimal instrumental density for
the estimation of αt by importance sampling.)

3.3. The Bayesian subset simulation (BSS) algorithm. The algorithm
consists of a sequence of stages (or iterations). For the sake of clarity, assume
first that the sequence of thresholds (ut) is given. Then, each stage t ∈ N of
the algorithm is associated to a threshold ut and the corresponding excursion
set Γt = {f > ut}.

The initialization stage (t = 0) starts with the construction of a space
filling set of points {X1, . . . , Xn0

} in X (see Section 4.2.1 for more infor-
mation on the specific technique used in this article), and an initial Monte
Carlo sample Y0 = {Y 1

0 , . . . , Y
m
0 }, consisting of a set of independent random

variables drawn from the density q0 = πX.
After initialization, each subsequent stage t ≥ 1 of BSS involves two

phases: an estimation phase, where the estimation of Γt is carried out, and a
sampling phase, where a sample Yt targeting the density qt associated to ut is
produced from the previous sample Yt−1 using the reweight/resample/move
SMC scheme described in Section 2.3.

In more details, the estimation phase consists in making Nt ≥ 0 new evalu-
ations of f to refine the estimation of Γt. The number of evaluations is meant
to be much smaller than the size m of the Monte Carlo sample—which would
be the number of evaluations in the classical subset simulation algorithm.
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The total number of evaluations at the end of the estimation phase at stage t
is denoted by nt = nt−1 +Nt. The total number of evaluations used by BSS
is thus nT = n0+

∑T
t=1 Nt. New evaluation points Xnt−1+1,Xnt−1+2, . . . ,Xnt

are determined using a SUR sampling strategy targeting the threshold ut, as
in Section 3.1 (see Appendix A for details about the numerical procedure).

In practice, the sequence of thresholds is not fixed beforehand and adaptive
techniques are used to choose the thresholds (see Section 3.4) and the number
of points per stage (see Section 3.5).

The BSS algorithm is presented in pseudo-code form in Table 2.

Remark 3.2. An algorithm involving kriging-based adaptive sampling
and subset simulation has been proposed by Dubourg and co-authors
(Dubourg, Sudret and Bourinet, 2011; Dubourg, 2011) to address the prob-
lem of reliability-based design optimization. Their approach is quite different
from this article’s, which addresses the problem of reliability analysis. In par-
ticular, there is no direct interaction, in their algorithm, between the selec-
tion of evaluation points (adaptive sampling) and subset simulation (which
is used, in its original form, to evaluate probabilities of failure).

3.4. Adaptive choice of the thresholds ut. As discussed in Section 2.4, it
can be proved that, for an idealized version of the subset simulation algorithm
with fixed thresholds u0 < u1 < · · · < uT = u, it is optimal to choose
the thresholds to make all conditional probabilities PX

(
Γt+1|Γt

)
equal. This

leads to the idea of choosing the thresholds adaptively in such a way that,
in the product estimate

α̂SS

T =
T∏

t=1

1

m

m∑

i=1

1Γt

(
Y i
t−1

)
,

each term but the last is equal to some prescribed constant p0. In other words,
ut is chosen as the (1−p0)-quantile of Yt−1. This idea was first suggested by
Au and Beck (2001, Section 5.2), on the heuristic ground that the algorithm
should perform well when the conditional probabilities are neither too small
(otherwise they are hard to estimate) nor too large (otherwise a large number
of stages is required).

Consider now an idealized BSS algorithm, where a) the initial design of
experiment is independent of Y0, b) the SUR criterion is computed exactly,
or using a discretization scheme that does not use the Yt’s; c) the mini-
mization of the SUR criterion is carried out independently of the Yt’s and
d) the particles Y j

t are independent and identically distributed according
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Table 2

Bayesian subset simulation algorithm

1. Initialization (stage 0)

(a) Evaluate f on a set of points {X1, . . . , Xn0
}, called the initial design (see

Section 4.2.1 for details)

(b) Generate an IID sample Yt = {Y 1
0 , . . . , Y

m
0 } from PX.

(c) Choose a prior P0 (see Sections 3.1 and 4.2.1 for details).

(d) Set u0 = −∞, g0 = g̃0,−∞ = 1X, n = n0 and t = 1.

2. Repeat (stage t)

(a) Estimation

• Set k = 0 and repeat

– Select a threshold ũt,k by solving Equation (18) for ut (with nt = n)

– Stop if the condition (19) is met, with nt = n and ut = ũt,k.

– Select Xn+1 using the SUR strategy (7)–(9) with respect to ũt,k.

