
HAL Id: hal-01253706
https://hal.science/hal-01253706v4

Submitted on 23 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian subset simulation
Julien Bect, Ling Li, Emmanuel Vazquez

To cite this version:
Julien Bect, Ling Li, Emmanuel Vazquez. Bayesian subset simulation. SIAM/ASA Journal on Un-
certainty Quantification, 2017, 5 (1), pp.762-786. �10.1137/16M1078276�. �hal-01253706v4�

https://hal.science/hal-01253706v4
https://hal.archives-ouvertes.fr


SIAM/ASA J. UNCERTAINTY QUANTIFICATION c© 2017 Society for Industrial and Applied Mathematics
Vol. 5, pp. 762–786 and American Statistical Association

Bayesian Subset Simulation∗

Julien Bect† , Ling Li‡ , and Emmanuel Vazquez†

Abstract. We consider the problem of estimating a probability of failure α, defined as the volume of the
excursion set of a function f : X ⊆ Rd → R above a given threshold, under a given probability
measure on X. In this paper, we combine the popular subset simulation algorithm [S.-K. Au and
J. L. Beck, Probab. Eng. Mech., 16 (2001), pp. 263–277] and our sequential Bayesian approach for
the estimation of a probability of failure [J. Bect et al., Stat. Comput., 22 (2012), pp. 773–793].
This makes it possible to estimate α when the number of evaluations of f is very limited and α is
very small. The resulting algorithm is called Bayesian subset simulation (BSS). A key idea, as in
the subset simulation algorithm, is to estimate the probabilities of a sequence of excursion sets of f
above intermediate thresholds, using a sequential Monte Carlo (SMC) approach. A Gaussian process
prior on f is used to define the sequence of densities targeted by the SMC algorithm and drive the
selection of evaluation points of f to estimate the intermediate probabilities. Adaptive procedures
are proposed to determine the intermediate thresholds and the number of evaluations to be carried
out at each stage of the algorithm. Numerical experiments illustrate that BSS achieves significant
savings in the number of function evaluations with respect to other Monte Carlo approaches.

Key words. probability of failure, computer experiments, sequential design, Gaussian process, stepwise uncer-
tainty reduction, sequential Monte Carlo
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1. Introduction. Probabilistic reliability analysis has become over the last 30 years an
essential part of the engineer’s toolbox (see, e.g., [19, 44, 47]). One of the central problems in
probabilistic reliability analysis is the computation of the probability of failure

(1) α =
∫

X
1f≤0 dPX

of a system (or a component in a multicomponent system; see, e.g., [48]), where PX is a
probability measure over some measurable space (X,B) representing all possible sources of
uncertainty acting on the system—both epistemic and aleatory—and f : X→ R is the so-called
limit-state function, such that f takes positive values when the system behaves reliably, and
negative values when the system behaves unreliably or fails. It is assumed in this paper that X
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is a subset of Rd—in other words, we consider reliability problems where all uncertain factors
can be described as a d-dimensional random vector. Numerous examples of applications that
fall into this category can be found in the literature (see, for instance, [5, 18, 34, 39, 54, 55]).

Two major difficulties usually preclude a brute force Monte Carlo (MC) approach, that
is, using the estimator

α̂MC =
1
m

m∑
i=1

1f(Xi)≤0 , Xi
i.i.d.∼ PX ,

which requires m evaluations of f . First, the evaluation of f for a given x ∈ X often relies on
one or several complex computer programs (e.g., partial differential equation solvers) that take
a long time to run. Second, in many applications, the failure region Γ = {x ∈ X | f(x) ≤ 0} is
a rare event under the probability PX; that is, the probability of failure α = PX(Γ) is small.
When α is small, the standard deviation of α̂MC is approximately

√
α/m. To estimate α by

Monte Carlo with a standard deviation of 0.1α thus requires approximately 100/α evaluations
of f . As an example, with α = 10−3 and 10 minutes per evaluation, this means almost two
years of computation time.

The first issue—designing efficient algorithms to estimate α in the case of an expensive-
to-evaluate limit-state function—can be seen as a problem of design and analysis of computer
experiments (see, e.g., [50]), bearing some similarities to the problem of global optimization
(see [53] and references therein). Several sequential design strategies based on Gaussian pro-
cess models have been proposed in the literature, and spectacular evaluation savings have
been demonstrated on various examples with moderately small α (typically, 10−2 or 10−3);
see [6] for a review of fully sequential strategies and [3, 27] for examples of two-stage strategies.
The closely related problem of quantile estimation has also been investigated along similar
lines [1, 13, 46].

A key idea in addressing the second issue—i.e., in estimating a small probability of
failure—is to consider a decreasing sequence of events Γ1 ⊃ Γ2 ⊃ · · · ⊃ ΓT = Γ such that the
conditional probabilities PX(Γt | Γt−1) are reasonably large and therefore easier to estimate
than α itself. Then, sequential Monte Carlo (SMC) simulations [21] can be used to produce
estimates p̂t of the conditional probabilities PX (Γt | Γt−1), leading to a product-form estimate∏T
t=1 p̂t for α. This idea, called subset simulation, was first proposed in [2] for the simulation

of rare events in structural reliability analysis,1 but actually goes back to the much older
importance splitting (or multilevel splitting) technique used for the simulation of rare events
in Markovian models (see, e.g., [36] and references therein). Subset simulation has since be-
come one of the most popular techniques for the computation of small probabilities of failure,
and the theoretical properties of several (most of the time idealized) variants of the algorithm
have recently been investigated by several authors (see, e.g., [11, 14]). However, because of the
direct use of a Monte Carlo estimator for p̂t at each stage t, the subset simulation algorithm
is not applicable when f is expensive to evaluate.

In this paper we propose a new algorithm, called Bayesian subset simulation (BSS), which
tackles both issues at once using ideas from the sequential design of computer experiments

1A very similar algorithm had, in fact, been proposed earlier by [23], but for a quite different purpose
(estimating the probability of a rare event under the bootstrap distribution).



764 JULIEN BECT, LING LI, AND EMMANUEL VAZQUEZ

and from the literature on SMC methods. Section 2 reviews the subset simulation algorithm
from the point of view of SMC techniques to pave the way for the introduction of our new
algorithm. Section 3 describes the algorithm itself, and section 4 presents numerical results.
Finally, section 5 concludes the paper with a discussion.

2. Subset simulation: A sequential Monte Carlo algorithm. This section recalls the
main ideas of the classical subset simulation algorithm [2], which, although not originally
presented as such, can be seen as an SMC sampler [14, 21].

2.1. Idealized subset simulation (with fixed levels and independent and identically
distributed (i.i.d.) sampling). We consider the problem of estimating the probability α of
a rare event Γ of the form Γ = {x ∈ X : f(x) > u}, where u ∈ R and f : X → R, using
pointwise evaluations of f . Note that the limit-state function (see section 1) can be defined
as x 7→ u − f(x) with our notation. Assuming, for the sake of simplicity, that PX has a
probability density function πX with respect to Lebesgue’s measure, we have

α =
∫

X
1f(x)>u πX(x) dx .

The key idea of the subset simulation algorithm is to introduce an increasing (finite)
sequence of thresholds −∞ = u0 < u1 < u2 · · · < uT = u, which determine a corresponding
decreasing sequence of subsets,

X = Γ0 ⊃ Γ1 ⊃ · · · ⊃ ΓT = Γ, Γt := {x ∈ X : f(x) > ut} ,

of the input space X. Let αt = PX (Γt). The decreasing sequence (αt)0≤t≤T obeys the recur-
rence formula

(2) αt+1 = αt PX (Γt+1 | Γt) = αt

∫
1Γt+1(x) qt(x) dx,

where qt stands for the truncated density

(3) qt(x) =
1Γt(x)πX(x)∫
1Γt(y)πX(y) dy

.

