Yann Bugeaud 
  
Effective irrationality measures for quotients of logarithms of rational numbers

Keywords: Linear forms in logarithms, Baker's theory, irrationality measure. 2010 Mathematics Subject Classification. 11J82, 11J86

We establish uniform irrationality measures for the quotients of the logarithms of two rational numbers which are very close to 1. Our proof is based on a refinement in the theory of linear forms in logarithms which goes back to a paper of Shorey.

Introduction and result

Let ξ be an irrational real number. The real number µ is an irrationality measure of ξ if, for every positive ε, there are a positive number C(ξ, ε) and at most finitely many rational numbers p/q with q ≥ 1 and

ξ - p q < C(ξ, ε) q µ+ε .
If, moreover, the constant C(ξ, ε) is effectively computable for every positive ε, then µ is an effective irrationality measure of ξ. We denote by µ(ξ) (resp. µ eff (ξ)) the infimum of the irrationality measures (resp. effective irrationality measures) of ξ. It follows from the theory of continued fractions that µ(ξ) ≥ 2 for every irrational real number ξ and an easy covering argument shows that there is equality for almost all ξ, with respect to the Lebesgue measure.

The following statement is a straightforward consequence of Baker's theory of linear forms in logarithms (see e.g. [START_REF] Waldschmidt | Diophantine Approximation on Linear Algebraic Groups[END_REF] and the references therein). By definition, two positive rational numbers are multiplicatively independent if the quotient of their logarithms is irrational.

Theorem 1.1 Let a 1 , a 2 , b 1 , b 2 be positive integers with a 1 > a 2 and b 1 > b 2 . Assume that a 1 /a 2 and b 1 /b 2 are multiplicatively independent. There exists an absolute, effectively computable, constant C such that

µ eff log(a 1 /a 2 ) log(b 1 /b 2 ) ≤ C(log a 1 ) (log b 1 ).
The purpose of this note is to show how a known refinement in the theory of linear forms in logarithms in the special case where the rational numbers are very close to 1, which goes back to Shorey's paper [START_REF] Shorey | Linear forms in the logarithms of algebraic numbers with small coefficients I[END_REF], allows one to considerably improve Theorem 1.1 in this special case. Several spectacular applications to Diophantine problems and to Diophantine equations of this idea of Shorey have already been found; see for example [START_REF] Waldschmidt | Transcendence measures for exponentials and logarithms[END_REF][START_REF] Waldschmidt | Diophantine Approximation on Linear Algebraic Groups[END_REF] and the survey [START_REF] Bugeaud | Linear forms in the logarithms of algebraic numbers close to 1 and applications to Diophantine equations[END_REF]. Quite surprisingly, it seems that it has not yet been noticed that it can be used to give uniform upper bounds for irrationality measures of roots of rational numbers (see [START_REF] Bugeaud | Effective irrationality measures for roots of rational numbers close to 1[END_REF]) and of quotients of logarithms of rational numbers, under some suitable assumptions.
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Our main result is the following.

Theorem 1.2 Let a 1 , a 2 , b 1 , b 2 be positive integers such that max{16, a 2 } < a 1 < 6a 2 /5 and max{16, b 2 } < b 1 < 6b 2 /5.
(1.1)

Define η by a 1 -a 2 = a 1-η 1 and ν by b 1 -b 2 = b 1-ν 1 .
If a 1 /b 1 and a 2 /b 2 are multiplicatively independent, then we have

µ eff log(a 1 /a 2 ) log(b 1 /b 2 ) ≤ 1 + 27638 (log a 1 )(log b 1 ) min{η log a 1 , ν log b 1 } 2 .
(1.2)

We display an immediate corollary of Theorem 1.2 which deals with the case η > 1/2 and ν > 1/2. It illustrates the strength of the theory of linear forms in logarithms.

Corollary 1.3 Let a 1 , a 2 , b 1 , b 2 be positive integers such that 36 ≤ a 2 < a 1 < a 2 + √ a 1 , 36 ≤ b 2 < b 1 < b 2 + b 1 , and b 1 < a 1 < b 2 1 .
If a 1 /b 1 and a 2 /b 2 are multiplicatively independent, then we have

µ eff log(a 1 /a 2 ) log(b 1 /b 2 ) ≤ 221105. (1.3)
It is apparent from the proof of Theorem 1.2 that the numerical constants in (1.2) and (1.3) can be reduced (roughly, divided by 3) if a 1 and b 1 are sufficiently large. No particular significance has to be attached to the numerical constant 6/5 in (1.1).