– Evaluate f at Xn+1. Increment n and k.

• Set Nt = k, nt = n, ut = ũt,k and gt = g̃nt,ut
= Pnt

(
ξ ( · )) > ut

)
.

(b) Sampling

• Reweight : calculate weights wt
i,0 ∝ gt(Y

i
t−1)/gt−1(Y

i
t−1).

• Resample: generate a sample Ỹt,i from the distribution
∑m

i=1
wt

i,0δY i

t−1

.

• Move: for each i ≤ m, Y i
t ∽ K

(
Ỹt,i, ·

)
.

(c) Increment t.

3. Estimation – The final probability of failure is estimated by

̂̂αBSS

T =

T−1∏

t=0

(
1

m

m∑

i=1

gt+1(Y
i
t )

gt(Y i
t )

)
.
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to qt. Assumptions a)–c) ensure that the sequence of densities (qt)1≤t≤T is
deterministic given ξ. Then (see Appendix C),

(15) var

(
̂̂αBSS

T

α̂B

T

∣∣∣∣∣ ξ
)

=
1

m

T∑

t=1

κt +O

(
1

m2

)
,

where

(16) κt :=

∫
X
g2t /gt−1 πX

(α̂B

t )
2 /α̂B

t−1

− 1.

Minimizing the leading term 1
m

∑T
t=1 κt in (15) by an appropriate choice of

thresholds is not as straightforward as in the case of the subset simulation
algorithm. Assuming that gt−1 ≈ 1 wherever gt is not negligible, we get

∫

X

g2t /gt−1 πX ≈
∫

X

g2t πX ≤
∫

X

gt πX = α̂B

t ,

and therefore the variance (15) is approximately upper-bounded by

(17)
1

m

T∑

t=1

(1− p̂B

t ) /p̂
B

t ,

where p̂B

t := α̂B

t /α̂
B

t−1. Minimizing the approximate upper-bound (17) under
the constraint

T∏

t=1

p̂B

t = α̂B

T

leads to choosing the thresholds ut in such a way that p̂B

t is the same for

all stages t—that is p̂B

t = (α̂B

T )
1/T . As a consequence, we propose to choose

the thresholds adaptively using the condition that, at each stage (but the
last), the natural estimator ̂̂αBSS

t /̂̂αBSS

t−1 of p̂B

t is equal to some prescribed
probability p0. Owing to (13), this amounts to choosing ut in such a way
that

(18)
1

m

m∑

i=1

gt(Y
i
t−1)

gt−1(Y i
t−1)

= p0.

should be satisfied.
Equation (18) is easy to solve, since the left-hand side is a strictly de-

creasing and continuous function of ut (to be precise, continuity holds under
the assumption that the posterior variance of ξ does not vanish on one of
the particles). In practice, we solve (18) each time a new evaluation is made,
which yields a sequence of intermediate thresholds (denoted by ũt,0, ũt,1. . .
in Table 2) at each stage t ≥ 1. The actual value of ut at stage t is only
known after the last evaluation of stage t.
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3.5. Adaptive choice of the number Nt of evaluation at each stage. In
this section, we propose a technique to choose adaptively the number Nt of
evaluations of f that must be done at each stage of the algorithm.

Assume that t ≥ 1 is the current stage number; at the beginning of the
stage, nt−1 evaluations are available from previous stages. After several addi-
tional evaluations, the number of available observations of f is n ≥ nt−1. We
propose to stop adding new evaluations when the expected error of estima-

tion of the set Γt, measured by En

(
PX

(
Γt △ Γ̂n,ut

))
, becomes smaller than

some prescribed fraction ηt of its expected volume En (PX (Γt)) under PX.
Writing these two quantities as

En (PX (Γt)) =

∫

X

g̃n,ut(x)πX(x) dx = α̂B

t−1

∫

X

g̃n,ut(x)

gt−1(x)
qt−1(x) dx,

En

(
PX

(
Γ △ Γ̂n,ut

))
=

∫

X

τn,ut(x)πX(x) dx = α̂B

t−1

∫

X

τn,ut(x)

gt−1(x)
qt−1(x) dx,

where g̃n,ut and τn,ut have been defined in Section 3.1, and estimating the
integrals on the right-hand side using the SMC sample Yt−1, we end up with
the stopping condition

1

m

m∑

i=1

τn,ut

(
Y i
t−1

)

gt−1

(
Y i
t−1

) ≤ ηt ·
1

m

m∑

i=1

g̃n,ut

(
Y i
t−1

)

gt−1

(
Y i
t−1

) .

which, if ut is re-adjusted after each evaluation using Equation (18), boils
down to

(19)

m∑

i=1

τn,ut

(
Y i
t−1

)

gt−1

(
Y i
t−1

) ≤ ηtmp0.

