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Extreme value statistics of 2d Gaussian Free Field: effect of finite domains

Xiangyu Cao, Alberto Rosso, and Raoul Santachiara
LPTMS, CNRS (UMR 8626), Université Paris-Saclay, 91405 Orsay, France∗

We study minima statistics of the 2d Gaussian Free Field on circles in the unit disk with Dirichlet
boundary condition. Free energy distributions of the associated Random Energy models are exactly
calculated in the high temperature phase, and shown to satisfy the duality property, which enables us
to predict the minima distribution by assuming the freezing scenario. Numerical tests are provided.
Related questions concerning the GFF on a sphere are also considered.

I. INTRODUCTION

The minima statistics of the 2D Gaussian Free Field (GFF) is a fundamental problem relevant in different contexts,
ranging from multi-fractal behaviours in quantum disordered systems [1–3], rare events in climate science [4] to zeros
of Riemann zeta function [5]. While rigorous results exist for the leading behaviour of extrema and near extrema of
GFF, c.f. [6] and references therein, less is known about the full extremum distribution. This was calculated only in
two cases: the GFF on a circle by Fyodorov and Bouchaud [7] (FB), and on an interval [8]. In both cases, the authors
studied the associated Random Energy Model [9, 10] with logarithmically correlated energy landscape. They showed
that the minima distribution can be obtained by a freezing scenario describing the low temperature phase of those
Random Energy Models [11]. Moreover the authors of [8] pointed out the key rôle of a duality property, reminiscent
of well-known dualities in Conformal Field Theory [12, 13].

In general, the GFF φΣ(x) on a 2D domain Σ is determined by its Green function φΣ(x)φΣ(y) = GΣ(x, y) ≈
−2 ln |x − y|. It has both a short distance (ultraviolet) and a long distance (infra red) divergence. While the first
is at the origin of the freezing scenario, the second must be cured in some way. For instance, one may take Σ to
be the unit disk and specify the Dirichlet boundary condition. From this point of view, the results in [7] should be
interpreted as the limit of vanishing circle radius. In this work, we study GFF on circles of any radius, where the
minimum distribution is expected to be affected by the presence of boundary, c.f. [8], sect. 6.2.1. Alternatively, Σ
can be a compact surface, such as a sphere. One of our main motivations is to see whether freezing and duality are
robust in these different situations.
When Σ is a compact surface, the Green function GΣ is the solution kernel to the Poisson equation. For the sphere

Σ = S, with the standard metric, we have (see e.g., [14])

GS(z, w) = − ln
|z − w|2

(1 + |z|2)(1 + |w|2) − 1 (1)

where we identify S with C ∪ {∞} by stereographic projection. On a latitude {|z| = r} and noting φ0(θ) := φS(re
iθ),

φ0(θ)φ0(θ′) = −2 ln |eiθ − eiθ
′ |+ a. (2)

Here a is a zero mode, which contributes a convolution with an independent Gaussian in terms of minima distribution.
We shall set a to zero. Then the minima distribution of the GFF on a latitude on S does not depend on r, but always
coincides with the FB case.
As we will see, this is no longer true for the unit disk D. the Green function on D with Dirichlet boundary condition

is [15]GD(z, w) = −2 ln
∣

∣

∣

z−w
1−zw

∣

∣

∣
. On a centred circle of radius

√
q, q ∈ (0, 1), noting φ(θ) := φD(

√
qeiθ)

φ(θ)φ(θ′) = −2 ln

∣

∣

∣

∣

1− z

1− qz

∣

∣

∣

∣

+ a′, z := ei(θ−θ′), (3)

where a′ is the zero mode that we will set to zero as before. In terms of Fourier modes,

φ(θ) = ℜ
∑

k 6=0

√
µk exp(iθk)Nk, µk :=

1

|k| (1− q|k|), k 6= 0 (4)
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Here Nk are complex numbers whose real and imaginary parts are i.i.d standard normal random variables, and ℜz is
the real part of z. When q → 0 the model eq. (3) reduces to the FB case φ0. Note that the model defined by eq.
(4) makes perfect sense also for q ∈ [−1, 0). For this range of q, eq. (3) can be obtained from the Green function