Let a, b and d be positive integers with a = b and max{a, b} < d. Under certain conditions, Rhin [START_REF] Rhin | Sur l'approximation diophantienne simultanée de deux logarithmes de nombres rationnels[END_REF] (see also [START_REF] Rhin | Approximants de Padé simultanés de logarithmes[END_REF]) obtained explicit upper bounds for

µ eff log(1 + a/d) log(1 + b/d) .
His approach, which gives better numerical results than ours, heavily uses the fact that the two rational numbers a/d and b/d have the same denominator. It seems to us that Theorem 1.2, which applies without any specific restriction on the denominators a 2 and b 2 of the rational numbers, is new and cannot be straightforwardly derived from the methods of [START_REF] Rhin | Sur l'approximation diophantienne simultanée de deux logarithmes de nombres rationnels[END_REF][START_REF] Rhin | Approximants de Padé simultanés de logarithmes[END_REF].

Proof of Theorem 1.2

We reproduce with some simplification Corollary 2.4 of Gouillon [START_REF] Gouillon | Explicit lower bounds for linear forms in two logarithms[END_REF] in the special case where the algebraic numbers involved are rational numbers. We replace his assumption E ≥ 2 by E ≥ 15, to avoid trouble with the quantity log log log E occurring in the definition of E * in Corollary 2.4 of [START_REF] Gouillon | Explicit lower bounds for linear forms in two logarithms[END_REF], which is not defined if E is too small.

Theorem G Let a 1 , a 2 , b 1 , b 2 be positive integers such that a 1 /a 2 and b 1 /b 2 are multiplicatively independent and greater than 1. Let A and B be real numbers such that

A ≥ max{a 1 , e}, B ≥ max{b 1 , e}.
Let x and y be positive integers and set

X = x log A + y log B . Set E = 1 + min log A log(a 1 /a 2 ) , log B log(b 1 /b 2 )
and log X = max{log X + log E, 265 log E, 600 + 150 log E}.

Assume furthermore that 15 ≤ E ≤ min{A 3/2 , B 3/2 }. Then,

log |y log(a 1 /a 2 ) -x log(b 1 /b 2 )| ≥ -8550(log A)(log B)(log X)(4 + log E)(log E) -3 .
It is crucial for our proof that the dependence on X comes through the factor (log X) and not through (log X) 2 , as in [START_REF] Laurent | Formes linéaires en deux logarithmes et déterminants d'interpolation[END_REF]. Instead of Theorem G we could use an earlier result of Waldschmidt [START_REF] Waldschmidt | Minorations de combinaisons linéaires de logarithmes de nombres algébriques[END_REF] (see also Theorem 9.1 of [START_REF] Waldschmidt | Diophantine Approximation on Linear Algebraic Groups[END_REF]), but the numerical constants in (1.2) and (1.3) would then be slightly larger.

Proof of Theorem 1.2. Our aim is to estimate from below the quantity

log(a 1 /a 2 ) log(b 1 /b 2 ) - x y ,
for large positive integers x, y. We will establish a lower bound of the form

log |y log(a 1 /a 2 ) -x log(b 1 /b 2 )| ≥ -C 1 (C 2 + log max{x, y}), (2.1) 
for some quantities C 1 , C 2 which depend at most on a 1 , a 2 , b 1 and b 2 . This will show that 1 + C 1 is an irrationality measure for log(a 1 /a 2 )/ log(b 1 /b 2 ). We apply Theorem G and set A = a 1 and B = b 1 .

Observe that log(a 1 /a 2 ) = log(1 + ((a

1 -a 2 )/a 2 )) ≤ (a 1 -a 2 )/a 2 = a 1-η 1 a -1 2 , thus log a 1 log(a 1 /a 2 ) ≥ (log a 1 ) a 2 a 1 a η 1 ≥ max{14, a η 1 }, since a 1 ≥ 17 and a η 1 = a 1 /(a 1 -a 2 ) ≥ 6. Likewise, we check that log b 1 log(b 1 /b 2 ) ≥ max{14, b ν 1 }.
Furthermore, since a 2 ≥ 14 and a 1 ≥ 17, we get

1 + log a 1 log(a 1 /a 2 ) ≤ 1 + log a 1 log(1 + 1/a 2 ) ≤ 1 + 1.1a 2 log a 1 ≤ a 3/2 1 ,
and a similar upper bound holds for 1 + (log b 1 )/(log(b 1 /b 2 )), thus we have proved that

E := 1 + min log a 1 log(a 1 /a 2 ) , log b 1 log(b 1 /b 2 ) satisfies 15 ≤ E ≤ min{A 3/2 , B 3/2 }.
Note also that the quantity E = min{a η 1 , b 

  ν 1 } satisfies 6 ≤ E ≤ E, thus (4 + log E )/(log E ) ≤ (4 + log 6)/(log 6). It then follows from Theorem G that log |y log(a 1 /a 2 ) -x log(b 1 /b 2 )| ≥ -27638(log A)(log B)(log max{x, y} + log E)(log E ) -2 ,when max{x, y} is sufficiently large. This lower bound is of the form (2.1), with explicit values for C 1 and C 2 , thus we have proved thatµ eff log(a 1 /a 2 ) log(b 1 /b 2 ) ≤ 1 + 27638 (log a 1 )(log b 1 ) min{η log a 1 , ν log b 1 } 2 .This completes the proof of Theorem 1.2.
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