Remark 3.3. In the case where several evaluations of the function can be
carried out in parallel, it is possible to select evaluation points in batches dur-
ing the sequential design phase of the algorithm. A batch-sequential version
of the SUR strategy (7)–(9) has been proposed by Chevalier et al. (2013b).

Remark 3.4. The stopping criterion (19) is slightly different from the
one proposed earlier by Li, Bect and Vazquez (2012):

∑m
i=1 τn,ut

(
Y i
t−1

)
≤

η′m. If we set η′ = ηtp0 and assume (quite reasonably) that gt−1

(
Y i
t−1

)
≈ 1

for the particles where τn,ut

(
Y i
t−1

)
is not negligible, then it becomes clear

that the two criterions are essentially equivalent. As a consequence, the left-
hand side of (19) can also be interpreted, approximately, as the expected
number of misclassified particles (where the expectation is taken with respect
to ξ, conditionally on the particles).
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Table 3

Summary of test cases

Example Name d αref

4.1.1 Four-branch series system 2 5.596·10−9

4.1.2 Deviation of a cantilever beam 2 3.937·10−6

4.1.3 Response of a nonlinear oscillator 6 1.514·10−8

4. Numerical experiments. In this section, we illustrate the proposed
algorithm on three classical examples from the structural reliability litera-
ture and compare our results with those from the classical subset simulation
algorithm and the 2SMART algorithm (Deheeger, 2008; Bourinet, Deheeger
and Lemaire, 2011).

4.1. Test cases. For each of the following test cases, the reference value
for the probability α has been obtained from one hundred independent runs
of the subset simulation algorithm with sample size m = 107 (see Table 3).

4.1.1. Four-branch series system. Our first example is a variation on
a classical structural reliability test case (see, e.g., Echard, Gayton and
Lemaire, 2011, Example 1 with k = 6), where the threshold u is modi-
fied to make α smaller. The objective is to estimate the probability α =
PX (f(X) < u), where

(20) f(x1, x2) = min





3 + 0.1(x1 − x2)
2 − (x1 + x2)/

√
2,

3 + 0.1(x1 − x2)
2 + (x1 + x2)/

√
2,

(x1 − x2) + 6/
√
2,

(x2 − x1) + 6/
√
2





and X1,X2
iid∼ N (0, 1). Taking u = −4, the probability of failure is approx-

imately 5.596·10−9, with a coefficient of variation of about 0.04%. Figure 1
(left panel) shows the failure domain and a sample from the input distribu-
tion PX.

4.1.2. Deviation of a cantilever beam. Consider a cantilever beam, with
a rectangular cross-section, subjected to a uniform load. The deflection of
the tip of the beam can written as

(21) f(x1, x2) =
3L3

2E

x1
x32

,

where x1 is the load per unit area, x2 the thickness of the beam, L = 6m and
E = 2.6·104 MPa. The input variable X1 and X2 are assumed independent,
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Fig 1: Contour plots of f in Example 4.1.1 (left) and Example 4.1.2 (right), along with a
sample of size m = 103 from PX (dots). A failure happens when x is in the gray area.

Table 4

Example 4.1.3: Means and standard deviations of the input variables.

Variable x1 x2 x3 x4 x5 x6

µi 1 1 0.1 0.5 0.45 1
σi 0.05 0.1 0.01 0.05 0.075 0.2

with X1 ∼ N
(
µ1, σ

2
1), µ1 = 10−3 MPa, σ1 = 0.2µ1, and X2 ∼ N

(
µ2, σ

2
2

)
,

µ2 = 0.3m, σ2 = 0.1µ2. A failure occurs when f is larger than u = L/325.
The probability of failure is approximately 3.937·10−6 , with a coefficient of
variation of about 0.03%. Note that the distribution of X2 has been modi-
fied, with respect to the usual formulation (see, e.g., Gayton, Bourinet and
Lemaire, 2003), to make α smaller. Figure 1 (right panel) shows a contour
plot of f , along with a sample of the input distribution.