GP(z, w) = GS(z, w) − GS(z, ŵ) (where ŵ = −w−1 is the antipodal of w), by taking |z| = |w| = √−q. We can then

interpret the results for q < 0 as the minimum of φP(z) := (φS(z)− φS(ẑ))/
√
2 on a latitude of S. In particular, for

q = −1, we are considering the extrema of (φ0(θ)− φ0(θ + π))/
√
2, φ0 being that of the FB model.

In the sect. II, we will solve the model defined by eq. (3); sect. III is devoted to numerical tests of the solution.

II. DISTRIBUTION OF MINIMA

Let us begin by clarify the term “minima of GFF”. Indeed, one defines first the minima of finite systems yM :=
minMi=1 φi. Here φi = φ

(

2πi
M

)

and φ is defined by eq. (4) where the sum is cut to |k| ≤ M
2 . We are interested

in the rescaled minima y = limM→∞
yM−aM

bM
, where the scaling behaviours aM = −2 lnM + 3

2 ln lnM + O(1) and

bM = 1 +O
(

1
lnM

)

were predicted in [11].
To calculate the distribution of y, we study the Random Energy Model defined by the partition function ZM =

∑M
i=1 e

−βφi . β = T−1 is the inverse temperature. Its positive moments (or replica averages) Zn
M (n = 2, 3 . . .) can be

calculated by applying Wick theorem and using eq. (2). For each n, for β small enough, the sum can be approximated
by a Coulomb gas integral as M → ∞:

Zn
M

.
=

(

Me
β2

2
φ2

i

)n

Zn, φ2
i =

∑

|k|≤M
2

µk (5)

where

Zn :=

∫ 2π

0

n
∏

i=1

dθi
2π

∏

i<j

∣

∣

∣

∣

zi − zj
1− qzizj

∣

∣

∣

∣

−2γ

, zi := eiθi , γ := β2. (6)

This integral converges for β < βc,n = n−1/2, and this is precisely the condition for eq. (5) to hold, c.f. [7] sect
3.1. The temperature βc,n’s, called pre-freezing temperatures, are precursors of a true transition separating a high-T
phase and a glassy phase. To see this heuristically, one can compare the number of energy levels, M , and the mean

Boltzmann weight of each level, ∝ Mβ2

[32] A transition occurs at βc = βc,1 = 1:

- When β < 1, M ≫ Mβ2

, ZM is entropy dominated. So we expect that free energy distribution in the
thermodynamic limit can be obtained by analytically continuing the Coulomb-gas integral (6), which we do in
sect. II A.

- When β > 1, Mβ2 ≫ M , ZM is dominated by a few (∼ O(1)) low energy levels and the leading term (∝ lnM)
of the entropy vanishes. This non-analyticity extends to the full free energy distribution, and invalidates any
analytic expansion method. The freezing scenario allows to extend non-analytically β < 1 results to β > 1, and
to predict the distribution of y at β → ∞, see sect. II B.

A. Analytic continuation of moments (when β < 1)

The analytical expansion Zn will be done using Jack polynomials [16] (following conventions of [17]). Denoted by
Jλ(z;α), they depend on variables z = (z1, . . . , zn), a parameter α and a partition λ. The latter is essentially a Young

diagram, i.e., a set of unit square boxes with integer coordinates, c.f. fig (4

λ ≡ {(x, y) : 0 ≤ x < λy , 0 ≤ y < l(λ)} (7)

where λ0 ≥ λ1 ≥ . . . ≥ λl(λ)−1 > 0 (l(λ) is its length). We denote by |λ| :=
∑l(λ)−1

j=0 λj the total number of boxes in
λ, i.e., its size.
An important property of the Jack polynomials is the Cauchy identity [18]

n
∏

i,j=1

(1− qziwj)
−α =

∑

λ

q|λ|Jλ(z;α)Jλ(w;α)j
−1
λ (α), (8)
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where the RHS sums over all the partitions. The value of jλ(α) will turn out irrelevant. Setting α = −γ, zi = eiθi

and wi = e−iθi , we can use eq. (8) to rewrite the denominator of integrand of eq. (6) as

