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Baker’s Explicit abc-Conjecture and Waring’s problem

Shanta Laishram

Abstract. The conjecture of Masser-Oesterlé, popularly known as abc-conjecture has many consequences. We show that Waring’s
problem is a consequence of an explicit version of abc−conjecture due to Baker.
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1. Introduction

For any positive integer i > 1, let N = N(i) =
∏
p|i p be the radical of i, P (i) be the greatest prime

factor of i and ω(i) be the number of distinct prime factors of i and we put N(1) = 1, P (1) = 1 and
ω(1) = 0. The well known conjecture of Masser-Oesterlé states that

Conjecture 1.1. abc-conjecture of Masser and Oesterlé: For any given ε > 0 there exists a
computable constant cε depending only on ε such that if

a+ b = c (1.1)

where a, b and c are coprime positive integers, then

c ≤ cε

∏
p|abc

p

1+ε

.

This is popularly known as abc−conjecture. The abc−conjecture has already become well known
for the number of interesting consequences it entails. Many famous conjectures and theorems in num-
ber theory would follow immediately from the abc−conjecture. An explicit version of this conjecture
due to Baker [Bak94] is the following:

Conjecture 1.2. Explicit abc−conjecture: Let a, b and c be pairwise coprime positive integers
satisfying (1.1). Then

c <
6

5
N

(logN)ω

ω!

where N = N(abc) and ω = ω(N).

We observe that N = N(abc) ≥ 2 whenever a, b, c satisfy (1.1). We shall refer to Conjecture 1. as
abc−conjecture and Conjecture 1. as explicit abc−conjecture. We have
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Theorem 1. (Laishram and Shorey [LaSh12] ) Assume Conjecture 1. Let a, b and c be pairwise
coprime positive integers satisfying (1.1) and N = N(abc). Then we have

c < N1+ 3
4 . (1.2)

Further for 0 < ε ≤ 3
4 , there exists ωε depending only ε such that when N = N(abc) ≥ Nε =

∏
p≤pωε p,

we have

c < κεN
1+ε

where

κε =
6

5
√

2πmax(ω, ωε)
≤ 6

5
√

2πωε

with ω = ω(N). Here are some values of ε, ωε and Nε.

ε 3
4

7
12

6
11

1
2

34
71

5
12

1
3

ωε 14 49 72 127 175 548 6460

Nε e37.1101 e204.75 e335.71 e679.585 e1004.763 e3894.57 e63727

Thus c < N2 which was conjectured in Granville and Tucker [GrTu02].

2. Ideal Waring’s Conjecture

For each integer k ≥ 2, denote by g(k) the smallest integer g such that any positive integer is the
sum of at most g integers of the form xk. A result of Euler implies that a lower bound for g(k) is
2k +

⌊
(3/2)k

⌋
− 2. The so-called Ideal Waring’s Conjecture is the following conjecture, dating back

to 1853:

Conjecture 2.1. For any k ≥ 2, the equality g(k) = 2k +
⌊
(3

2)k
⌋
− 2 holds.

Theorem 2. Assume Conjecture 1.. Then Conjecture 2. is true.

Conjecture 2. has a long and interesting history. We refer to Waldschmidt [Mic00, pp 12] for
further details. We prove Theorem 2. in the next section.

3. Proof of Theorem 2.

We write

3k = 2kq + r with 0 < r < 2k and q =
⌊
(
3

2
)k
⌋
.

L. E. Dickson and S.S. Pillai (see for instance [HaWr54, Chap. XXI] or [Nar86, p. 226 Chap. IV])
proved independently in 1939 that the ideal Waring’s Conjecture(Conjecture 2.) holds provided that
the remainder r = 3k − 2kq satisfies

r ≤ 2k − q − 3. (3.3)

The condition (3.3) is satisfied for 3 ≤ k ≤ 471600000 as well as for sufficiently large k, as shown by
K. Mahler [Mah57] in 1957 by means of Ridout’s extension of the Thue-Siegel-Roth theorem.
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Therefore we may now suppose that k > 471600000 and further (3.3) does not hold, i.e.,

r ≥ 2k − q − 2 (3.4)

Let gcd(3k, 2k(q + 1)) = 3v and set

a = 3k−v, c = 3−v2k(q + 1) and b = c− a = 3−v(2k − r).

Then a, b, c are relatively prime positive integers satisfying a+ b = c and

b = 3−v(2k − r) ≤ 3−v(q + 3)

by (3.4). Then

N = N(abc) = N

(
3k−v · 2k(q + 1)

3v
· b
)
≤ 6b(q + 1)

3v
≤ 6(q + 1)(q + 3)

32v
. (3.5)

First assume that N < e63727. Then by (1.2), we have

2k ≤ 2k(q + 1)

3v
< N

7
4 < e63727· 7

4

implying

k <
63727 · 7
4 · log 2

< 160893.

This is a contradiction since k > 471600000. Therefore we may suppose that N ≥ e63727. By Theorem
1. with ε = 1

3 and (3.5), we have

2k(q + 1)

3v
<

6

5
√

2π · 6460

(
6(q + 1)(q + 3)

32v

) 4
3

.

implying

2k <
6

7
3

5
√

12920π
q

5
3 (1 +

3

q
)
5
3 .

Since 3k > 2kq, we have q < (3
2)k. Also 1 + 3

q < 2 since k ≥ 3. Therefore

2k <
6

7
3 · 2

5
3

5
√

12920π

(
3

2

) 5k
3

<

((
3

2

) 5
3

)k
< 2k.

This is a contradiction. Hence the assertion.
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