4.1.3. Response of a nonlinear oscillator. In this example (see, e.g.,
Echard et al., 2013), the input variable is six-dimensional and the cost func-
tion is:

(22) f (x1, x2, x3, x4, x5, x6) = 3x4 −
∣∣∣∣
2x5

x1w0
2
sin
(w0x6

2

)∣∣∣∣

where w0 =
√

x2+x3

x1
. The input variables are assumed independent, normal,

with mean and variance parameters given in Table 4. A failure happens
when the cost function is larger than the threshold u = 1.5. The probability
of failure is approximately 1.514·10−8, with a coefficient of variation of about
0.04%. This variant of the problem corresponds exactly to the harder case
in Echard et al.’s article.
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4.2. Experimental settings.

4.2.1. BSS algorithm.

Initial design of experiments. We start with a initial design of size n0 =
5d (see Loeppky, Sacks and Welch, 2009, for a discussion on the size of
the initial design in computer experiments), generated as follows. First, a
compact subset X0 ⊂ X is constructed3:

X0 =
d∏

j=1

[
qjε; q

j
1−ε

]

where qjε and qj1−ε are the quantiles of order ε and 1−ε of the jth input vari-
able. Then, a “good” LHS design on X0 is obtained as the best design, accord-
ing the maximin criterion (Johnson, Moore and Ylvisaker, 1990; Morris and
Mitchell, 1995), in set of Q random LHS designs on X0. The values ε = 10−5

and Q = 104 have been used in all our experiments.

Stochastic process prior. A Gaussian process prior with an unknown con-
stant mean and a stationary anisotropic Matérn covariance function with
regularity 5/2 is used as our prior information about f (see Appendix D
for more details). The unknown mean is integrated out as usual, using an
improper uniform prior on R; as a consequence, the posterior mean coin-
cides with the so-called “ordinary kriging” predictor. The remaining hyper-
parameters (variance and range parameters of the covariance function) are
estimated, following the empirical Bayes philosophy, by maximization of the
marginal likelihood4. The hyper-parameters are estimated first on the data
from the initial design, and then re-estimated after each new evaluation.

SMC parameters. Several values of the sample size m will be tested to study
the relation between the variance of the estimator and the number of evalua-
tions: m ∈ {500, 1000, 2000, . . .}. Several iterations of an adaptive anisotropic
Gaussian Random Walk Metropolis-Hastings (RWMH) algorithm, fully de-
scribed in Appendix B, are used for the move step of the algorithm.

Stopping criterion for the SUR strategy. The number of evaluations selected
using the SUR strategy is determined adaptively, using the stopping crite-
rion (19) from Section 3.5, with ηt = 0.5 for all t < T (i.e., for all intermediate

3A similar technique is used by Dubourg and co-authors in a context of reliability-based
design optimization (Dubourg, Sudret and Bourinet, 2011; Dubourg, 2011).

4Used in combination with a uniform prior for the mean, for this specific model, the
MML method is equivalent to the Restricted Maximum Likelihood (ReML) method ad-
vocated by Stein (1999, Section 6.4).
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stages) and ηT = 0.1 δ̂m,T where δ̂m,T is the estimated coefficient of varia-

tion for the SMC estimator ̂̂αBSS

T of α̂B

T (see Appendix C). Furthermore, we
require for robustness a minimal number Nmin of evaluations at each stage,
with Nmin = 2 in all our simulations.

Adaptive choice of the thresholds. The successive thresholds ut are chosen
using the adaptive rule proposed in Section 3.4, Equation (18), with p0 = 0.1.

4.2.2. Subset simulation algorithm. The parameters used for the subset
simulation algorithm are exactly the same, in all our simulations, as those
used in the “SMC part” of the BSS algorithm (see Section 4.2.1). In par-
ticular, the number m0 of surviving particles at each stage is determined
according to the rule p0 =

m0

m = 0.1 (see Table 1), and the adaptive MCMC
algorithm described in Appendix B is used to move the particles. The num-
ber of evaluations made by the subset simulation algorithm is considered to
be m + (T − 1) (1− p0)m, as explained in Section 2.4—in other words, in
order to make the comparison as fair as possible, the additional evaluations
required by the adaptive MCMC procedure are not taken into account.

4.2.3. 2SMART algorithm. 2SMART (Bourinet, Deheeger and Lemaire,
2011) is a recently proposed algorithm for the estimation of small probabil-
ities, based on the combination of Subset Simulation with Support Vector
Machines (SVM). We will present results obtained using the implementation
of 2SMART proposed in the software package FERUM 4.1 (Bourinet, 2010),
with all parameters set to their default values (which are equal to the values
given in Bourinet, Deheeger and Lemaire’s article).