∏

i<j

∣

∣

∣

∣

1

1− qzizj

∣

∣

∣

∣

−2γ

= (1− q)−nγ
∑

λ

Jλ(z;α)Jλ(z;α)

jλ(α)
q|λ| (9)

where z = (z1, . . . , zn). We shall then need the inner product norm [19]

∫ 2π

0

n
∏

i=1

dθi
2π

|∆|2α Jλ(z;α)Jλ(z;α)

cn(α)jλ(α)
=

∏

(x,y)∈λ

gn(x, y;α), (10)

cn(α) =

∫ 2π

0

n
∏

i=1

dθi
2π

|∆|2α =
Γ(1 + nα)

Γ(1 + α)n
(11)

gn(x, y;α) =
x+ α(n− y)

x+ 1 + α(n− y − 1)
. (12)

where ∆ :=
∏

i<j(zi − zj), and cn is the Dyson integral [20]. Combining (9) and (10), we obtain

Zn(β, q) = (1 − q)−nγcn(−γ)
∑

λ

q|λ|
∏

(x,y)∈λ

gn(x, y;−γ) (13)

This equation makes sense for n and β generic, which allows us to extend the definition Zn(β, q) beyond the domain
where corresponding Coulomb-gas integrals exist.
Now we define the fluctuation part f of the free energy FM = −β−1 lnZM as

f := −β−1 ln z, z :=
ZM

Ze
, Ze := Me

β2

2
φ2

i
(1− q)−γ

Γ(1− γ)
(14)

So f and FM differ by a shift, containing the M -dependent part, so that the distribution of f has a well-defined limit
as M → ∞. Indeed, writing t = −nβ, one verifies that the equations (5), (13) and (14) imply (at M = ∞)

exp tf = Γ(1 + tβ)s(t, β, q), (15)

s(t, β, q) :=
∑

λ

q|λ|
∏

(x,y)∈λ

xβ + yβ−1 + t

(x+ 1)β + (y + 1)β−1 + t
. (16)

Note that when q = 0, s ≡ 1 and exp tf = Γ(1 + tβ), coinciding with the FB solution. The series s(t, β, q) encodes
the effects of the finite domain, and is the main result of this work (supplemented by an efficiently calculable matrix

product rewriting, c.f. A). Our approach relying on formal analytical continuation of eq. (13) and (5) is non-rigorous
and the result eq. (15) is a conjecture. Its validity is well supported by careful numerical tests (sect. III). Moreover,
in B we check that it reproduces correctly a non-trivial coefficient in the high-T expansion. To prove rigorously eq.
(15) we should compute the high-T expansion to all order, similarly as in [21, 22], but this project is left to the future.

B. Freezing and duality (when β > 1)

Eq. (15) predicts free energy fluctuations for β < 1. For β ≥ 1, we shall assume the freezing scenario. It appeared
first as front velocity selection criteria in Fisher-Kolmogorov-Petrovsky-Piscounov type equations [23, 24]. Later it
emerged in the physics of disordered systems: first these defined on trees [25, 26], and then Euclidean-space ones
[1, 2, 11]. Recently, it is proved by Madaule et. al. for a large class of models [27]. To state it in our context, consider
the random variable yβ defined by yβ := f − β−1g, where g is a Gumbel variable [28] independent of f . Equivalently,

exp(tyβ) = exp(tf)Γ

(

1 +
t

β

)

(17)

By eq. 15, the above has a well-defined limit as β ր 1. Now the freezing scenario claims it becomes β-independent
for β ≥ 1:

exp(tyβ)
∣

∣

∣

β≥1
≡ exp(tyβ)

∣

∣

∣

βր1
. (18)
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Figure 1: Analytical prediction for minima distribution. Left: The mean is shifted to zero. Right: The distributions are
rescaled to have zero mean and unit variance.