The small probability α = αT can thus be rewritten as a product of conditional probabilities,
which are larger (and therefore easier to estimate) than α:

α =
T∏
t=1

pt, pt := PX (Γt | Γt−1) .

Assume that for each t ∈ {0, 1, . . . , T − 1}, a sample (Y j
t )1≤j≤m of i.i.d. random variables

from the truncated density qt is available. Then, each conditional probability pt can be
estimated by the corresponding Monte Carlo estimator p̂t = 1

m

∑m
j=1 1Γt

(
Y j
t−1
)
, and α can

be estimated by the product-form estimator α̂SS =
∏T
t=1 p̂t. By choosing the thresholds ut

in such a way that the conditional probabilities pt are high, α can be estimated using fewer
evaluations of f than what would have been necessary using a simple Monte Carlo approach
(see section 2.4 for a quantitative example).
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2.2. Sequential Monte Carlo simulation techniques. Generating exact i.i.d. draws from
the densities qt is usually not possible, at least not efficiently, even if a method to generate
i.i.d. samples from q0 = πX is available. Indeed, although the accept-reject algorithm (see,
e.g., [49, section 2.3]) could be used in principle, it would be extremely inefficient when t is
close to T , that is, when PX{Γt} becomes small. This is where SMC simulation techniques
are useful.

Given a sequence (qt)0≤t<T of probability density functions over X, SMC samplers sequen-
tially generate, for each target density qt, a weighted sample Yt = ((wjt , Y

j
t ))1≤j≤m, where

wjt ≥ 0,
∑

j w
j
t = 1, and Y j

t ∈ X. The random vectors Y j
t are usually called particles in

the SMC literature, and the weighted sample Yt is said to target the distribution qt. The
particles are, in general, neither independent nor distributed according to qt, but when the
sample size m goes to infinity, their empirical distribution µ

(m)
t =

∑m
j=1w

j
t δY jt

converges to
the target distribution—that is, to the distribution with probability density function qt—in
the sense that ∫

X
h(x) dµ(m)

t (x) =
m∑
j=1

wjt h(Y j
t ) →

∫
X
h(x) qt(x) dx

for a certain class of integrable functions h.
In practice, each weighted sample Yt is generated from the previous one, Yt−1, using

transformations; SMC algorithms are thus expected to be efficient when each density qt is,
in some sense, close to its predecessor density qt−1. The specific transformations that are
used in the subset simulation algorithm are described next. The reader is referred to [21, 42]
and references therein for a broader view of SMC sampling techniques, and to [25] for some
theoretical results on the convergence (law of large numbers, central limit theorems) of SMC
algorithms.

2.3. Reweight/resample/move. We now describe the reweight/resample/move scheme
that is used in the subset simulation algorithm to turn a weighted sample Yt−1 targeting
qt−1 ∝ 1Γt−1 πX into a weighted sample Yt targeting qt ∝ 1Γt πX. This scheme, used, for
instance in [17], can be seen as a special case of the more general SMC sampler of [21].2

Assume a weighted sample Yt−1 = ((wjt−1, Y
j
t−1))1≤j≤m targeting qt−1 has been obtained

at stage t− 1. The reweight step produces a new weighted sample Yt,0 = ((wjt,0, Y
j
t−1))1≤j≤m

that targets qt by changing only the weights in Yt−1:

wjt,0 ∝
qt
(
Y j
t−1
)

qt−1
(
Y j
t−1
) wjt−1.

The resample and move steps follow the reweighting step. These steps aim at avoiding
the degeneracy of the sequence of weighted samples—i.e., the accumulation of most of the
probability mass on a small number of particles with large weights.

The simplest variant of resampling is the multinomial resampling scheme. It produces a
new weighted sample Yt,1 = ((wjt , Y

j
t,1))1≤j≤m, where the new particles Y j

t,1 have equal weights

2See in particular section 3.1.1, Remark 1, and section 3.3.2.3.
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wjt = 1
m and are i.i.d. according to the empirical distribution

∑m
j=1w

j
t,0 δY jt−1

. In this work,

we use the slightly more elaborate residual resampling scheme (see, e.g., [42]), which is known
to outperform multinomial resampling [24, section 3.2]. As in multinomial resampling, the
residual resampling scheme produces a weighted sample with equal weights wjt = 1

m .
The resampling step alone does not prevent degeneracy, since the resulting sample contains

copies of the same particles. The move step restores some diversity by moving the particles
according to a Markov transition kernel Kt (for instance, a random walk Metropolis–Hastings
kernel; see, e.g., [49]) that leaves qt invariant:∫

qt(x)Kt(x,dx′) = qt(x′) dx′.

Remark 1. In the special case of the subset simulation algorithm, all weights are actually
equal before the reweighting step, and, considering the inclusion Γt ⊂ Γt−1, the reweighting
formula takes the form

wjt,0 ∝ 1Γt(Y
j
t−1).

In other words, the particles that are outside the new subset Γt are given a zero weight, and
the other weights are simply normalized to sum to one. Note also that the resampling step
discards particles outside of Γt (those with zero weight at the reweighting step).

Remark 2. Note that Au and Beck’s original algorithm [2] does not use separate resam-
ple/move steps as described in this section. Instead, it uses a slightly different (but essentially
similar) sampling scheme to populate each level: assuming that Lt = m/mt is an integer,
where mt denotes the number of particles from stage t − 1 that belong to Γt, they start mt

independent Markov chains of length Lt from each of the particles (called “seeds”). Both vari-
ants of the algorithm have the property, in the case of fixed levels, that the particles produced
at level t are exactly distributed according to qt.

Remark 3. In the general version of the reweight/resample/move procedure, the resam-
pling step is carried out only when some degeneracy criterion—such as the effective sample
size (ESS)—falls below a threshold (see, e.g., [21, 22]).

2.4. Practical subset simulation: Adaptive thresholds. It is easy to prove that the subset
simulation estimator α̂SS =

∏T
t=1 p̂t is unbiased. Moreover, according to Proposition 3 in [14],

it is asymptotically normal in the large-sample-size limit:

(4)
√
m
α̂SS − α

α

D−−−−→
m→∞

N
(
0;σ2) ,

where D−→ denotes convergence in distribution and

(5) σ2 ≈
T∑
t=1

1− pt
pt

,

when the Markov chain Monte Carlo (MCMC) kernel has good mixing properties (see [14]
for the exact expression of σ2). For a given number T of stages, the right-hand side of (5) is
minimal when all conditional probabilities are equal, that is, when pt = α1/T .
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In practice, however, the value of α is, of course, unknown, and it is not possible to choose
the sequence of threshold beforehand to make all the conditional probabilities equal. Instead,
a value p0 is chosen—say, p0 = 10%—and the thresholds are tuned in such a way that, at
each stage t, p̂t = p0. A summary of the resulting algorithm is provided in Algorithm 1.

Equations (4) and (5) can be used to quantify the number of evaluations of f required to
reach a given coefficient of variation with the subset simulation estimator α̂SS. Indeed, in the
case where all conditional probabilities are equal, we have

(6) var (α̂SS/α) ≈ T

m

1− p0

p0
,

with T = log(α)/ log(p0). For example, take α = 10−6. With the simple Monte Carlo
estimator, the number of evaluations of f is equal to the sample size m: approximately n =
δ−2 α−1 = 108 evaluations are required to achieve a coefficient of variation δ = std(α̂MC)/α =
10%. In contrast, with p0 = 10%, the subset simulation algorithm will complete in T =
log(α)/ log(p0) = 6 stages, thus achieving a coefficient of variation δ = std(α̂SS)/α = 10% with
m = δ−2 T (1−p0)/p0 = 5400 particles. Assuming that the move step uses only one evaluation
of f per particle, the corresponding number of evaluations would be n = m+(T−1)(1−p0)m =
29700� 108.

