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Effective irrationality measures for quotients of

logarithms of rational numbers

Yann Bugeaud

Abstract. We establish uniform irrationality measures for the quotients of the logarithms of two rational numbers which are very

close to 1. Our proof is based on a refinement in the theory of linear forms in logarithms which goes back to a paper of Shorey.
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1. Introduction and result

Let ξ be an irrational real number. The real number µ is an irrationality measure of ξ if, for every
positive ε, there are a positive number C(ξ, ε) and at most finitely many rational numbers p/q with
q ≥ 1 and ∣∣∣ξ − p

q

∣∣∣ < C(ξ, ε)

qµ+ε
.

If, moreover, the constant C(ξ, ε) is effectively computable for every positive ε, then µ is an effective
irrationality measure of ξ. We denote by µ(ξ) (resp. µeff(ξ)) the infimum of the irrationality measures
(resp. effective irrationality measures) of ξ. It follows from the theory of continued fractions that
µ(ξ) ≥ 2 for every irrational real number ξ and an easy covering argument shows that there is equality
for almost all ξ, with respect to the Lebesgue measure.

The following statement is a straightforward consequence of Baker’s theory of linear forms in
logarithms (see e.g. [Wa00] and the references therein). By definition, two positive rational numbers
are multiplicatively independent if the quotient of their logarithms is irrational.

Theorem 1.1 Let a1, a2, b1, b2 be positive integers with a1 > a2 and b1 > b2. Assume that a1/a2 and
b1/b2 are multiplicatively independent. There exists an absolute, effectively computable, constant C
such that

µeff

( log(a1/a2)

log(b1/b2)

)
≤ C(log a1) (log b1).

The purpose of this note is to show how a known refinement in the theory of linear forms in
logarithms in the special case where the rational numbers are very close to 1, which goes back to
Shorey’s paper [Sho74], allows one to considerably improve Theorem 1.1 in this special case. Several
spectacular applications to Diophantine problems and to Diophantine equations of this idea of Shorey
have already been found; see for example [Wa78, Wa00] and the survey [Bu08]. Quite surprisingly,
it seems that it has not yet been noticed that it can be used to give uniform upper bounds for
irrationality measures of roots of rational numbers (see [Bu16]) and of quotients of logarithms of
rational numbers, under some suitable assumptions.
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Our main result is the following.

Theorem 1.2 Let a1, a2, b1, b2 be positive integers such that

max{16, a2} < a1 < 6a2/5 and max{16, b2} < b1 < 6b2/5. (1.1)

Define η by a1−a2 = a1−η
1 and ν by b1−b2 = b1−ν1 . If a1/b1 and a2/b2 are multiplicatively independent,

then we have

µeff

( log(a1/a2)

log(b1/b2)

)
≤ 1 + 27638

(log a1)(log b1)

min{η log a1, ν log b1}2
. (1.2)

We display an immediate corollary of Theorem 1.2 which deals with the case η > 1/2 and ν > 1/2.
It illustrates the strength of the theory of linear forms in logarithms.

Corollary 1.3 Let a1, a2, b1, b2 be positive integers such that

36 ≤ a2 < a1 < a2 +
√
a1, 36 ≤ b2 < b1 < b2 +

√
b1, and

√
b1 < a1 < b21.

If a1/b1 and a2/b2 are multiplicatively independent, then we have

µeff

( log(a1/a2)

log(b1/b2)

)
≤ 221105. (1.3)

It is apparent from the proof of Theorem 1.2 that the numerical constants in (1.2) and (1.3) can
be reduced (roughly, divided by 3) if a1 and b1 are sufficiently large. No particular significance has
to be attached to the numerical constant 6/5 in (1.1).

Let a, b and d be positive integers with a 6= b and max{a, b} < d. Under certain conditions, Rhin
[Rh83] (see also [RhTo86]) obtained explicit upper bounds for

µeff

( log(1 + a/d)

log(1 + b/d)

)
.