In particular, taking the β → ∞ limit, we have yβ=1 = yβ→∞ = f(β → ∞) = y, giving the minimum distribution. Its
p.d.f., calculated by inverse-Fourier-transforming eq. (17) is plotted in fig. (1). Remark that s(t, β = 1, q) have poles

only at t = −2,−3, . . ., (eq. (16)), so the rightmost pole of exp(ty) is at t = −1 and of order 2, (eq. (17)). By inverse
Fourier transform, this implies Pdf(y → −∞) ∼ |y|e−|y| for any q, confirming the universality of the Carpentier-Le
Doussal tail [11].
We turn now to the duality. Authors of [8] observed for the FB model and the interval model that, if one continues

analytically exp(tyβ) to β ≥ 1, the unique result is self-dual, i.e., invariant under β 7→ β−1. We stress that the
self-dual solution is physically wrong for the phase β ≥ 1, where the non-analytical continuation eq. (18) holds. An

important result of this work is that, exp(tyβ) enjoys the same duality property, unaffected by finite domain effects.
It follows from eq. (15) and the self-duality of s(t, β, q) of eq. (16):

s(t, β, q) = s
(

t, β−1, q
)

.

In fact, the term for λ and for its transpose λ′ = {(y, x) : (x, y) ∈ λ} are related by β ↔ β−1. [33] The co-presence
of freezing and duality property supports the conjecture of [8] , which remains nonetheless intriguing from a general
theoretical viewpoint.

III. NUMERICAL STUDY

Numerical simulations of our models follow the same protocol as in [8], sect. 6.1. The finite models defined at
the beginning of sect. II are simulated using Fast Fourier Transform. We will focus on: (i) the validity of analytical

continuation leading to eq. (15) and (ii) the freezing scenario by measuring the free energy variance f2
c
as a function

of temperature.
We first study the free energy distribution in the β < 1 phase, predicted by eq. (15). To compare analytic

and numerical values, the mean value should be shifted away from both. For numerical data, we measure the
empirical mean value and subtract it from each sample: f ′

i := fi − (
∑n

j=1 fj)/n and calculate the Fourier transform
∑n

i=1 exp(if
′
it)/n of the sample distribution. On the analytical side, we calculate exp(ift) exp(−ift). The sum

s(t, β, q) in eq. (15) is calculated with the matrix product eq. (A2), and the first moment f using eqs. (A5) and
(A6). In fig. (2), we plot real and imaginary parts of the Fourier transform, so t becomes an invisible parameter.
This amounts to rescaling the distributions to have variance 1, so that we concentrate here on the detailed shape of
the distribution, e.g., its asymmetry. The results validate the prediction of the free energy distribution in the high-T
phase.
Now we test the freezing scenario. We follow a strategy of [8] (sect. 6.4) and look at the variance of free energy

f2
c
as a function of β. The β < 1 part supplements the precedent numerics, while the β > 1 part tests the freezing

scenario proper. The analytical prediction is calculated from the matrix product eqs. (A5), (A6) and (A7) for β < 1,
and continued according to eq. (18) to β > 1. The results are shown in fig. (3). Although convergence in the β > 1
phase is notoriously slow, we observe tantamount evidence of freezing for all values of q. The validity of the predicted
free energy distribution in β < 1 phase, plus the freezing scenario, entail the correctness of the prediction minima
statistics.
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Figure 2: Analytic vs. Numerical calculation of Fourier transform of free energy exp(itf), t > 0. Besides what is plotted,
several other combinations (q, β) are also checked. Left: In the high temperature phase, here β = 0.5, the analytic-numerical
agreement is excellent for all values of q from −1 up to 0.9. Right: At the transition, finite size corrections amplify, especially
for q ր 1.
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Figure 3: The variance of f2
c
with the FB (q = 0) analytic values subtracted. The analytic-numerics agreement is excellent in

the high-T phase and degrades when approaching the transition. In the low temperature phase, the plateau indicating freezing
is observed for all numerical data.