Remark 4. The value p0 = 0.1 was used in the original paper of Au and Beck, on the
ground that it had been “found to yield good efficiency” [2, section 5]. Based on the approx-
imate variance formula (6), Zuev et al. [56] argue that the variance is roughly proportional
for a given total number of evaluations to (1 − p0)/(p0 (log(p0))2), and conclude3 that any
p0 ∈ [0.1; 0.3] should yield quasi-optimal results for any α.

3. Bayesian subset simulation.

3.1. Bayesian estimation and sequential design of experiments. Our objective is to
build an estimator of α from the evaluation results of f at some points X1, X2, . . . , XN ∈ X,
where N is the total budget of evaluations available for the estimation. In order to design
an efficient estimation procedure, by which we mean both the design of experiments and the
estimator itself, we adopt a Bayesian approach: from now on, the unknown function f is
seen as a sample path of a random process ξ. In other words, the distribution of ξ is a prior
about f . As in [6, 15, 52], the rationale for adopting a Bayesian viewpoint is to design a good
estimation procedure in an average sense. This point of view has been largely explored in the
literature of computer experiments (see, e.g., [50]) and that of Bayesian optimization (see [32]
and references therein).

For the sake of tractability, we assume as usual that under the prior probability which we
denote by P0, ξ is a Gaussian process (possibly with a linearly parameterized mean, whose
parameters are then endowed with a uniform improper prior; see [6, section 2.3] for details).

3Their analysis is based on the observation that the total number of evaluations is equal to mT— in other
words, that m new samples must be produced at each stage. Some authors (e.g., [11]) consider a variant where
the particles that come from the previous stage are simply copied to the new set of particles, untouched by
the move step. In this case, a similar analysis suggests that (1) the optimal value of p0 actually depends on α
and is somewhere between 0.63 (for α = 0.01) and 1.0 (when α → 0), and (2) the value of δ2 is only weakly
dependent on p0, as long as p0 is not too close to 0 (say, p0 ≥ 0.1).
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Algorithm 1
Subset simulation algorithm with adaptive thresholds.

Prescribe m0 < m a fixed number of “succeeding particles.” Set p0 = m0
m
.

1. Initialization (stage 0)
(a) Generate an m-sample Y j0

i.i.d.∼ PX, 1 ≤ j ≤ m, and evaluate f
(
Y j0
)

for all j.
(b) Set u0 = −∞ and t = 1.

2. Repeat (stage t)

(a) Threshold adaptation

• Compute the (m−m0)th order statistic of (f(Y jt−1))1≤j≤m and call it u0
t .

• If u0
t > u, set ut = u, T = t and go to the estimation step.

• Otherwise, set ut = u0
t and Γt = {x ∈ X; f(x) > ut}.

(b) Sampling

• Reweight : Set mt = card{j ≤ m : Y jt−1 ∈ Γt} and wjt,0 = 1
mt

1
Y
j
t−1∈Γt

.

• Resample: Generate a sample (Ỹ jt )1≤j≤m from the distribution
∑m
j=1 w

j
t,0δY jt−1

.
• Move: For each j ≤ m, draw Y jt v K(Ỹ jt , · ). (NB: here, f is evaluated.)

(c) Increment t.

3. Estimation: Let mu be the number of particles such that f(Y jT−1) > u. Set

α̂SS =
mu

m
pT−1

0 .

Denote by En (resp., Pn) the conditional expectation (resp., conditional probability) with
respect to X1, ξ(X1), . . . , Xn, ξ(Xn) for any n ≤ N , and assume, as in section 2, that PX has
a probability density function πX with respect to the Lebesgue measure. Then, a natural
(mean-square optimal) Bayesian estimator of α = PX (Γ) using n evaluations is the posterior
mean

(7) En (α) = En

(∫
X
1ξ(x)>u πX(x) dx

)
=
∫

X
g̃n,u(x)πX(x) dx,

where g̃n,u(x) := En(1ξ(x)>u) = Pn( ξ(x) > u) is the coverage function of the random set Γ
(see, e.g., [16]). Note that since ξ is Gaussian, g̃n,u(x) can be readily computed for any x
using the kriging equations (see, e.g., [6, section 2.4]).

Observe that g̃n,u ≈ 1Γ when the available evaluation results are informative enough to
classify most input points correctly (with high probability) with respect to u. This sug-
gests that the computation of the right-hand side of (7) should not be carried out using a
brute force Monte Carlo approximation, and would benefit from an SMC approach similar
to the subset simulation algorithm described in section 2. Moreover, combining an SMC
approach with the Bayesian viewpoint is also beneficial for the problem of choosing (sequen-
tially) the sampling points X1, . . . , XN . In our work, we focus on a stepwise uncertainty
reduction (SUR) strategy [6, 52]. Consider the function L : Γ̂ 7→ PX(Γ 4 Γ̂), which quantifies
the loss incurred by choosing an estimator Γ̂ instead of the excursion set Γ, where 4 stands
for the symmetric difference operator. Here, at each iteration n, we choose the estimator
Γ̂n,u = {x ∈ X

∣∣ g̃n,u(x) > 1/2}. A SUR strategy, for the loss L and the estimators Γ̂n,u,
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consists in choosing a point Xn+1 at step n in such a way as to minimize the expected loss at
step n+ 1:

(8) Xn+1 = argmin
xn+1∈X

Jn (xn+1) ,

where

(9) Jn (xn+1) := En
(
PX(Γ 4 Γ̂n+1,u)

∣∣ Xn+1 = xn+1
)
.

For computational purposes, Jn can be rewritten as an integral over X of the expected prob-
ability of misclassification τn+1,u (see [6] for more details):

(10) Jn(xn+1) =
∫

X
En
(
τn+1,u(x)

∣∣ Xn+1 = xn+1
)
πX(x) dx,

where

(11) τn,u(x) := Pn
(
x ∈ Γ 4 Γ̂n,u

)
= min

(
g̃n,u(x), 1− g̃n,u(x)

)
.

For moderately small values of α, it is possible to use a sample from PX both for the approx-
imation of the integral in the right-hand side of (10) and for an approximate minimization
of Jn (by exhaustive search in the set of sample points). However, this simple Monte Carlo
approach would require a very large sample size to be applicable for very small values of α; a
subset simulation–like SMC approach will now be proposed as a replacement.

3.2. A sequential Monte Carlo approach. Assume that α is small, and consider a de-
creasing sequence of subsets X = Γ0 ⊃ Γ1 ⊃ · · · ⊃ ΓT = Γ, where Γt = {x ∈ X : f(x) > ut},
as in section 2. For each t ≤ T , denote by α̂B

t the Bayesian estimator of αt = PX(Γt) obtained
from nt observations of ξ at points X1, . . . , Xnt :

(12) α̂B
t := Ent (αt) =

∫
X
gt dPX,

where gt(x) := g̃nt,ut(x) = Pnt(ξ(x) > ut).
The main idea of our new algorithm is to use an SMC approach to construct a sequence

of approximations ̂̂αBSS
t of the Bayesian estimators α̂B

t , 1 ≤ t ≤ T (as explained earlier,
the particles of these SMC approximations will also provide suitable candidate points for the
optimization of a sequential design criterion). To this end, consider the sequence of probability
density functions qt defined by

(13) qt(x) :=
πX(x) gt(x)∫
πX(y) gt(y) dy

=
1
α̂B
t

πX(x) gt(x).