4.3. Results.

4.3.1. Illustration. We first illustrate how BSS works using one run of
the algorithm on Example 4.1.1 with sample size m = 1000. Snapshots of
the algorithm at stages t = 1, t = 5 and t = T = 9 are presented on Figure 2.
Observe that the additional evaluation points selected at each stage using
the SUR criterion (represented by black triangles) are located in the vicinity
of the current level set. The actual number of points selected at each stage,
determined by the adaptive stopping rule, is reported in Table 5. Observe also
that the set of particles (black dots in the right column) is able to effectively
capture the bimodal target distribution. Finally, observe that a significant
portion of the evaluation budget is spent on the final stage—this is again
a consequence of our adaptive stopping rule, which refines the estimation
of the final level set until the bias of the estimate is (on average under the
posterior distribution) small compared to its standard deviation.
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Fig 2: Snapshots of the BSS algorithm running on Example 4.1.1 (four branch series
system) with sample size m = 1000. The first, second and third row correspond respectively
to the end of the first stage (t = 1), the fifth stage (t = 5) and the last stage (t = T = 9).
The true level set corresponding current target level ut is represented by a thick line
and, in the left column, true level sets corresponding to previous levels (us, s < t) are
recalled using dashed contours. Evaluation points from previous stages are represented by
gray disks (in particular, the initial design of experiment of size n0 = 10 is visible on the
top-left panel) and new evaluations performed at the current levels are marked by black
triangles. In the right column, the sample points Y j

t−1, 1 ≤ j ≤ m and the level sets of the
input density πX (corresponding to probabilities 1 − 10−k, k = 1, 2, . . .) are represented
respectively by black dots and dotted lines.
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Table 5

Number of evaluations per stage on Example 4.1.1 (four-branch series system). For the
BSS algorithm, recall that the number of evaluations at each stage is chosen adaptively

(see Section 3.5) and is therefore random: the numbers shown here correspond to the run
with m = 1000 that is shown on Figure 2. For the subset simulation algorithm, the

number of evaluations is directly related to the m, q0 = 1− p0 and T (see Section 2.4).

stage number t 0 1 2 3 4 5

BSS (m = 1000) 2d = 10 2 6 3 2 3

subset simulation m q0m q0m q0m q0m q0m

stage number t 6 7 8 9 total
BSS (m = 1000) 2 3 2 28 61

subset simulation q0m q0m q0m 0 m+ (T − 1)q0m

4.3.2. Average results. This section presents average results over one hun-
dred independent runs for subset simulation, BSS and 2SMART.

Figure 3 represents the average number of evaluations used by the BSS
algorithm as a function of the sample size m. The number of evaluations spent
on the initial design is constant, since it only depends on the dimension d of
the input space. The average number of evaluations spent on the intermediate
stages (t < T ) is also very stable5 and independent of the sample size m.
Only the average number of evaluations spent on the final stage—i.e., to
learn the level set of interest—is growing with m. This growth is necessary
if one wants the estimation error to decrease when m increases: indeed, the
variance of ̂̂αBSS

T automatically goes to zero at the rate 1
m , but the bias α̂B

T −α
does not unless additional evaluations are added at the final level to refine
the estimation of Γ.

Figure 4 represents the relative Root-Mean-Square Error (RMSE) of all
three algorithms, as a function of the average number of evaluations. For the
subset simulation algorithm, the number of evaluations is directly propor-
tional to m and the RMSE decreases as expected like 1

m (with a constant
much smaller than that of plain Monte Carlo simulation). 2SMART clearly
outperforms subset simulation, but offers no simple way of tuning the accu-
racy of the final estimate (which is why only one result is presented, using the
default settings of the algorithm). Finally, BSS clearly and consistently out-
performs both 2SMART and subset simulation on these three examples: the
relative RMSE goes to zero at a rate much faster than subset simulation’s (a
feature that is made possible by the smoothness of the limit-state function,
which is leveraged by the Gaussian process model), and the sample-size m
is the only tuning parameters that needs to be acted upon in order change

5Actually, for Examples 4.1.2 and 4.1.3, it is equal to T Nmin for all runs; in other words,
the adaptive stopping rule only came into play at intermediate stages for Example 4.1.1.
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the accuracy of the final estimate. Figure 5 provides more insight into the
error of the BSS estimate by confirming that, as intended by design of the
adaptive stopping rule, variance is the main component of the RMSE (in
other words, the bias is negligible in these examples).