IV. CONCLUSION

In this work, we mainly focused on the GFF on the unit disk with Dirichlet boundary condition. We proposed
the minima distribution of the GFF on a centred circle of radius

√
q for general q ∈ (0, 1) (fig. (1)). This was done

by first proposing the exact free energy distribution of the Random Energy Model for β < 1, tested with excellent
agreement against numerics, fig. (2), and then applying the freezing scenario, eq. (18). Furthermore, as explained in
sect. II B, the self-duality enjoyed by our solution. Interpretation of results when q ∈ [−1, 0) and related problems
on the sphere is also discussed (sect. I). The results presented here are the first that probe the effects of boundary
conditions or finite volume. We show that these latter do affect the minimum distribution, but keep intact duality
and freezing features. Their co-presence is observed for exp(tyβ) of all solved 2d GFF models, as well as for velocity
moments in decaying Burgers turbulence [29]. It is interesting to investigate its generality, origin and relation with
the duality appearing in Random Matrix Theory [30] or Conformal Field Theory [12, 31].
Acknowledgements. We are grateful towards P. Le Doussal for a careful reading of the manuscript. We thank E.

Bogomolny, A. De Luca, O. Giraud and C. Texier for useful discussions.

Appendix A: Matrix product form

The infinite sum s(t, β, q) of eq. (16) is absolutely convergent for |q| < 1 and away from poles, but inefficient for
practical use. Moreover, for q = −1, s is not absolutely convergent, and the naive partial sums

∑

|λ|≤N oscillate

& 10% even when N ∼ 80. Fortunately, both problems can be resolved by a matrix product form of s(t, β, q), which
we derive here.
First, we consider partitions as lattice walks h(τ), τ ∈ Z, where h(τ) is the number of squares on the diagonal

x − y = τ (see fig. (4) for explanation). Observe that the product over boxes in eq. (16) telescopes along diagonals
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-11
02
11
21
30

h(τ) τ

h

In general, h(τ) satisfies:

a. h(τ)− h(τ + 1) ∈ {0, 1}, τ ≥ 0;

b. h(τ)− h(τ − 1) ∈ {0, 1}, τ ≤ 0;

c. limτ→±∞ h(τ) = 0.

Figure 4: Left : An example illustrating the mapping between partitions λ and paths h(τ ). Right : Conditions h should satisfy
to correspond to a partition.

and becomes a product over τ . We have indeed

s(t, β, q) :=
∑

{h(τ)}

∏

τ∈Z

qh(τ)(|τ |βsgn(τ) + t)

|τ |βsgn(τ) + (β + β−1)h(τ) + t
(A1)

The sum is over all walks h(τ) satisfying conditions a, b and c of fig. (4). The RHS resembles a path integral (or the
partition function of a directed polymer), and can be written as a product of (transfer) matrices. To avoid infinite
vector spaces, consider s(l), the truncation of A1 to paths h(τ), τ = −l, . . . , l such that h(±l) = 0 (i.e., we sum over
all Young diagrams contained in the square {x < l, y < l}). Using the auxiliary space spanned by |h〉, h = 0, 1, 2 . . . l,
we have

s
(l) = 〈0|UDl−1U . . .D1U |C|LE1 . . . LEl−1L|0〉 (A2)

U = I +

l−1
∑

h=0

|h〉〈h+ 1|, Dj(β) =

l
∑

n=0

qh|h〉〈h|
1 + h(β + β−1)(jβ + t)−1

, (A3)

L = U †, Ej = D†
j

(

β−1
)

, C = D0 = E0. (A4)

Remark that Dj, Ej and C are diagonal (they generate factors in eq. (A1), j = |τ |), while U and L are nearly so
(they implement conditions a and b in fig. (4). This enables the sum s(l) over O(4l) partitions to be calculated in
O(l2) time and O(l) space, so as to achieve in practice the convergence s