We can write a recurrence equation for the sequence of Bayesian estimators α̂B
t , similar to

that used for the probabilities αt in (2):

(14) α̂B
t+1 =

∫
gt+1(x)πX(x) dx = α̂B

t

∫
gt+1(x)
gt(x)

qt(x) dx.
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This suggests constructing recursively a sequence of estimators (̂̂αBSS
t ) using the following

relation:

(15) ̂̂αBSS
t+1 = ̂̂αBSS

t

m∑
j=1

wjt
gt+1(Y j

t )

gt(Y
j
t )

, 0 ≤ t < T,

where (wjt , Y
j
t )1≤j≤m is a weighted sample of size m targeting qt (as in section 2.2) and ̂̂αBSS

0 =
1. The final estimator can be written as

(16) ̂̂αBSS
T =

T−1∏
t=0

̂̂αBSS
t+1̂̂αBSS
t

=
T−1∏
t=0

m∑
j=1

wjt
gt+1(Y j

t )

gt(Y
j
t )

.

Remark 5. The connection between the proposed algorithm and the original subset simu-
lation algorithm is clear from the similarity between the recurrence relations (2) and (14), and
from the use of SMC simulation in both algorithms to construct recursively a product-type
estimator of the probability of failure (see also [21, section 3.2.1], where this type of estimator
is mentioned in a very general SMC framework).

Our choice for the sequence of densities q1, . . . , qT also relates to the original subset simula-
tion algorithm. Indeed, note that qt(x) ∝ Ent(1ξ>ut πX), and recall from (3) that qt ∝ 1ξ>ut πX
is the target distribution used in the subset simulation algorithm at stage t. This choice of
instrumental density is also used in [27, 28] in the context of a two-stage adaptive importance
sampling algorithm. This is, indeed, a quite natural choice, since q̃t ∝ 1ξ>ut πX is the optimal
instrumental density for the estimation of αt by importance sampling (see, e.g., [49, Theo-
rem 3.12]).

3.3. The Bayesian subset simulation (BSS) algorithm. The algorithm consists of a
sequence of stages (or iterations). For the sake of clarity, assume first that the sequence of
thresholds (ut) is given. Then, each stage t ∈ N of the algorithm is associated to a threshold
ut and the corresponding excursion set Γt = {f > ut}.

The initialization stage (t = 0) starts with the construction of a space filling set of
points {X1, . . . , Xn0} in X4 and an initial Monte Carlo sample Y0 = {Y 1

0 , . . . , Y
m

0 }, consisting
of a set of independent random variables drawn from the density q0 = πX.

After initialization, each subsequent stage t ≥ 1 of BSS involves two phases: an estimation
phase, where the estimation of Γt is carried out, and a sampling phase, where a sample Yt

targeting the density qt associated to ut is produced from the previous sample Yt−1 using the
reweight/resample/move SMC scheme described in section 2.3.

In greater detail, the estimation phase consists in making Nt ≥ 0 new evaluations of f
to refine the estimation of Γt. The number of evaluations is meant to be much smaller than
the size m of the Monte Carlo sample—which would be the number of evaluations in the
classical subset simulation algorithm. The total number of evaluations at the end of the

4See section 4.2.1 for more information on the specific technique used in this paper. Note that it is, of
course, possible, albeit not required, to use the BSS algorithm to first perform a change of variables in order to
work, e.g., in the standard Gaussian space. Whether this will improve the performance of the BSS algorithm
is very difficult to say, in general, and will depend on the example at hand.
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estimation phase at stage t is denoted by nt = nt−1 + Nt. The total number of evaluations
used by BSS is thus nT = n0 +

∑T
t=1Nt. New evaluation points Xnt−1+1, Xnt−1+2, . . . , Xnt

are determined using a SUR sampling strategy5 targeting the threshold ut, as in section 3.1
(see supplementary material SM1 of M107827 01.pdf [local/web 348KB] for details about the
numerical procedure).

In practice, the sequence of thresholds is not fixed beforehand, and adaptive techniques
are used to choose the thresholds (see section 3.4) and the number of points per stage (see
section 3.5).

The BSS algorithm is presented in pseudocode form in Algorithm 2.

Remark 6. Algorithms involving Gaussian process–based adaptive sampling and subset
simulation have been proposed by Dubourg and coauthors [26, 29] and by Huang, Chen,
and Zhu [37]. Dubourg’s work addresses a different problem (namely, reliability-based design
optimization). The paper by Huang, Chen, and Zhu, published very recently, addresses the
estimation of small probabilities of failure. We emphasize that, unlike BSS, none of these
algorithms involves a direct interaction between the selection of evaluation points (adaptive
sampling) and subset simulation—which is simply applied, in its original form, to the posterior
mean of the Gaussian process (also known as kriging predictor).

3.4. Adaptive choice of the thresholds ut. As discussed in section 2.4, it can be proved
that for an idealized version of the subset simulation algorithm with fixed thresholds u0 <
u1 < · · · < uT = u, it is optimal to choose the thresholds to make all conditional probabilities
PX
(
Γt+1|Γt

)
equal. This leads to the idea of choosing the thresholds adaptively in such a way

that in the product estimate

α̂SS
T =

T∏
t=1

1
m

m∑
i=1

1Γt
(
Y i
t−1
)
,

each term but the last is equal to some prescribed constant p0. In other words, ut is chosen as
the (1− p0)-quantile of Yt−1. This idea was first suggested in [2, section 5.2] on the heuristic
ground that the algorithm should perform well when the conditional probabilities are neither
too small (otherwise they are hard to estimate) nor too large (otherwise a large number of
stages is required).

Consider now an idealized BSS algorithm, where (a) the initial design of the experiment
is independent of Y0; (b) the SUR criterion is computed exactly, or using a discretization
scheme that does not use the Yt’s; (c) the minimization of the SUR criterion is carried out
independently of the Yt’s; and (d) the particles Y j

t are i.i.d. according to qt. Assumptions (a)–
(c) ensure that the sequence of densities (qt)1≤t≤T is deterministic, given ξ. Then (see Ap-
pendix A),

(17) var

( ̂̂αBSS
T

α̂B
T

∣∣∣∣∣ ξ
)

=
1
m

T∑
t=1

κt +O

(
1
m2

)
,

5Other sampling strategies (also known as “sequential design” or “active learning” methods) could be used
as well. See [6] for a review and comparison of sampling criteria.

http://epubs.siam.org/doi/suppl/10.1137/16M1078279/suppl_file/M107827_01.pdf
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Algorithm 2
Bayesian subset simulation algorithm.

1. Initialization (stage 0)
(a) Evaluate f on a set of points {X1, . . . , Xn0}, called the initial design (see section 4.2.1 for

details).
(b) Generate an i.i.d. sample Yt = {Y 1

0 , . . . , Y
m
0 } from PX.

(c) Choose a prior P0 (see sections 3.1 and 4.2.1 for details).
(d) Set u0 = −∞, g0 = g̃0,−∞ = 1X, n = n0, and t = 1.

2. Repeat (stage t)

(a) Estimation
• Set k = 0 and repeat

– Select a threshold ũt,k by solving (20) for ut (with nt = n).
– Stop if the condition (21) is met, with nt = n and ut = ũt,k.
– Select Xn+1 using the SUR strategy (8)–(11) with respect to ũt,k.
– Evaluate f at Xn+1. Increment n and k.

• Set Nt = k, nt = n, ut = ũt,k and gt = g̃nt,ut = Pnt
(
ξ ( · ) > ut

)
.