His approach, which gives better numerical results than ours, heavily uses the fact that the two
rational numbers a/d and b/d have the same denominator. It seems to us that Theorem 1.2, which
applies without any specific restriction on the denominators a2 and b2 of the rational numbers, is new
and cannot be straightforwardly derived from the methods of [Rh83, RhTo86].

2. Proof of Theorem 1.2

We reproduce with some simplification Corollary 2.4 of Gouillon [Gou06] in the special case where
the algebraic numbers involved are rational numbers. We replace his assumption E ≥ 2 by E ≥ 15,
to avoid trouble with the quantity log log logE occurring in the definition of E∗ in Corollary 2.4 of
[Gou06], which is not defined if E is too small.

Theorem G Let a1, a2, b1, b2 be positive integers such that a1/a2 and b1/b2 are multiplicatively inde-
pendent and greater than 1. Let A and B be real numbers such that

A ≥ max{a1, e}, B ≥ max{b1, e}.

Let x and y be positive integers and set

X ′ =
x

logA
+

y

logB
.
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Set

E = 1 + min

{
logA

log(a1/a2)
,

logB

log(b1/b2)

}
and

logX = max{logX ′ + logE, 265 logE, 600 + 150 logE}.

Assume furthermore that 15 ≤ E ≤ min{A3/2, B3/2}. Then,

log |y log(a1/a2)− x log(b1/b2)| ≥ −8550(logA)(logB)(logX)(4 + logE)(logE)−3.

It is crucial for our proof that the dependence on X comes through the factor (logX) and not
through (logX)2, as in [LMN95]. Instead of Theorem G we could use an earlier result of Waldschmidt
[Wa93] (see also Theorem 9.1 of [Wa00]), but the numerical constants in (1.2) and (1.3) would then
be slightly larger.

Proof of Theorem 1.2. Our aim is to estimate from below the quantity∣∣∣ log(a1/a2)

log(b1/b2)
− x

y

∣∣∣,
for large positive integers x, y. We will establish a lower bound of the form

log |y log(a1/a2)− x log(b1/b2)| ≥ −C1(C2 + log max{x, y}), (2.1)

for some quantities C1, C2 which depend at most on a1, a2, b1 and b2. This will show that 1 + C1 is
an irrationality measure for log(a1/a2)/ log(b1/b2).

We apply Theorem G and set A = a1 and B = b1.
Observe that

log(a1/a2) = log(1 + ((a1 − a2)/a2)) ≤ (a1 − a2)/a2 = a1−η
1 a−1

2 ,

thus
log a1

log(a1/a2)
≥ (log a1)

a2

a1
aη1 ≥ max{14, aη1},

since a1 ≥ 17 and aη1 = a1/(a1 − a2) ≥ 6. Likewise, we check that

log b1
log(b1/b2)

≥ max{14, bν1}.

Furthermore, since a2 ≥ 14 and a1 ≥ 17, we get

1 +
log a1

log(a1/a2)
≤ 1 +

log a1

log(1 + 1/a2)
≤ 1 + 1.1a2 log a1 ≤ a3/2

1 ,

and a similar upper bound holds for 1 + (log b1)/(log(b1/b2)), thus we have proved that

E := 1 + min

{
log a1

log(a1/a2)
,

log b1
log(b1/b2)

}
satisfies

15 ≤ E ≤ min{A3/2, B3/2}.

Note also that the quantity
E′ = min{aη1, b

ν
1}



48 2. Proof of Theorem 1.248 2. Proof of Theorem 1.2

satisfies 6 ≤ E′ ≤ E, thus (4 + logE′)/(logE′) ≤ (4 + log 6)/(log 6). It then follows from Theorem G
that

log |y log(a1/a2)− x log(b1/b2)| ≥ −27638(logA)(logB)(log max{x, y}+ logE)(logE′)−2,

when max{x, y} is sufficiently large. This lower bound is of the form (2.1), with explicit values for
C1 and C2, thus we have proved that

µeff

( log(a1/a2)

log(b1/b2)

)
≤ 1 + 27638

(log a1)(log b1)

min{η log a1, ν log b1}2
.

This completes the proof of Theorem 1.2.
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Université de Strasbourg
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