(l) → s, l ր ∞. Using l ∼ 103, we observed
4 decimal precisions, even for q = −1. Below, s will be understood as s(l) for l sufficiently big.
To calculate moments of f , we need t-derivatives of eq. (A2) at t = 0. In fact, from eq. (15) we have

sk :=
(

∂k
t ln s

)
∣

∣

t=0
⇒ fk

c
= sk + βk (ln Γ(x))

(k)
x=1 , β ≤ 1. (A5)

For example, f
c
= s1 − βγE , f2

c
= s2 + β2π2/6, and so on. Differentiating s is done by Leibniz rule, and the result

is written again as matrix products. For the first moment, one has

s1 = 〈0|UD
(0)
l−1U . . .D

(0)
1 U |C(1)|LE(0)

1 . . . LE
(0)
l−1L|0〉 (A6)

where D
(0)
j = Dj |t=0, similarly for E

(0)
j , and C(1) = (∂tC)|t=0.

For the k-th moment, one need an auxiliary space of (l+1)k-dimension (to bookkeep the positions hit by derivatives),
spanned by |h, d〉 := |h〉 ⊗ |d〉, h = 0, . . . , l, d = 0, . . . , k − 1. The general expression is cumbersome, and we will give
that of k = 2:

s2 + s21 = 〈0, 0|UD
(1)
l−1U . . .D

(1)
1 U |C(2)|LE(1)

1 . . . LE
(1)
l−1L|0, 0〉 (A7)

D
(1)
j = D

(0)
j ⊗ I+ ∂tDj |t=0 ⊗ |0〉〈1|, E = D†(β → β−1) (A8)

C(2) = 2 (∂tC)|t=0 ⊗ (|0〉〈1|+ |1〉〈0|) +
(

∂2
tC

)∣

∣

t=0
⊗ |0〉〈0| (A9)
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Appendix B: High temperature expansion

As an another check of eq. (15), we compute the high temperature expansion of the free energy variance f2
c
at

order β2. As is shown in [8], (eq. (C.5)), f2
c
= β2

∑

k 6=0
µ2

k

2 +O(β4). We have µk = (1− q|k|)/k (eq. 4), which implies

f2
c
=

(

Li2(q
2)− 2Li2(q) +

π2

6

)

β2 +O(β4),Lim(x) :=
∑

k>0

xk

km
. (B1)

Now we derive this from eq. (15). The Γ(1 + tβ) part gives the contribution π2

6 , The sum eq. (16) is developed at

t = β = 0 as:
∑

λ q
|λ|

∏

(x,y)∈λ
xβ2+y+tβ

(x+1)β2+(y+1)+tβ = 1+ t(m1β + . . .) + t2(m2β
2 + . . .) + . . . , where . . . are higher order

terms.
Let us begin by m1. For any non-empty partition, the box (x = 0, y = 0) has already nominator tβ; so the other

boxes should all be evaluated at t = β = 0 when contributing to m1. So, only λ’s with one column contribute;
otherwise the box (x = 1, y = 0) would have a nominator (β2 + tβ) that vanishes. Therefore

m1 =
∑

k>0

qk
k−1
∏

y=0

y

y + 1
=

∑

k>0

qk

k
= Li1(q) (B2)

Similarly only one-column and two-column partitions contribute to m2. A two-column partition contributes by the
product of all boxes with y > 0 evaluated at β = t = 0, yielding

m2,2 =
∑

k≥l>0

qk+l
k−1
∏

y=0

y

y + 1

l−1
∏

y=0

y

y + 1
=

1

2
Li1(q)

2 +
1

2
Li2(q

2) (B3)

Finally, contributions from each one column partition is the sum over where the second tβ term comes from:

m2,1 =
∑

k>0

qk

k

[

−1 +

k−1
∑

y=1

(

1

y
− 1

y + 1

)

]

= −Li2(q) (B4)

Combining eqs. B2 to B4 one has 2m2 −m2
1 = 2(m2,1 +m2,2)−m2

1 = Li2(q
2)− 2Li2(q) as desired.
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