(b) Sampling

• Reweight : Calculate weights wjt,0 ∝ gt(Y
j
t−1)/gt−1(Y jt−1), 1 ≤ j ≤ m.

• Resample: Generate a sample (Ỹ jt )1≤j≤m from the distribution
∑m
j=1 w

j
t,0δY jt−1

.
• Move: For each j ≤ m, draw Y jt v K(Ỹ jt , · ).

(c) Increment t.

3. Estimation: The final probability of failure is estimated by

̂̂αBSS
T =

T−1∏
t=0

(
1
m

m∑
j=1

gt+1(Y jt )
gt(Y jt )

)
.

where

(18) κt :=

∫
X g

2
t /gt−1 πX

(α̂B
t )2 /α̂B

t−1
− 1.

Minimizing the leading term 1
m

∑T
t=1 κt in (17) by an appropriate choice of thresholds is not

as straightforward as in the case of the subset simulation algorithm. Assuming that gt−1 ≈ 1
wherever gt is not negligible (which is a reasonable assumption, since gt(x) = Pnt(ξ(x) > ut)
and ut > ut−1), we get ∫

X
g2
t /gt−1 πX ≈

∫
X
g2
t πX ≤

∫
X
gt πX = α̂B

t ,

and therefore the variance (17) is approximately upper-bounded by

(19)
1
m

T∑
t=1

1− p̂B
t

p̂B
t

,
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where p̂B
t := α̂B

t /α̂
B
t−1. Minimizing the approximate upper bound (19) under the constraint

T∏
t=1

p̂B
t = α̂B

T

leads to choosing the thresholds ut in such a way that p̂B
t is the same for all stages t, that is,

p̂B
t = (α̂B

T )1/T . As a consequence, we propose to choose the thresholds adaptively using the
condition that at each stage (but the last), the natural estimator ̂̂αBSS

t /̂̂αBSS
t−1 of p̂B

t is equal to
some prescribed probability p0. Owing to (15), this amounts to choosing ut in such a way
that

(20)
1
m

m∑
i=1

gt(Y i
t−1)

gt−1(Y i
t−1)

= p0

should be satisfied.
Equation (20) is easy to solve, since the left-hand side is a strictly decreasing and contin-

uous function of ut (to be precise, continuity holds under the assumption that the posterior
variance of ξ does not vanish on one of the particles). In practice, we solve (20) each time a
new evaluation is made, which yields a sequence of intermediate thresholds (denoted by ũt,0,
ũt,1, . . . in Algorithm 2) at each stage t ≥ 1. The actual value of ut at stage t is only known
after the last evaluation of stage t.

Remark 7. Alternatively, the ESS could be used to select the thresholds, as proposed
in [22]. This idea will not be pursued in this paper. The threshold selected by the ESS-based
approach will be close to the threshold selected by (20) when all of the ratios gt(Y i

t−1)/gt−1(Y i
t−1),

or most of them, are either close to zero or close to one.

3.5. Adaptive choice of the number Nt of evaluation at each stage. In this section,
we propose a technique to choose adaptively the number Nt of evaluations of f that must be
done at each stage of the algorithm.

Assume that t ≥ 1 is the current stage number; at the beginning of the stage, nt−1 evalu-
ations are available from previous stages. After several additional evaluations, the number of
available observations of f is n ≥ nt−1. We propose to stop adding new evaluations when the
expected error of estimation of the set Γt, measured by En(PX(Γt 4 Γ̂n,ut)), becomes smaller
than some prescribed fraction ηt of its expected volume En(PX(Γt)) under PX. Writing these
two quantities as

En (PX (Γt)) =
∫

X
g̃n,ut(x)πX(x) dx = α̂B

t−1

∫
X

g̃n,ut(x)
gt−1(x)

qt−1(x) dx,

En
(
PX

(
Γ 4 Γ̂n,ut

))
=
∫

X
τn,ut(x)πX(x) dx = α̂B

t−1

∫
X

τn,ut(x)
gt−1(x)

qt−1(x) dx,

where g̃n,ut and τn,ut have been defined in section 3.1, and estimating the integrals on the
right-hand side using the SMC sample Yt−1, we end up with the stopping condition

1
m

m∑
i=1

τn,ut(Y i
t−1)

gt−1(Y i
t−1)

≤ ηt ·
1
m

m∑
i=1

g̃n,ut(Y i
t−1)

gt−1(Y i
t−1)

,
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Table 1
Summary of test cases.

Example Name d αref

1 four-branch series system 2 5.596·10−9

2 deviation of a cantilever beam 2 3.937·10−6

3 response of a nonlinear oscillator 6 1.514·10−8

which, if ut is readjusted after each evaluation using (20), boils down to

(21)
m∑
i=1

τn,ut(Y i
t−1)

gt−1(Y i
t−1)

≤ ηtmp0.

Remark 8. In the case where several evaluations of the function can be carried out in
parallel, it is possible to select evaluation points in batches during the sequential design phase
of the algorithm. A batch-sequential version of the SUR strategy (8)–(11) has been proposed
in [15].

Remark 9. The stopping criterion (21) is slightly different from the one proposed earlier
in [41]:

∑m
i=1 τn,ut(Y

i
t−1) ≤ η′m. If we set η′ = ηtp0 and assume (quite reasonably) that

gt−1(Y i
t−1) ≈ 1 for the particles where τn,ut(Y i

t−1) is not negligible, then it becomes clear that
the two criteria are essentially equivalent. As a consequence, the left-hand side of (21) can
also be interpreted, approximately, as the expected number of misclassified particles (where
the expectation is taken with respect to ξ, conditionally on the particles).

4. Numerical experiments. In this section, we illustrate the proposed algorithm on three
classical examples from the structural reliability literature and compare our results with those
from the classical subset simulation algorithm and the 2SMART algorithm [10, 20]. These
examples are not actually expensive to evaluate, which makes it possible to analyze the per-
formance of the algorithms through extensive Monte Carlo simulations, but the results are
nonetheless relevant to the case of expensive-to-evaluate simulators since performance is mea-
sured in terms of the number of function evaluations (see section 4.3.2 for a discussion).

The computer programs used to conduct these numerical experiments are freely avail-
able from https://sourceforge.net/p/kriging/contrib-bss under the Lesser General Public Li-
cense [33]. They are written in the Matlab/Octave language and use the STK toolbox [7] for
Gaussian process modeling. For convenience, a software package containing both the code
for the BSS algorithm itself and the STK toolbox is provided as supplementary material file
M107827 02.zip [local/web 767KB].

4.1. Test cases. For each of the following test cases, the reference value for the probabil-
ity α has been obtained from 100 independent runs of the subset simulation algorithm with
sample size m = 107 (see Table 1).

Example 1 (four-branch series system). Our first example is a variation on a classical struc-
tural reliability test case (see, e.g., [30, Example 1], with k = 6), where the threshold u is
modified to make α smaller. The objective is to estimate the probability α = PX(f(X) < u),

https://sourceforge.net/p/kriging/contrib-bss
M107827_02.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1078279/suppl_file/M107827_02.zip
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where

(22) f(x1, x2) = min


3 + 0.1(x1 − x2)2 − (x1 + x2)/

√
2,

3 + 0.1(x1 − x2)2 + (x1 + x2)/
√

2,
(x1 − x2) + 6/

√
2,

(x2 − x1) + 6/
√

2


and X1, X2

i.i.d.∼ N (0, 1). Taking u = −4, the probability of failure is approximately 5.596·10−9,
with a coefficient of variation of about 0.04%. Figure 1 (left panel) shows the failure domain
and a sample from the input distribution PX.
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Figure 1. Contour plots of f in Example 1 (left) and Example 2 (right), along with a sample of size m = 103

from PX (dots). A failure happens when x is in the gray area.