5. Discussion. We propose an algorithm called Bayesian subset simu-
lation for the estimation of small probabilities of failure—or more generally
the estimation of the volume of excursion of a function above a threshold—
when the limit-state function is expensive to evaluate. This new algorithm is
built upon two key techniques: the SMC method known as subset simulation
or adaptive multilevel splitting on the one hand, and the Bayesian (Gaussian
process based) SUR sampling strategy on the other hand. SMC simulation
provides the means for evaluating the Bayesian estimate of the probability
of failure, and to evaluate and optimize the SUR sampling criterion. In turn,
the SUR sampling strategy makes it possible to estimate the level sets of the
(smooth) limit-state function using a restricted number of evaluations, and
thus to build a good sequence of target density for SMC simulation. Our
numerical experiments show that this combination achieves significant sav-
ings in evaluations on three classical examples from the structural reliability
literature.

An adaptive stopping rule is used in the BSS algorithm to choose the
number of evaluation added by the SUR sampling strategy at each stage.
Evaluations at intermediate stages are not directly useful to refine the final
probability estimate, but their importance must not be overlooked: they
make it possible to learn in a robust way the level sets of the limit-state
function, and therefore to build a sequence of densities that converges to
the boundary of the failure region. Achieving a better understanding of the
connection between the number of evaluations spent on intermediate level
sets and the robustness of the algorithm is an important perspective for
future work. In practice, if the budget of evaluations permits, we recommend
running several passes of the BSS algorithm, with decreasing tolerances for
the adaptive stopping rule, to make sure that no failure mode has been
missed.

The adaptive stopping rule also makes it possible to refine the estimation
of the final level set to make sure that the posterior model is good enough
with respect to the SMC sample size. Other settings of the stopping rule
could of course be considered. For instance, BSS could stop when the bias
is expected to be of the same order than the standard deviation. Future
work will focus on fully automated variants on the BSS algorithm, where
the number of evaluations and the SMC sample size would be controlled in
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Fig 3: Average number of evaluations used by the BSS algorithm, over 100 independent
runs, as a function of the sample size m on Examples 4.1.1–4.1.3. The total number
of evaluations is split in three parts: the size n0 of the initial design (dark gray), the
number

∑T−1

t=1
Nt of evaluations in intermediate stages (light gray) and the number of

evaluations NT in the final stage (middle gray).
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(b) Example 4.1.2: Cantilever beam
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(c) Example 4.1.3: Nonlinear oscillator

Fig 4: Relative root-mean-square error (RMSE) as a function of the average number of
evaluations, over 100 independent runs, on Examples 4.1.1–4.1.3. For the subset simulation
algorithm (squares) and for the BSS algorithm (triangles), the results are provided for
several values of the sample size (m ∈ {500, 1000, 2000, . . .}). For the 2SMART algorithm
(filled circles), only one result is presented, corresponding to the default settings of the
algorithm. The expected performance of plain Monte Carlo sampling is represented by a
dashed line.
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(c) Example 4.1.3: Nonlinear oscillator

Fig 5: Relative absolute bias of the BSS estimator as a function of its coefficient of varia-
tion, estimated using 100 independent runs. The relative absolute bias is estimated using,
for each test case, the reference value αref provided in Table 3.
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order to achieve a prescribed error level.
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APPENDIX A: APPROXIMATION AND OPTIMIZATION OF THE
SUR CRITERION

This section discusses the numerical procedure that we use for the approx-
imation and optimization of the SUR criterion used at each stage of the BSS
algorithm (see Sections 3.1 and 3.3):

Jn (xn+1) =

∫

X

En,xn+1
(τn+1,ut(x)) πX(x) dx, nt−1 ≤ n ≤ nt − 1,

where we have introduced the simplified notation En,xn+1
:=

En

(
·
∣∣ Xn+1 = xn+1

)
. The numerical approach proposed here is essen-

tially the same as that used by Bect et al. (2012), with a more accurate way
of computing the integrand, following ideas of Chevalier et al. (2013b).

Observing that

Jn (xn+1) = α̂B

t−1

∫

X

En,xn+1
(τn+1,ut(x) )

gt−1(x)
qt−1(x) dx,

the integral over X can be approximated, up to a constant, using the weighted
sample Yt−1:

Jn (xn+1) ∝
∫

X

En,xn+1
(τn+1,ut(x))

gt−1(x)
qt−1(x) dx

≈
m∑

j=1

wj
t−1

En,xn+1
(τn+1,ut(x))|x=Y j

t−1

gt−1

(
Y j
t−1

) .(23)

Then, simple computations using well-known properties of Gaussian pro-
cesses under conditioning allow to obtain an explicit representation of the
integrand, in the spirit of Chevalier et al. (2013b), as a function of the Gaus-
sian process posterior mean ξ̂n and posterior covariance kn:

En,xn+1
(τn+1,ut(x)) = Φ

(
u− ξ̂n(x)

σn(x)

)
+Φ

(
u− ξ̂n(x)

sn(x, xn+1)

)

− 2Φ2

((
u
u

)
;

(
ξ̂n(x)

ξ̂n(x)

)
,

(
s2n(x, xn+1) s2n(x, xn+1)
s2n(x, xn+1) σn(x)

2

))
,(24)
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where Φ is the cumulative distribution function of the normal distribution,
Φ2 the cumulative distribution function of the bivariate normal distribution,
σ2
n(x) = kn(x, x) and s2n(x, xn+1) = kn(x, xn+1)

2/σn(xn+1)
2.

The main computational bottleneck, in a direct implementation of the ap-
proximation (23) combined with the representation (24), is in our experience
the computation of the bivariate cumulative distribution function Φ2. Indeed,
assume that the optimization of the approximate criterion is carried out by
means of an exhaustive discrete search on {Y j

t−1, 1 ≤ j ≤ m}. Then m2 eval-
uations of Φ2 are required in order select Xn+1. To mitigate this problem, we
implemented the pruning idea proposed by Bect et al. (2012, Section 3.4):
only a subset of size m0 ≤ m of the set of particles is actually used, both
for the approximation the integral and for the optimization of the criterion.
In this article, the size m0 is determined automatically as follows: first, for
each particle Y j

t−1, the current weighted probability of misclassification

τ̃ jn := wj
t−1τn,ut

(
Y j
t−1

)
/gt−1

(
Y j
t−1

)

is computed. Then, the particules are sorted according to the value of τ̃ jn,

in decreasing order: τ̃
ϕ(1)
n ≥ τ̃

ϕ(2)
n ≥ . . . ≥ τ̃

ϕ(m)
n , and m0 is set to

min (mmax
0 ,m0(τ̃n)), where m0(τ̃n) is the smallest integer such that

m0∑

j=1

τ̃ϕ(j)n ≥ ρ

m∑

j=1

τ̃ jn.

The values mmax
0 = 1000 and ρ = 0.99 have been used in all our simulations.

APPENDIX B: ADAPTIVE METROPOLIS-HASTINGS ALGORITHM
FOR THE MOVE STEP

A fixed number S of iterations of an anisotropic Gaussian Random Walk
Metropolis-Hastings (RWMH) kernel is used for the move step, with adap-
tation of the standard deviations of the increments. More precisely, for

s = 1, 2, . . . , S, starting with the set of particles
(
Y

(j)
t,1

)
1≤j≤m

produced

by the resampling step, we first produce perturbed particles:

Ỹ
(j)
t,s = Y

(j)
t,s +ΣRW,t,sUt,s, 1 ≤ j ≤ m,

where ΣRW,t,s is a diagonal matrix and Ut,s a d-dimensional standard normal

vector. The perturbed particle is accepted as Y
(j)
t,s+1 with probability

a
(j)
t,s = 1 ∧

qt

(
Ỹ

(j)
t,s

)

qt

(
Y

(j)
t,s

) ,
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and Y
(j)
t,s is kept otherwise. The kth diagonal element σ

(k)
RW,t,s of ΣRW,t,s is

initialized with

(25) σ
(k)
RW,t,1 = Cσ,init σ

(k)
X

,

where σ
(k)
X

is the standard deviation of the kth marginal of PX, and then
updated using

(26) log σ
(k)
RW,t,s+1 =

{
log σ

(k)
RW,t,s +∆σ/s if āt,s > atarget

log σ
(k)
RW,t,s −∆σ/s otherwise,

where āt,s = 1
m

∑m
j=1 a

(j)
t,s is the average acceptance probability and atarget

some prescribed target value.
The following parameter values have been used for the numerical simu-

lations presented in this article: S = 10, Cσ,init = 2/
√
d, ∆σ = log(2) and

atarget = 30%.

Remark B.1. The 1/
√
d scaling for the constant Cσ,init in (25) is mo-

tivated by the well-known theorem of Roberts, Gelman and Gilks (1997),
which provides the optimal covariance matrix 2.382Σ/d for a Gaussian tar-
get with covariance matrix Σ in high dimension.

Remark B.2. The reader is referred to Vihola (2010) and references
therein for more information on adaptive MCMC algorithms, including adap-
tive scaling algorithms such as (26). Note, however, that SMC algorithms do
not rely on the ergodic properties of such adaptive schemes.