Example 2 (deviation of a cantilever beam). Consider a cantilever beam, with a rectangular
cross-section, subjected to a uniform load. The deflection of the tip of the beam can be written
as

(23) f(x1, x2) =
3L4

2E
x1

x3
2
,

where x1 is the load per unit area, x2 is the thickness of the beam, L = 6 m, and E =
2.6·104 MPa. The input variables X1 and X2 are assumed independent, with X1 ∼ N

(
µ1, σ

2
1),

µ1 = 10−3 MPa, σ1 = 0.2µ1, and X2 ∼ N
(
µ2, σ

2
2
)
, µ2 = 0.3 m, σ2 = 0.1µ2. A failure occurs

when f is larger than u = L/325. The probability of failure is approximately 3.937·10−6, with
a coefficient of variation of about 0.03%. Note that the distribution of X2 has been modified,
with respect to the usual formulation (see, e.g., [35]), to make α smaller. Figure 1 (right
panel) shows a contour plot of f , along with a sample of the input distribution.

Example 3 (response of a nonlinear oscillator). In this example (see, e.g., [31]), the input
variable is six-dimensional, and the cost function is

(24) f (x1, x2, x3, x4, x5, x6) = 3x4 −
∣∣∣∣ 2x5

x1w02 sin
(w0x6

2

)∣∣∣∣ ,
where w0 =

√
x2+x3
x1

. The input variables are assumed independent and normal, with mean
and variance parameters given in Table 2. A failure happens when the cost function is lower
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Table 2
Example 3: Means and standard deviations of the input variables.

Variable x1 x2 x3 x4 x5 x6

µi 1 1 0.1 0.5 0.45 1
σi 0.05 0.1 0.01 0.05 0.075 0.2

than the threshold u = 0. The probability of failure is approximately 1.514 ·10−8, with a
coefficient of variation of about 0.04%. This variant of the problem corresponds exactly to
the harder case in [31].

4.2. Experimental settings.

4.2.1. BSS algorithm.
Initial design of experiments. We start with an initial design of size n0 = 5d (see [43] for

a discussion on the size of the initial design in computer experiments), generated as follows.
First, a compact subset X0 ⊂ X is constructed:6

X0 =
d∏
j=1

[
qjε; q

j
1−ε

]
,

where qjε and qj1−ε are the quantiles of order ε and 1 − ε of the jth input variable. Then,
a “good” Latin hypercube sampling (LHS) design on [0; 1]d is obtained as the best design
according to the maximin criterion [38, 45] in a set of Q random LHS designs, and then scaled
to X0 using an affine mapping. The values ε = 10−5 and Q = 104 have been used in all of our
experiments.

Stochastic process prior. A Gaussian process prior with an unknown constant mean and a
stationary anisotropic Matérn covariance function with regularity 5/2 is used as our prior in-
formation about f (see supplementary material SM2 of M107827 01.pdf [local/web 348KB] for
more details). The unknown mean is integrated out as usual, using an improper uniform prior
on R; as a consequence, the posterior mean coincides with the so-called ordinary kriging pre-
dictor. The remaining hyperparameters (variance and range parameters of the covariance
function) are estimated, following the empirical Bayes philosophy, by maximization of the
marginal likelihood.7 The hyperparameters are estimated first on the data from the initial
design and then re-estimated after each new evaluation. In practice, we recommend checking
the estimated parameters once in a while using, e.g., leave-one-out cross-validation.

SMC parameters. Several values of the sample size m will be tested to study the relation be-
tween the variance of the estimator and the number of evaluations: m ∈ {500, 1000, 2000, . . .}.
Several iterations of an adaptive Gaussian random walk Metropolis–Hastings algorithm, fully
described in supplementary material SM3 of M107827 01.pdf [local/web 348KB], are used for
the move step of the algorithm.

6A similar technique is used by Dubourg and coauthors in a context of reliability-based design optimization
[26, 29].

7Used in combination with a uniform prior for the mean, for this specific model, the MML method is
equivalent to the restricted maximum likelihood (ReML) method advocated in [51, section 6.4].

http://epubs.siam.org/doi/suppl/10.1137/16M1078279/suppl_file/M107827_01.pdf
http://epubs.siam.org/doi/suppl/10.1137/16M1078279/suppl_file/M107827_01.pdf
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Stopping criterion for the SUR strategy. The number of evaluations selected using the SUR
strategy is determined adaptively, using the stopping criterion (21) from section 3.5, with
ηt = 0.5 for all t < T (i.e., for all intermediate stages) and ηT = 0.1 δ̂m,T , where δ̂m,T is
the estimated coefficient of variation for the SMC estimator ̂̂αBSS

T of α̂B
T (see Appendix A).

Furthermore, we require for robustness a minimal number Nmin of evaluations at each stage,
with Nmin = 2 in all our simulations.

Adaptive choice of the thresholds. The successive thresholds ut are chosen using the adap-
tive rule proposed in section 3.4, by solving (20) with p0 = 0.1. This value has been found
experimentally to be neither too large (to avoid having a large number of stages) nor too small
(to avoid losing too many particles during the resampling step).8

4.2.2. Subset simulation algorithm. The parameters used for the subset simulation al-
gorithm are exactly the same, in all of our simulations, as those used in the “SMC part” of
the BSS algorithm (see section 4.2.1). In particular, the number m0 of surviving particles at
each stage is determined according to the rule p0 = m0

m = 0.1 (see Table 1), and the adaptive
MCMC algorithm described in supplementary material SM3 of M107827 01.pdf [local/web
348KB] is used to move the particles. The number of evaluations made by the subset sim-
ulation algorithm is considered to be m + (T − 1) (1− p0)m, as explained in section 2.4—in
other words, in order to make the comparison as fair as possible, the additional evaluations
required by the adaptive MCMC procedure are not taken into account.

4.2.3. 2SMART algorithm. 2SMART [10, 20] is another algorithm for the estimation of
small probabilities, which is based on the combination of subset simulation with support vector
machines. We will present results obtained using the implementation of 2SMART proposed
in the software package FERUM 4.1 [8], with all parameters set to their default values (which
are equal to the values given in [10]).

Remark 10. Several other methods addressing the estimation of small probabilities of
failure for expensive-to-evaluate functions have appeared recently in the structural reliability
literature [4, 9, 12, 31, 37]. 2SMART was selected as a reference method due to the availability
of a free software implementation in FERUM. A more comprehensive benchmark is left for
future work.

4.3. Results.

4.3.1. Illustration. We first illustrate how BSS works using one run of the algorithm on
Example 1 with sample size m = 1000. Snapshots of the algorithm at stages t = 1, t = 5,
and t = T = 9 are presented in Figure 2. Observe that the additional evaluation points
selected at each stage using the SUR criterion (represented by black triangles) are located
in the vicinity of the current level set. The actual number of points selected at each stage,
determined by the adaptive stopping rule, is reported in Table 3. Observe also that the set
of particles (black dots in the right column) is able to effectively capture the bimodal target

8Note that the considerations of Remark 4 on the choice of p0 are not relevant here, since the computational
cost of our method is mainly determined by the number of function evaluations, which is not directly related to
the number of particles to be simulated. See also supplementary material SM4 of M107827 01.pdf [local/web
348KB].

http://epubs.siam.org/doi/suppl/10.1137/16M1078279/suppl_file/M107827_01.pdf
http://epubs.siam.org/doi/suppl/10.1137/16M1078279/suppl_file/M107827_01.pdf
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Table 3
Number of evaluations per stage in Example 1 (four-branch series system). For the BSS algorithm, recall

that the number of evaluations at each stage is chosen adaptively (see section 3.5) and is therefore random: the
numbers shown here correspond to the run with m = 1000 that is shown in Figure 2. For the subset simulation
algorithm, the number of evaluations is directly related to the m, q0 = 1− p0, and T (see section 2.4).

Stage number t 0 1 2 3 4 5
BSS (m = 1000) 2d = 10 2 6 3 2 3
Subset simulation m q0m q0m q0m q0m q0m

Stage number t 6 7 8 9 Total
BSS (m = 1000) 2 3 2 28 61
Subset simulation q0m q0m q0m 0 m+ (T − 1)q0m

distribution. Finally, observe that a significant portion of the evaluation budget is spent on
the final stage—this is again a consequence of our adaptive stopping rule, which refines the
estimation of the final level set until the bias of the estimate is (on average under the posterior
distribution) small compared to its standard deviation.

4.3.2. Average results. This section presents average results over 100 independent runs
for subset simulation, BSS, and 2SMART.

Figure 3 represents the average number of evaluations used by the BSS algorithm as a
function of the sample size m. The number of evaluations spent on the initial design is
constant, since it depends only on the dimension d of the input space. The average number
of evaluations spent on the intermediate stages (t < T ) is also very stable9 and independent
of the sample size m. Only the average number of evaluations spent on the final stage—i.e.,
to learn the level set of interest—is growing with m. This growth is necessary if one wants
the estimation error to decrease when m increases: indeed, the variance of ̂̂αBSS

T automatically
goes to zero at the rate 1

m , but the bias α̂B
T − α does not unless additional evaluations are

added at the final level to refine the estimation of Γ.
Figure 4 represents the relative root-mean-square error (RMSE) of all three algorithms

as a function of the average number of evaluations. For the subset simulation algorithm, the
number of evaluations is directly proportional to m, and the RMSE decreases as expected
like 1

m (with a constant much smaller than that of plain Monte Carlo simulation). 2SMART
clearly outperforms subset simulation but offers no simple way of tuning the accuracy of
the final estimate (which is why only one result is presented, using the default settings of
the algorithm). Finally, BSS clearly and consistently outperforms both 2SMART and subset
simulation in these three examples: the relative RMSE goes to zero at a rate much faster than
for subset simulation (a feature that is made possible by the smoothness of the limit-state
function, which is leveraged by the Gaussian process model), and the sample size m is the
only tuning parameter that needs to be acted upon in order change the accuracy of the final
estimate. Figure 5 provides more insight into the error of the BSS estimate by confirming
that, as intended by design of the adaptive stopping rule, variance is the main component of
the RMSE (in other words, the bias is negligible in these examples).

9Actually, for Examples 2 and 3, it is equal to T Nmin for all runs; in other words, the adaptive stopping
rule only came into play at intermediate stages for Example 1.
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Figure 2. Snapshots of the BSS algorithm running in Example 1 (four-branch series system) with sample
size m = 1000. The first, second, and third rows correspond, respectively, to the end of the first stage (t = 1),
the fifth stage (t = 5), and the last stage (t = T = 9). The true level set corresponding to current target level ut
is represented by a thick line, and in the left column, true level sets corresponding to previous levels (us, s < t)
are recalled using dashed contours. Evaluation points from previous stages are represented by gray disks (in
particular, the initial design of experiment of size n0 = 10 is visible on the top-left panel), and new evaluations
performed at the current levels are marked by black triangles. In the right column, the sample points Y jt−1,
1 ≤ j ≤ m, and the level sets of the input density πX (corresponding to probabilities 1− 10−k, k = 1, 2, . . .) are
represented, respectively, by black dots and dotted lines.
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(a) Example 1: Four-branch.
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(b) Example 2: Cantilever beam.
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(c) Example 3: Nonlinear oscillator.

Figure 3. Average number of evaluations used by the BSS algorithm, over 100 independent runs, as a
function of the sample size m in Examples 1–3. The total number of evaluations is split into three parts: the
size n0 of the initial design (dark gray), the number

∑T−1
t=1 Nt of evaluations in intermediate stages (light gray),

and the number of evaluations NT in the final stage (medium gray).

Finally, note that the BSS estimation involves a computational overhead with respect to
subset simulation. A careful analysis of the run times of BSS in the three examples (provided
as supplementary material SM4.1 of M107827 01.pdf [local/web 348KB]) reveals that the
computational overhead of BSS is approximately equal to C0 + C1mNSUR, where NSUR is
the total number of evaluations selected using the SUR criterion (i.e., all evaluations except
for the initial design of experiments). This shows that in our implementation, the most time-
consuming part of the algorithm is the selection of additional evaluation points using the SUR
criterion. However, in spite of its computational overhead, BSS is preferable to the subset
simulation algorithm in terms of computation time in the three test cases, as soon as the
evaluation time τsim of f is large enough—larger than, say, 10 ms for the considered range of
relative RMSE (see supplementary material SM4.2 of M107827 01.pdf [local/web 348KB] for
details). Consider, for instance, Example 1 with τsim = 1 s: BSS with sample size m = 8000

http://epubs.siam.org/doi/suppl/10.1137/16M1078279/suppl_file/M107827_01.pdf
http://epubs.siam.org/doi/suppl/10.1137/16M1078279/suppl_file/M107827_01.pdf
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(a) Example 1: Four-branch.
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(c) Example 3: Nonlinear oscillator.

Figure 4. Relative RMSE as a function of the average number of evaluations, over 100 independent runs, in
Examples 1–3. For the subset simulation algorithm (squares) and for the BSS algorithm (triangles), the results
are provided for several values of the sample size (m ∈ {500, 1000, 2000, . . .}). For the 2SMART algorithm
(filled circles), only one result is presented, corresponding to the default settings of the algorithm. The expected
performance of plain Monte Carlo sampling is represented by a dashed line. The mixed line represents a simple
approximation of the relative RMSE for the subset simulation algorithm: Tα

m
1−p0
p0

, where Tα = d logα
log p0

e.

achieves a relative RMSE of approximately 10% in about 3 minutes,10 while subset simulation
requires about 19 hours to achieve a comparable accuracy.

5. Discussion. We propose an algorithm called Bayesian subset simulation (BSS) for the
estimation of small probabilities of failure—or, more generally, the estimation of the volume
of excursion of a function above a threshold—when the limit-state function is expensive to
evaluate. This new algorithm is built upon two key techniques: the SMC method known as
subset simulation or adaptive multilevel splitting on the one hand, and the Bayesian (Gaussian
process–based) SUR sampling strategy on the other hand. SMC simulation provides the means
to evaluate the Bayesian estimate of the probability of failure, and to evaluate and optimize

10This computation time can be further decomposed as follows: 1 minute of evaluation time, corresponding
to N̄ = 63.2 evaluations on average (see Figure 3), and 2 minutes of algorithm overhead.



782 JULIEN BECT, LING LI, AND EMMANUEL VAZQUEZ

0.5k

2k

8k

32k

128k

coefficient of variation

r
e
la
t
iv
e
a
b
s
o
lu
t
e
b
ia
s

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

(a) Example 1: Four-branch.
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(c) Example 3: Nonlinear oscillator.

Figure 5. Relative absolute bias of the BSS estimator as a function of its coefficient of variation, estimated
using 100 independent runs. The relative absolute bias is estimated using, for each test case, the reference
value αref provided in Table 1.

the SUR sampling criterion. In turn, the SUR sampling strategy makes it possible to estimate
the level sets of the (smooth) limit-state function using a restricted number of evaluations,
and thus to build a good sequence of target density for SMC simulation. Our numerical
experiments show that this combination achieves significant savings in evaluations in three
classical examples from the structural reliability literature.