APPENDIX C: COMPUTATION OF THE VARIANCE IN THE
IDEALIZED SETTING

This section provides a derivation of Equations (15) and (16), together
with an explicit expression of the estimated coefficient of variation δ̂m,T

used in Section 4.2.1. Both are obtained in the setting of the idealized BSS
algorithm described in Section 3.4, where the samples Yt =

{
Y 1
t , . . . , Y

m
t

}

are assumed IID (with density qt) and mutually independent.
Recall from Equation (27) that the BSS estimator can be written as

(27) ̂̂αBSS

T =
T∏

t=1

̂̂αBSS

t

̂̂αBSS

t−1

=
T∏

t=1


 1

m

m∑

j=1

gt(Y
j
t−1)

gt−1(Y
j
t−1)


 =

T∏

t=1

̂̂pBSS

t ,
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where we have set, for all t ∈ {1, . . . , T},

̂̂pBSS

t =
1

m

m∑

j=1

gt(Y
j
t−1)

gt−1(Y
j
t−1)

.

Observe that the random variables ̂̂pBSS

t are independent, with mean

E

(
̂̂pBSS

t

)
=

∫

X

gt
gt−1

qt−1 =

∫

X

gt
gt−1

gt−1 πX
α̂B

t−1

=
α̂B

t

α̂B

t−1

= p̂B

t

and variance

var
(
̂̂pBSS

t

)
=

1

m
var

(
gt
(
Y 1
t−1

)

gt−1

(
Y 1
t−1

)
)

=
1

m

[∫

X

g2t
g2t−1

gt−1 πX
α̂B

t−1

−
(

α̂B

t

α̂B

t−1

)2
]

=
1

m

[
1

α̂B

t−1

∫

X

g2t
gt−1

πX −
(

α̂B

t

α̂B

t−1

)2
]

=
1

m
(p̂B

t )
2 κt,

where κt is defined by (16). Therefore, the coefficients of variation δm,t of
the sequence of estimators ̂̂αBSS

t obey the recurrence relation δ2m,t =
1
mκt +(

1 + 1
mκt

)
δ2m,t−1, and we conclude that

δ2m,T =
1

m
κT +

(
1 +

1

m
κT

)
1

m
κT−1

+

(
1 +

1

m
κT

) (
1 +

1

m
κT−1

)
1

m
κT−2 + · · ·

=
1

m

T∑

t=1

κt +O

(
1

m2

)
,

which proves Equations (15)–(16). We construct an estimator of the coeffi-
cient of variation recursively, using the relation

δ̂2m,t =
1

m
κ̂t +

(
1 +

1

m
κ̂t

)
δ̂2m,t−1,

with

κ̂t =
(
̂̂pBSS

t

)−2
· 1

m

m∑

j=1




gt

(
Y j
t−1

)

gt−1

(
Y j
t−1

) − ̂̂pBSS

t




2

.



30 J. BECT, L. LI & E. VAZQUEZ

APPENDIX D: STOCHASTIC PROCESS PRIOR

The stochastic process prior used for the numerical experiments in this
article is a rather standard Gaussian process model. We describe it here in
full detail for the sake of completeness. First, ξ is written as

ξ(x) = µ+ ξ0(x),

where µ ∈ R is an unknown constant mean and ξ0 a zero-mean stationary
Gaussian process with anisotropic covariance function

(28) k(x, y) = σ2κν




√√√√
d∑

i=1

(x[i] − y[i])2

ρ2i


 , x, y ∈ R

d,

where x[i], y[i] denote the ith coordinate of x and y, and κν the Matérn
correlation function of regularity ν (see Stein, 1999, Section 2.10). The scale
parameters ρ1, . . . , ρd (characteristic correlation lengths) are usually called
the range parameters of the covariance function.

In this article, the regularity parameter ν is set to the fixed value ν =
5/2, leading to the following analytical expression for the Matérn correlation
function:

(29) κν (h) =

(
1 + h̃+

1

3
h̃2
)

exp
(
−h̃
)
, with h̃ =

√
10 |h| .

As a consequence, ξ is twice differentiable in the mean-square sense, with
sample paths almost surely in the Sobolev space W s,2 for all s < 5/2
(Scheuerer, 2010, Theorem 3).

Remark D.1. The parametrization used in Equation (29) is the one ad-
vocated by Stein (1999, Section 2.10). Other parametrizations are sometimes
used in the literature; e.g., Rasmussen and Williams (2006, Section 4.2.1) use
h̃ =

√
5 |h|.
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