An adaptive stopping rule is used in the BSS algorithm to choose the number of evaluations
added by the SUR sampling strategy at each stage. Evaluations at intermediate stages are
not directly useful in refining the final probability estimate, but their importance must not
be overlooked: they make it possible to learn in a robust way the level sets of the limit-state
function, and therefore to build a sequence of densities that converges to the boundary of
the failure region. Achieving a better understanding of the connection between the number
of evaluations spent on intermediate level sets and the robustness of the algorithm is an
important perspective for future work. In practice, if the budget of evaluations permits, we
recommend running several passes of the BSS algorithm, with decreasing tolerances for the



BAYESIAN SUBSET SIMULATION 783

adaptive stopping rule, to make sure that no failure mode has been missed.
The adaptive stopping rule also makes it possible to refine the estimation of the final level

set to make sure that the posterior model is good enough with respect to the SMC sample size.
Other settings of the stopping rule could, of course, be considered. For instance, BSS could
stop when the bias is expected to be of the same order as the standard deviation. Future work
will focus on fully automated variants of the BSS algorithm, where the number of evaluations
and the SMC sample size would be controlled in order to achieve a prescribed error level.

Appendix A. Computation of the variance in the idealized setting. This section provides
a derivation of (17) and (18), together with an explicit expression of the estimated coefficient
of variation δ̂m,T used in section 4.2.1. Both are obtained in the setting of the idealized BSS
algorithm described in section 3.4, where the samples Yt = {Y 1

t , . . . , Y
m
t } are assumed i.i.d.

(with density qt) and mutually independent.
Recall from (16) that the BSS estimator can be written as

(25) ̂̂αBSS
T =

T∏
t=1

̂̂αBSS
t̂̂αBSS
t−1

=
T∏
t=1

 1
m

m∑
j=1

gt(Y
j
t−1)

gt−1(Y j
t−1)

 =
T∏
t=1

̂̂pBSS
t ,

where we have set, for all t ∈ {1, . . . , T},

̂̂pBSS
t =

1
m

m∑
j=1

gt(Y
j
t−1)

gt−1(Y j
t−1)

.

Observe that the random variables ̂̂pBSS
t are independent, with mean

E
(̂̂pBSS

t

)
=
∫

X

gt
gt−1

qt−1 =
∫

X

gt
gt−1

gt−1 πX
α̂B
t−1

=
α̂B
t

α̂B
t−1

= p̂B
t

and variance

var
(̂̂pBSS

t

)
=

1
m

var

(
gt
(
Y 1
t−1
)

gt−1
(
Y 1
t−1
))

=
1
m

[∫
X

g2
t

g2
t−1

gt−1 πX
α̂B
t−1

−
(
α̂B
t

α̂B
t−1

)2
]

=
1
m

[
1

α̂B
t−1

∫
X

g2
t

gt−1
πX −

(
α̂B
t

α̂B
t−1

)2
]

=
1
m

(p̂B
t )2 κt,

where κt is defined by (18). Therefore, the coefficients of variation δm,t of the sequence of
estimators ̂̂αBSS

t obey the recurrence relation δ2
m,t = 1

mκt + (1 + 1
mκt) δ

2
m,t−1, and we conclude

that

δ2
m,T =

1
m
κT +

(
1 +

1
m
κT

)
1
m
κT−1
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+
(

1 +
1
m
κT

) (
1 +

1
m
κT−1

)
1
m
κT−2 + · · ·

=
1
m

T∑
t=1

κt +O

(
1
m2

)
,

which proves (17)–(18). We construct an estimator of the coefficient of variation recursively,
using the relation

δ̂2
m,t =

1
m
κ̂t +

(
1 +

1
m
κ̂t

)
δ̂2
m,t−1,

with

κ̂t =
(̂̂pBSS

t

)−2
· 1
m

m∑
j=1

(
gt
(
Y j
t−1
)

gt−1
(
Y j
t−1
) − ̂̂pBSS

t

)2

.
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sur-Yvette, France, 2012; available online at https://tel.archives-ouvertes.fr/tel-00765457.

[41] L. Li, J. Bect, and E. Vazquez, Bayesian subset simulation: A kriging-based subset simulation algo-
rithm for the estimation of small probabilities of failure, in Proceedings of the PSAM 11 and ESREL
2012 Conference on Probabilistic Safety Assessment, Helsinki, Finland, 2012.

[42] J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer, New York, 2008.
[43] J. L. Loeppky, J. Sacks, and W. J. Welch, Choosing the sample size of a computer experiment: A

practical guide, Technometrics, 51 (2009), pp. 366–376.
[44] R. E. Melchers, Structural Reliability: Analysis and Prediction, 2nd ed., John Wiley & Sons, New York,

1999.
[45] M. D. Morris and T. J. Mitchell, Exploratory designs for computational experiments, J. Statist.

Plann. Inference, 43 (1995), pp. 381–402.
[46] J. Oakley, Estimating percentiles of uncertain computer code outputs, J. Roy. Statist. Soc. Ser. C, 53

(2004), pp. 83–93.
[47] P. P. O’Connor and A. Kleyner, Practical Reliability Engineering, John Wiley & Sons, Chichester,

UK, 2012.
[48] M. Rausand and A. Høyland, System Reliability Theory: Models, Statistical Methods, and Applica-

tions, 2nd ed., John Wiley & Sons, Hoboken, NJ, 2004.
[49] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed., Springer-Verlag, New York,

2004.
[50] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments,

Springer-Verlag, New York, 2003.
[51] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer-Verlag, New York, 1999.
[52] E. Vazquez and J. Bect, A sequential Bayesian algorithm to estimate a probability of failure, in Pro-

ceedings of the 15th IFAC Symposium on System Identification (SYSID 2009), Saint-Malo, France,
2009.

[53] J. Villemonteix, E. Vazquez, and E. Walter, An informational approach to the global optimization
of expensive-to-evaluate functions, J. Global Optim., 44 (2009), pp. 509–534.

[54] P. H. Waarts, Structural Reliability Using Finite Element Methods, Ph.D. thesis, Delft University of
Technology, Delft, The Netherlands, 2000.

[55] E. Zio and N. Pedroni, Estimation of the functional failure probability of a thermal-hydraulic passive
system by Subset Simulation, Nucl. Eng. Des., 239 (2009), pp. 580–599.

[56] K. M. Zuev, J. L. Beck, S.-K. Au, and L. S. Katafygiotis, Bayesian post-processor and other
enhancements of Subset Simulation for estimating failure probabilities in high dimensions, Comput.
& Structures, 92–93 (2012), pp. 283–296.

https://tel.archives-ouvertes.fr/tel-00765457

	1 Introduction
	2 Subset simulation: A sequential Monte Carlo algorithm
	2.1 Idealized subset simulation (with fixed levels and independent and identically distributed (i.i.d.) sampling)
	2.2 Sequential Monte Carlo simulation techniques
	2.3 Reweight/resample/move
	2.4 Practical subset simulation: Adaptive thresholds

	3 Bayesian subset simulation
	3.1 Bayesian estimation and sequential design of experiments
	3.2 A sequential Monte Carlo approach
	3.3 The Bayesian subset simulation (BSS) algorithm
	3.4 Adaptive choice of the thresholds ut
	3.5 Adaptive choice of the number Nt of evaluation at each stage

	4 Numerical experiments
	4.1 Test cases
	4.2 Experimental settings
	4.2.1 BSS algorithm
	4.2.2 Subset simulation algorithm
	4.2.3 2SMART algorithm

	4.3 Results
	4.3.1 Illustration
	4.3.2 Average results


	5 Discussion
	Appendix A. Computation of the variance in the idealized setting

